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Polyglutamine (polyQ) diseases comprise a group of nine 
genetic disorders that are caused by the expansion of 
the CAG triplet repeat, which encodes glutamine, in un-
related single genes. Various oligonucleotide (ON)-based 
therapeutic approaches have been considered for polyQ 
diseases. The very attractive CAG repeat-targeting strat-
egy offers selective silencing of the mutant allele by di-
rectly targeting the mutation site. CAG repeat-targeting 
miRNA-like siRNAs have been shown to specifically in-
hibit the mutant gene expression, and their characteris-
tic feature is the formation of mismatches in their inter-
actions with the target site. Here, we designed novel sin-
gle-stranded siRNAs that contain base substitutions and 
chemical modifications, in order to develop improved 
therapeutic tools with universal properties for several 
polyQ diseases. We tested these ONs in cellular models 
of Huntington’s disease (HD), spinocerebellar ataxia type 
3 (SCA3) and dentatorubral-pallidoluysian atrophy (DR-
PLA). Selected siRNAs caused the efficient and selective 
downregulation of the mutant huntingtin, ataxin-3 and 
atrophin-1 levels in cultured human fibroblasts. We also 
prove the efficiency of novel ONs, with chemical modi-
fication pattern mainly containing 2’-fluoro (2’F), in HD 
mouse striatal cells.
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INTRODUCTION

For fifteen years, RNAi-based strategies designed for 
mutant gene down-regulation, have been rapidly being 
developed. A variety of oligonucleotides (ONs) have 
been tested for polyglutamine (polyQ) diseases (Fiszer 
& Krzyzosiak, 2014). This group of neurological disor-
ders is caused by ORF-located CAG repeat expansion in 
specific genes, and includes HD, DRPLA, spinal bulbar 
muscular atrophy (SBMA), and SCA types 1, 2, 3, 6, 7 
and 17 (Fan et al., 2014).

Although polyQ disorders remain incurable and only 
symptomatic treatment is offered to patients, many 
drugs are currently in testing with the aim to reverse the 
disease or to slow its progress (Kumar et al., 2015). The 
pathogenesis of polyQ diseases is caused by the disrup-
tion of cellular pathways by the expression products of 
the mutant gene, i.e., proteins containing polyQ tracts 
and mutant transcripts. The pathology develops in the 
brain areas characteristic for each disorder, e.g. striatum 
in HD, cerebellum in SCA3 (Fiszer & Krzyzosiak, 2013; 
Evers et al., 2013; Labbadia & Morimoto, 2013). The 

most direct and beneficial therapeutic strategy for polyQ 
diseases is silencing the causal gene expression, and the 
prevailing strategy is transcript targeting using ON-based 
tools (Bennett & Swayze, 2010; Sibley et al., 2010; Kole 
et al., 2012). For several polyQ diseases, allele-selective 
strategies using ONs targeting regions containing SNP 
variants or expanded CAG repeat tracts, have been con-
sidered (Fiszer & Krzyzosiak, 2014).

Short-interfering RNAs (siRNAs) are common tools 
used for post-transcriptional gene silencing in potential 
therapeutic strategies. In the RNAi pathway, one strand 
from the siRNA duplex, the guide strand, is loaded into 
RNA-induced silencing complex (RISC) with the core 
Argonaute 2 (AGO2) protein. The use of single-stranded 
siRNAs (guide-only siRNAs) is desired due to potentially 
lower off-target effects, but it was initially considered 
invalid due to the requirement for ON delivery to cells 
at very high concentrations (Holen et al., 2003). In cells, 
AGO2 loading is generally less efficient for single-strands 
than it is for duplexes (Martinez et al., 2002; Xu et al., 
2004). A specific chemical modification pattern enables 
high activity of guide-only siRNAs and miRNAs (Har-
ingsma et al., 2012; Chorn et al., 2012; Lima et al., 2012). 
A variety of ON chemical modifications is mainly intro-
duced in the internucleotide bond (e.g., phosphothioate 
– PS) or sugar unit (e.g., 2′-O-methyl – 2′OMe, 2′-O-
methoxyethyl – 2′OMOE, 2′F). The efficiency of siRNAs 
has significantly increased as a result of their appropriate 
chemical modification (Amarzguioui et al., 2003; Sipa et 
al., 2007; Bramsen et al., 2009; Engels, 2013). Another 
option for activating guide-only siRNAs in cells is to de-
sign antisense strands that are able to form a self-duplex 
(Hossbach et al., 2006; Fiszer et al., 2013).

CAG repeat-targeting strategy, developed for several 
polyQ disorders, was proven effective and allele-selective 
in studies carried out by David Corey’s group (Hu et al., 
2009; Hu et al., 2010; J Hu et al., 2011; Yu et al., 2012; 
Aiba et al., 2013; Liu et al., 2013) and by us (Fiszer et al., 
2011; Fiszer et al., 2012; Fiszer et al., 2013). The CAG 
repeat-targeting approach is based on multiple binding 
sites in the expanded repeat tract, and the degree of se-
lectivity depends on the difference between the repeat 
tract length in the normal and mutant alleles. In this 
approach, miRNA-like siRNAs are designed to contain 
base substitutions resulting in the formation of mis-
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matches with the target (i.e., an expanded CAG repeat 
tract). Different types of siRNAs have been used: siRNA 
duplexes (Hu et al., 2010; Fiszer et al., 2011; Hu et al., 
2011; Liu et al., 2013; Hu et al., 2014a), chemically modi-
fied single-stranded siRNAs (ss-siRNAs) (Yu et al., 2012; 
Aiba et al., 2013; Liu et al., 2013; Hu et al., 2014b) and 
self-duplexing siRNAs (sd-siRNAs) (Fiszer et al., 2013).

In this study, our aim was to further consolidate 
the beneficial effects induced by siRNAs by modifying 
siRNA strands with both, nucleotide substitutions and 
chemical modifications. These CAG repeat-targeting  
siRNAs were tested in cellular models of polyQ diseases.

MATERIALS AND METHODS

Cell lines. Fibroblasts from patients with polyQ 
diseases (HD: GM04281 – 17/68 CAG in HTT gene, 
SCA3: GM06153 – 18/69 CAG in ATXN3 gene, DR-
PLA: GM13716 – 16/68 CAG in ATN1 gene), ob-
tained from the Coriell Cell Repositories, were grown 
in a minimal essential medium (Lonza) supplemented 
with 8–15% fetal bovine serum (Sigma-Aldrich), anti-
biotics (Sigma-Aldrich) and non-essential amino acids 
(Sigma-Aldrich); the incubator conditions included 5% 
CO2 and a temperature of 37°C. Mouse striatal cell lines 
(STHdh) (Trettel et al., 2000), were purchased from the 
Coriell Cell Repositories and grown in a medium con-
taining DMEM (Gibco), FBS (Sigma-Aldrich), G418 and 
penicillin/streptomycin, with incubator conditions of 5% 
CO2 and 33°C. For storage in liquid nitrogen, these cell 
lines were cryopreserved in the Recovery Cell Culture 
Freezing Medium (Gibco).

Oligonucleotides and cell transfection. RNA ONs 
and chemically modified ONs were synthesized by Fu-
tureSynthesis or IDT. The sequences of oligonucleotides 
used in this study are presented in Fig. 1. Cell transfec-
tions were performed using Lipofectamine 2000 (Inv-
itrogen), according to the manufacturer’s instructions. 
Transfection efficiency was monitored using a BlockIT 
fluorescent siRNA (Invitrogen).

Western blot. Western blots for huntingtin and 
ataxin-3 proteins were performed as described previ-
ously (Fiszer et al., 2011). A western blot protocol for 
atrophin-1 protein analysis was adapted from (Hu et al., 
2014a). Briefly, 25 µg of the total protein was run on a 
Tris-HCl SDS-polyacrylamide gel (4% stacking gel, 6% 
resolving gel, acrylamide:bis-acrylamide ratio 37.5:1) in 
Laemmli buffer, at 125 V, or NuPAGE 3–8% Tris ac-
etate gels (Invitrogen) in XT Tricine buffer (Bio-Rad), in 
an ice-water bath. The immunoreaction was performed 
using the following antibodies: anti-atrophin-1 (Bethyl 
Laboratories), anti-vinculin (Cell Signaling Technology) 
and anti-rabbit HRP-conjugate (Jackson ImmunoRe-
search), and detected using the WesternBright Quantum 
HRP Substrate (Advansta). The protein bands were di-
rectly scanned from the membrane using a camera and 
were quantified using the Gel-Pro Analyzer.

Northern blot. The detection of siRNA pools present 
in cells after transfection was performed using north-
ern blotting, as previously described (Fiszer et al., 2013). 
Briefly, total RNA (2 µg) and 2 pmoles of synthetic ON 
(in the “S” lane) were resolved on a denaturing poly-
acrylamide gel. The RNAs were transferred onto a Gene-
Screen Plus hybridization membrane (PerkinElmer) using 
semi-dry electroblotting (Sigma-Aldrich). The membrane 
was probed with a specific DNA probe complementary 
to the A2 sequence and labeled with [γ32P] ATP (5000 
Ci/mmol, Hartmann Analytics). The hybridization was 

performed overnight at 37°C, in a buffer containing 5× 
SSC, 1% SDS and 1X Denhardt’s solution. The radioac-
tive signals were quantified by phosphorimaging (Multi 
Gauge v3.0, Fujifilm).

Statistical analysis. The statistical significance of si-
lencing was assessed using a one-sample t-test, with an 
arbitrary value of 1 assigned to cells treated with control 
siRNA (C). Selected data were compared using an un-
paired t-test with Welch’s correction to assess the allele-
selectivity of silencing (normal vs. mutant allele silencing). 
Two-tailed p values less than 0.05 were considered to be 
significant. All experiments for which statistical analyses 
were done, were repeated three times.

RESULTS

Design of chemically modified CAG repeat-targeting 
ss-siRNAs

We designed several CAG repeat-targeting ONs based 
on (I) the nucleotide sequences of miRNA-like siRNAs 
that were found to be effective and allele-selective in the 
silencing of mutant polyQ gene expression and (II) the 
chemical modification patterns that were described as be-
ing suitable for ss-siRNA activity (Fig. 1). A2F, WF and 
PF were based on the sequences of previously described 
RNA ONs (A2 (Fiszer et al., 2013), W13/16 (Fiszer et 
al., 2011) and PM3 (Hu et al., 2010), respectively) and 
a chemical modification pattern mainly containing 2’F 
and two 2’OMe nucleotides from the 3’end (Chorn et al., 
2012; Haringsma et al., 2012). Additionally, the WF and 
PF ONs contained A-substitution, forming an addition-
al bulge in the region of interaction with the target se-
quence, which has been described as potentially increas-
ing the specificity of siRNA (Dua et al., 2011). A2M was 
based on both, the A2 sequence and a chemical modi-
fication pattern very close to the one developed by Io-
nis Pharmaceuticals (Lima et al., 2012). A 5’ phosphate 
was included in all of the ONs because it is required for 
activity within RISC, whereas chemically modified ONs 
may not be good substrates for endogenous kinases.

Silencing of different mutant polyQ genes (HTT, ATXN3, 
ATN1) with selected chemically modified CAG repeat-
targeting siRNAs in fibroblast cell models

The activity of a set of chemically modified ONs was 
initially assessed in HD fibroblasts (Fig. 2A). The ONs 
were transfected at 100 nM, and 72 h later, the cells 
were lysed for protein isolation and huntingtin level as-
sessment. In this HD cellular model, ONs with chemi-
cal modifications A2F, WF and PF were tested and 
did not demonstrate any significantly better silencing 
properties when compared to unmodified ONs A2 and 
W1316 (marked as “W” in the figure), which were used 
as a reference. Nevertheless, under the tested conditions, 

Figure 1. Nucleotide sequences and chemical modifications of 
the tested ONs. 
Nucleotides that are base substitutions resulting in mismatch for-
mation with the target sequence are marked in bold. An addition-
al base substitution at position 2 is underlined.
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A2F and WF caused the huntingtin levels to decrease to 
~50% of the control level (Fig. 2A).

The same set of ONs was tested in SCA3 fibro-
blasts (Fig. 2B). A2F showed very similar efficiency 
and selectivity in mutant ATXN3 silencing when 
compared to unmodified A2, e.g., the mutant ataxin-3 
level was decreased to ~25% of the control level, 
but silencing of the normal allele was also consider-
able. WF’s silencing properties were better than the 
effect observed in this model for unmodified W1316: 
a significant allele selectivity was observed as a conse-
quence of the mutant protein decreasing to ~40% of 
the control level, and no changes in normal ataxin-3 
levels were observed (Fig. 2B, left panel). A2F and 
A2M activity was also analyzed in more detail after 
transfection at 1, 5, 20 or 50 nM (Fig. 2B, right pan-
el). Both ONs caused a significant downregulation of 
mutant ataxin-3, already at 5 nM. A2F showed better 
allele-selective properties, but A2M also caused altera-
tions in splicing of ATXN3 transcript, and as a re-
sult a lower molecular weight protein product, lacking 
the exon containing polyQ tract, is produced in SCA3 
cells (Liu et al., 2013).

The activity of A2F and A2M was also analyzed in a 
DRPLA fibroblast model (Fig. 2C). Both ONs silenced 
the expression of ATN1 efficiently, causing atrophin-1 
downregulation to ~25% of the control level after 
transfection at 50 nM concentration. A2F showed bet-
ter allele-selective properties, as 60% of the normal pro-
tein level remained in the cells (and less than 50% using 
A2M) (Fig. 2C).

Evaluation of desired properties of chemically modified 
siRNAs

Taking A2 and A2F ONs as an example, we wanted 
to verify how chemical modifications, mainly 2’F, influ-
ence ON stability in fibroblast cell culture. We transfect-
ed fibroblast cell line SCA3 with 50 nM A2 or A2F, and 
isolated total RNA and protein at specific time points. 
We then performed northern blotting with an A2-spe-
cific probe to detect transfected ONs (Fig. 3A). A2 and 
A2F displayed a similar pattern of detection with a grad-
ual decrease in their levels at the analyzed time points. It 
is worth emphasizing that northern blots show the total 
pool of ONs present in cells, which does not directly 

Figure 2. Efficiency and selectivity of selected ONs assessed in human fibroblasts by western blot analysis of polyQ protein levels. 
(A) Western blot analysis of huntingtin levels in HD fibroblasts (GM04281, 17/68 Q), at 72 h after transfection with 200 nM of the indi-
cated ON. (B) Western blot analysis of ataxin-3 levels in SCA3 fibroblasts (GM06153, 18/69 Q), at 72 h after transfection with 100 nM sd-
siRNA (left panel), and after transfection with 1, 5, 20 or 50 nM ON A2F or A2M (right panels) “#” – additional ataxin-3 protein product. 
(C) Western blot analysis of atrophin-1 levels in DRPLA fibroblasts (GM13716, 16/68 Q), at 48 h after transfection with 1, 5, 20 or 50 nM 
ON A2F or A2M; “C” – control line, total protein from fibroblasts transfected with BlockIT siRNA. For semi-quantitation, signal intensities 
were normalized to reference protein levels: plectin, α-tubulin or vinculin. The error bars represent standard deviations. The p-value is 
indicated with an asterisk (*p<0.05).



762           2016A. Fiszer and others

correspond to the active pool, functioning within RISC. 
After 8 days, the signals were very weak, and these re-
sults are in agreement with the western blot analysis, 
where the most significant downregulation of ataxin-3 
was observed on the second day and was later less 
prominent (Fig. 3B). In both cases, the cells are grow-
ing during the analyzed time post-transfection, so the ef-
fect of ON concentration in a single cell is somewhat 
diluted. Because neurons are not dividing cells, in this 
cell type, the stability of an ON and the duration of its 
silencing effects are only dependent on its resistance to 
degradation.

Silencing of different mutant HTT gene with selected 
chemically modified CAG repeat-targeting siRNAs in 
StHdh striatal cells

Cultured neuronal cells are the preferred model for 
testing ONs because they better represent brain cells, 
which should be the main cell target in therapeutic treat-
ment for polyQ diseases. The relevant neuronal cells may 
be derived from brain tissue of polyQ rodent models or 
differentiated from induced human pluripotent stem cells 
(iPSCs). We have used mouse striatal cell lines (Trettel et 
al., 2000) as a model that is more relevant to HD. First, 
we optimized transfection in these cells to efficiently de-
liver ONs (Supplementary Fig. 1 at www.actabp.pl). To 
evaluate mutant Htt silencing, we used two cell lines, 
heterozygous STHdh 7/111Q and homozygous STHdh 
111/111Q, and selected ONs, A2, A2F and WF, were 
transfected at 100 nM concentration (Fig. 4). After 72 h, 
the cells were lysed, and the huntingtin levels were as-
sessed using western blot. All of the tested ONs silenced 
the expression of the Htt mutant allele encoding 111 Qs 

in the heterozygous cell line, with protein downregula-
tion reaching 30% of the control level. The expression 
of the normal allele encoding 7 Qs remained at the con-
trol level or was upregulated by A2. In the homozygous 
cell line containing two mutant Htt alleles encoding 111 
Qs, A2 and WF showed an efficient downregulation of 
huntingtin, reaching 40–45% of the control level (Fig. 4).

DISCUSSION

Currently, two strategies are being tested to ensure 
a long-lasting activity of ONs: (I) the incorporation of 
chemical modifications to increase ON stability and 
(II) delivery of silencing reagents in genetic vectors. 
These strategies differ in the design of the relevant 
therapeutic tools and in the obstacles that need to 
be overcome in preclinical testing. The drawbacks of 
genetic vectors are as follows: applicability to RNAi 
tools only, problematic dosage control, and possible 
mutagenicity and immunogenicity of the viral vectors. 
Synthetic ONs offer an exciting alternative because 
both, the sequence and the chemical modification pat-
tern of the ON can be optimized to achieve high in 
vivo efficiency together with low toxicity. Synthetic 
ONs may require repetitive administration, but their 
transient activity may be considered an advantage with 
respect to safety owing to direct dosage control. In 
addition, synthetic ONs have been found to be more 
equally and broadly dispersed in the brain because 
free uptake by neuronal cells is observed for ONs 
delivered via an intra-CNS route. In several cases of 
ONs testing for polyQ diseases, synthetic siRNAs or 
AONs were either locally injected or infused into the 
CNS, which caused an efficient downregulation of the 
targeted gene (Wang et al., 2005; DiFiglia et al., 2007; 
Stiles et al., 2011; Kordasiewicz et al., 2012; Yu et al., 
2012; Ostergaard et al., 2013).

An important aspect of ON design is the selection of 
a chemical modification pattern that is suitable for its in 
vivo activity. Chemical modification not only increases 
the biological stability of the ON and the efficiency of 
its hybridization with the target sequence, but may also 
be critical for its effective delivery and low toxicity. The 
PS, 2′F and 2′OMe modifications are well tolerated by 
RISC. Additionally, the use of one strand of siRNA may 

Figure 3. Time span of ON stability and silencing effects. 
(A) Northern blot analysis of cellular levels of A2 and A2F. ONs 
were detected in the total RNA fraction from SCA3 fibroblasts 
(GM06153) lysed at different time points: 0, 2, 5 and 8 days post-
transfection, with 50 nM ONs. Ethidium bromide (EtBr) staining 
was used as a loading control. “0” – 3 h post-transfection, “S” 
– synthetic A2F loading, “C” – control line, total RNA from fibro-
blasts transfected with BlockIT siRNA. (B) Western blot analysis of 
ataxin-3 levels after the same transfections as in (A). Representa-
tive blots are shown. “C” – control line, total protein from fibro-
blasts transfected with BlockIT siRNA.

Figure 4. Western blot analysis of huntingtin levels in mouse 
striatal cells derived from an HD model (STHdh 7/111Q and STH-
dh 111/111Q) at 72 h after transfection with 100 nM ONs: A2, 
A2F and WF. 
“C” – control line, total protein from fibroblasts transfected with 
BlockIT siRNA. For semi-quantitation, signal intensities were nor-
malized to plectin protein levels. The error bars represent stand-
ard deviations. The p-value is indicated with an asterisk (*p<0.05).
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be considered more straightforward and safer due to the 
lack of potential unwanted activity of a sense strand.

We designed RNAi-based ONs that contained spe-
cific base substitutions and chemical modification pat-
terns. By these means, we wanted to achieve an effective 
and specific silencing of selected mutant genes. Gener-
ally, the activity of the tested oligonucleotides was not 
significantly changed when compared to the pure RNA 
versions. Nevertheless, the use of chemically modified 
versions is expected to be more beneficial in in vivo ex-
periments conducted in mouse models. We also tested 
a modified version of sd-siRNA A6, which originally 
did not induce silencing of HTT expression (Fiszer et 
al., 2013). Its modified version, A6M (analogous chemi-
cal modification pattern to A2M), was also inactive (data 
not shown), which implicates the dominant role of base-
substitution patterns for activity of this type of ONs.

At this point, it is difficult to say which ON-based 
therapeutic strategy is best suited for polyQ diseases. 
The existing strategies offer great opportunities for ther-
apy but also have limitations. The allele-selective strate-
gies are considered to be safer. The CAG repeat-target-
ing strategy, which was considered some years ago to be 
a “mission impossible”, turned out to be not only feasi-
ble, but also very promising according to the first in vivo 
studies in mouse models of HD (Yu et al., 2012). The 
potential advantage of this strategy is its universal scope 
as one drug could possibly be used to treat most of the 
polyQ disorders.
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