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Natural antisense transcripts (NATs) are RNA mol-
ecules that originate from opposite DNA strands of the 
same genomic locus (cis-NAT) or unlinked genomic loci  
(trans-NAT). NATs may play various regulatory functions 
at the transcriptional level via transcriptional interfer-
ence. NATs may also regulate gene expression levels 
post-transcriptionally via induction of epigenetic chang-
es or double-stranded RNA formation, which may lead 
to endogenous RNA interference, RNA editing or RNA 
masking. The true biological significance of the natural 
antisense transcripts remains controversial despite many 
years of research. Here, we summarize the current state 
of knowledge and discuss the sense-antisense overlap 
regulatory mechanisms and their potential.
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INTRODUCTION

Natural antisense transcripts (NATs) are separated 
into two main categories, cis or trans, depending on 
their genomic origin. The most popular definition of  
cis-NATs describes these molecules as RNA sequences 

that originate from the opposite DNA strand of the 
same genomic locus, such that they physically share some 
genetic sequence. The overlap may be complete (Fig. 
1C) or partial (Fig. 1A, B), and it may also be described 
as head-to-head (Fig. 1A), tail-to-tail (Fig. 1B) or embed-
ded (Fig. 1C) (Makalowska et al., 2005). The sequences 
of cis-NATs within the overlap region are perfectly com-

plementary between the sense and antisense RNAs, un-
like trans-NATs, where transcripts originate from differ-
ent genomic loci (Fig. 1D) (Vanhée-Brossollet & Vaque-
ro, 1998).

Almost half of the century has passed since the first 
natural antisense RNAs were found within the b2 re-
gion of coliphage λ (Bovre & Szybalski, 1969). Bovre 
and Szybalski concluded that double-stranded RNA 
(dsRNA) may be produced from overlapping transcripts 
under some conditions. They also suggested that RNA 
polymerases transcribing opposite strands in the b2 re-
gion may collide with each other, which would lead to 
premature transcription termination (Bovre & Szybalski 
1969). Today this is known as polymerase collision, one 
of the transcriptional interference scenarios (Shearwin et 
al., 2005). The golden age of natural antisense transcripts 
was far ahead despite this early discovery. Only 11 pairs 
of protein-coding genes with non-protein coding natu-
ral antisense counterparts were described until the late 
1980s, all in viral genomes (Inouye, 1988). These stud-
ies consolidated the hypotheses that this type of genom-
ic architecture was rather rare and probably limited to 
bacterial and viral genomes (Barrell et al., 1976; Sanger et 
al., 1977; Szekely, 1977). However, the first discoveries 
of overlapping genes in eukaryotic genomes were pub-
lished in 1986. Henikoff and co-workers found that the 
pupal cuticle protein (Pcp) gene of Drosophila melanogaster was 

embedded on the opposite DNA strand 
of the Gart gene within its first intron 
(Henikoff et al., 1986). Further discoveries 
in fruit fly (Spencer et al., 1986) and mouse 
(Williams & Fried, 1986) were identified in 
the same year. The first overlapping pairs 
were found in humans and yeast three 
years later (van Duin et al., 1989).

Comprehensive discoveries of natural 
antisense transcripts began to emerge at 
the beginning of the 21st century in vari-
ous species, including plants (Mol et al., 
1990; Quesada et al., 1999; Osato et al., 
2003; Wang et al., 2006), fungi (Steigele 
& Nieselt, 2005, David et al., 2006), ver-
tebrates (Lehrer et al., 2002; Shendure & 
Church, 2002; Zhou & Blumberg, 2003, 
Veeramachaneni et al., 2005; Ge et al., 
2008) and invertebrates (Misener & Walk-
er, 2000; Lee et al., 2005). Antisense tran-
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Figure 1. Types of natural antisense transcript overlap. 
(A) Head-to-head overlap in cis; (B) Tail-to-tail overlap in cis; (C) Embedded over-
lap in cis; (D) Overlap in trans, green and blue arrows represent transcripts origi-
nated from different genomic loci, and forming double-stranded RNA. Full or 
partial complementarity between transcripts is indicated by a regularly spaced or 
disrupted “ladder” of grey vertical lines within the overlap region of cis and trans 
overlapping transcripts, respectively.
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scription is now considered a widespread phenomenon 
that concerns up to 30% of human and mouse genom-
es (Yelin et al., 2003; Chen et al., 2004; Katayama et al., 
2005; Zhang et al., 2006).

Natural antisense transcripts were studied using vari-
ous approaches, including in silico analyses of the ex-
pressed sequence tags (Shendure & Church, 2002, Chen 
et al., 2004), large-scale sequencing of full-length comple-
mentary DNAs (Osato et al., 2003; Wang et al., 2005), 
and tiling arrays (Li et al., 2006; Matsui et al., 2008). Cur-
rent approaches are often based on next-generation se-
quencing technologies, such as RNA sequencing (RNA-
Seq), single-strand RNA sequencing (ssRNA-Seq) or 
chromatin immunoprecipitation-sequencing (ChIP-Seq), 
which allowed for the discoveries of natural antisense 
transcripts across species on a large scale (Lu et al., 2012; 
Conley & Jordan, 2012; Li et al., 2013; Luo et al., 2013).

BIOLOGICAL FUNCTIONS OF NATURAL ANTISENSE 
TRANSCRIPTS

The biological significance of natural antisense tran-
scripts remains controversial despite many years of re-
search. Some groups describe natural antisense tran-
scripts as transcriptional noise with the potential to ac-
quire a secondary function. Other groups posit that this 
latent regulatory potential is underestimated and should 
be considered as another level of gene expression regu-
lation. The overlap between natural sense and antisense 
transcripts may regulate expression at the transcriptional 
level (via transcriptional interference) and/or post-tran-
scriptional level. Regulation may be achieved via modula-
tion of chromatin changes by NATs or the formation 

of double-stranded RNA, which leads to RNA masking, 
RNA interference or RNA editing (Faghihi and Wahlest-
edt 2009, Lu et al., 2012, Celton et al., 2014). Expression 
level regulation in cis, described in sections 1 and 2, may 
occur at the transcriptional and post-transcriptional lev-
els. In contrast, regulation in trans, discussed in section 3, 
may act only post-transcriptionally (Vanhée-Brossollet & 
Vaquero, 1998).

TRANSCRIPTIONAL LEVEL OF REGULATION

Transcriptional interference

Natural antisense transcripts may regulate expression 
at the level of transcription via transcriptional interfer-
ence (TI). This term describes a down-regulatory in-
fluence of the two ongoing transcription processes in 
a relatively close proximity (Shearwin et al., 2005). TI 
may result in transcriptional downturn, transcriptional 
inhibition or early transcription termination. Four main 
mechanisms of transcriptional interference were pro-
posed. The first mechanism, promoter competition, is 
a mechanism in which promoter regions overlap, and 
transcription may start only at one of them at a time 
(Fig. 2A). The second mechanism is called “sitting duck 
interference”, and it describes a situation in which RNA 
polymerase II (RNAPII) progresses too slowly to the 
elongation phase, and it is dislodged by another RNA 
polymerase II (Fig. 2B). The third scenario, occlusion, 
involves the temporary blocking of transcription initia-
tion at a particular promoter region by the ongoing elon-
gation of RNAPII originating from a different promoter 

(Fig. 2C). The last mechanism, 
polymerase collision, occurs 
when two RNAPIIs, which are 
transcribing genes in opposite 
directions, block each other’s 
passage and collide in a head-
to-head manner (Fig. 2D). 
Shearwin et al., thoroughly dis-
cussed these mechanisms in a 
review (Shearwin et al., 2005).

Transcriptional interference 
was intensively studied in re-
cent years. A transcriptional 
collision model was inferred 
from human and mouse ge-
nomes analyses, which ob-
served lower expression levels 
of sense-antisense transcripts 
in longer overlapping regions 
(Shearwin et al., 2005; Osato 
et al., 2007). RNAPII colli-
sions were described in yeast 
in in vitro and in vivo models. 
RNAPIIs were temporary sus-
pended during transcriptional 
collision events, but the elon-
gation complexes were stable, 
which extended the half-life 
of the RNAPII involved in 
this process (Hobson et al., 
2012). Notably, the RNAPII 
collision was also linked with 
the “off-targeting” of the ac-
tivation-induced cytidine deaminase 
(AID), which initiates somatic 
hypermutations (SHM) and 

Figure 2. Mechanisms of transcriptional interference. 
(A) Promoter competition; (B) Sitting duck interference; (C) Occlusion; (D) Polymerase colli-
sion; RNAPII – RNA polymerase II; Blue/green boxes with arrows indicate the transcription 
direction and promoter regions of genes A and B, respectively. Arrows next to RNAPIIs in-
dicate the premature end of transcription of a particular RNAPII. Based on Shearwin et al., 
2005.
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immunoglobulin (Ig) heavy chain class switch recombi-
nation (CSR) in B cells (Muramatsu et al., 2000; Meng 
et al., 2014; Pefanis et al., 2014). AID initiated on non-
Ig targets is related to human B cell lymphomas (Alt et 
al., 2013). TI was also linked with Huntington’s disease, 
in which CAG repeat expansion within the first exon 
of the huntingtin (HTT) gene is associated with the dis-
ease pathology (DiFiglia et al., 1997; Chung et al., 2011). 
HTT expression level is down-regulated by the huntingtin 
antisense transcript HTTAS via transcriptional interfer-
ence and/or a Dicer-dependent mechanism. Growing 
CAG repeat expansion in huntingtin weakens the HT-
TAS promoter strength and antisense expression level, 
which results in the up-regulation of HTT in Hunting-
ton’s disease patients (Chung et al., 2011). TI regulates 
the expression level of the frequency (frq) gene in Neuros-
pora crassa, which is a central component of the circadian 
clock (Xue et al., 2014; Cha et al., 2015). The expression 
of the antisense non-protein coding gene qrf leads to the 
premature transcription termination of the frq gene via 
transcriptional interference and mediation of chromatin 
modifications (Xue et al., 2014). The core circadian clock 
of animals is regulated in a similar manner (Koike et al., 
2012; Menet et al., 2012; Vollmers et al., 2012).

How often a transcriptional interference truly controls 
the expression level of genes is debatable (Hobson et al., 
2012). This mechanism may control the vast majority of 
genes because recent studies discovered that antisense 
non-coding RNAs are counterparts of a substantial num-
ber of genes in animals (Lehner et al., 2002; Yelin et al., 
2003; Chen et al., 2004; Lapidot & Pilpel, 2006; Conley 
et al., 2008) and plants (Yamada et al., 2003; Stolc et al., 
2005; Li et al., 2006; Matsui et al., 2008; Lu et al., 2012; 
Luo et al., 2013). Models of transcriptional interference 
mostly suggest a negative correlation of antisense RNA 
expression levels (Shearwin et al., 2005). However, stud-
ies indicate that overlapping transcripts generally do not 
exhibit expression level correlations, and these correla-
tions tend to be positive rather than negative (Oeder et 
al., 2007; Grigoriadis et al., 2009; Conley & Jordan, 2012; 
Ling et al., 2013). Transcriptional interference may not 
generally regulate the expression level of all genes, but in 
some cases, TI may subtly regulate the expression levels 
of at least some genes where regulatory functions have 
emerged (Brophy & Voigt, 2016).

POST-TRANSCRIPTIONAL LEVEL OF REGULATION

RNA masking

Simultaneous transcription of antisense RNAs may 
lead to the formation of double-stranded RNA, which 
may interfere with the accessibility of the target se-
quences of various miRNAs (Fig. 3A). This mechanism 
was discovered recently for the Sirt1 gene, which pos-
sesses a target sequence for miR-34a. The miRNA tar-
get sequence is located within the overlap region be-
tween the Sirt1 gene and its antisense, Sirt1-AS. This 
positioning results in competition between Sirt1-AS and 
miR-34a for Sirt1 transcript binding (Wang et al., 2016). 
Overexpression of the Sirt1-AS stabilized Sirt1 mRNA 
and increased its half-life from 2 to 10 hours (Wang et 
al., 2016). Similarly, beta-secretase-1 (BACE1) expres-
sion level is negatively controlled by miR-485-5p binding 
and positively controlled by the formation of dsRNA by 
BACE1 sense and antisense (BACE1-AS) transcripts. 
Knockdown of BACE1-AS exhibits the same effect as 
silencing of BACE1 (Modarresi et al., 2011). The imbal-
ance of BACE1, BACE1-AS and miR-485-5p expression 
leads to an up-regulation of BACE1, which was linked 
to pathological states in patients with Alzheimer’s dis-
ease (Faghihi et al., 2008; Faghihi et al., 2010). NATs 
are also involved in Parkinson’s disease, where the short 
splice variant of PTEN-induced putative kinase 1 (PINK1), 
called svPINK1, may form a dsRNA with its antisense 
that is complementary at almost full-length with the 
sense RNA. dsRNA formation leads to stabilization of 
the sense transcript, and the antisense knockout resulted 
in the loss of the svPINK1 splice variant (Scheele et al., 
2007).

Formation of dsRNA may also increase stability of 
the involved RNA molecules via protection from di-
gestion by ribonucleases aimed at single-stranded RNA 
degradation, which was demonstrated in cyanobacterium 
Prochlorococcus sp. RNase E (Stazic et al., 2011). Sense-an-
tisense duplexes may protect RNA molecules from en-
tering into nonsense-mediated decay (NMD), which was 
demonstrated in yeasts (Wery et al., 2016). Protection 
against single-stranded RNases was also demonstrated 
in nds-2a, which is a stable, naturally occurring human 
dsRNA of sense-antisense transcription origin. Knock-

down of nds-2a dsRNA using 
strand-specific locked nucleic 
acid (LNA) gapmers resulted 
in numerous mitotic-relat-
ed effects which suggests a 
functional role of these RNA 
duplexes (Portal et al., 2015).

dsRNA formation may in-
fluence alternative splicing of 
the rat and human α-thyroid 
hormone receptor (TRα) 
gene, which encodes two 
splice variants, TRα1 (active, 
hormone-binding variant) 
and TRα2 (inactive, non-hor-
mone-binding variant). NAT 
only binds to the longer, 
non-hormone-binding TRα2 
splice variant. TRα2-NAT 
dsRNA formation is pre-
sumably responsible for the 
negative regulation of TRα2 
expression level, which pre-

Figure 3. Regulatory roles of double-stranded RNA (dsRNA) formation. 
It may lead to: (A) RNA masking, that may cause the transcript’s protection from an RNase ac-
tivity, interference with translation and splicing machinery, or interference with miRNA binding 
sites’ accessibility; (B) dsRNA editing by the adenosine deaminase acting on RNA (ADAR); (C) RNA 
interference by Dicer-dependent post-processing of dsRNA to short siRNA, followed by Argonaute 
(AGO) loading into the RNA-induced silencing complex.



668           2016W. Rosikiewicz and I. Makałowska

vents the inactive variant expression (Munroe & Lazar, 
1991; Hastings et al., 2000). Munroe recently demonstrat-
ed that the TRα2 variant was not present in marsupials 
and platypus, and comparative analysis revealed that only 
TRα2 was adopted as a TRα expression level regulator in 
eutherian lineage (Munroe et al., 2015).

Another example involves regulation of the E-cadherin 
– protein complex which plays a key role in cellular ad-
hesion. Dysfunctions of this complex are associated with 
increased tumor metastasis (Beavon, 2000). Zeb2 is a 
transcriptional repressor of E-cadherin. Expression of the 
Zeb2 NAT induces an alternative splicing of Zeb2, which 
results in the presence of an intron containing an inter-
nal ribosome entry site (IRES) that is necessary for the 
Zeb2 protein synthesis (Beltran et al., 2008).

RNA masking may also inhibit expression at the 
translational level, which was demonstrated in the 
BCMA gene. The amount of BCMA mRNA in cells is 
not altered by the expression level of antisense (normal 
or increased expression). However, increased expression 
of BCMA-antisense RNA results in a lower amount of 
the BCMA protein (Hatzoglou et al., 2002). The func-
tional significance of NATs at the translational level was 
demonstrated in more detail for PU.1 transcription fac-
tor expression regulation, where the PU.1 antisense in-
terferes with the formation of the PU.1 elongating com-
plex (eEF1A–mRNA) (Ebralidze et al., 2008).

RNA editing (A-to-I)

Natural antisense transcripts that form double-strand-
ed RNA could become a target for the adenosine deami-
nase acting on RNA (ADAR) in a process called RNA 
editing (Fig. 3B). ADAR editing leads to adenosine (A) 
deamination into inosine (I), which is further interpreted 
as guanosine (G) by the cellular translational and splic-
ing machinery (Nigita et al., 2015). Peters and co-work-
ers investigated the 162-nt long overlap region of the  
4f-rnp and sas-10 overlapping gene sequences in Drosophila 
menalogaster and discovered that approximately 20% of 
the 4f-rnp and sas-10 transcripts show marks of RNA ed-
iting at random positions (Peters et al., 2003). The extent 
to which RNA editing plays a biologically significant role 
in natural antisense transcripts is not fully understood 
(Wight and Werner 2013). Nevertheless, reports of thou-
sands of human, mouse and fly RNA editing sites are 
reported in different contexts (Laganà et al., 2012; Wang 
et al., 2013; Ramaswami & Li, 2014; Zhang et al., 2016). 
Therefore, the discovery of the links of these sites with 
NATs on a broader scale is likely a matter of time.

RNA interference

Another possibility for the functional relevance of nat-
ural antisense transcripts is post-transcriptional 

dsRNA-dependent RNA interference (RNAi) through 
endo-siRNA – endogenous small-interfering RNAs (Fig. 
3C). Endo-siRNAs were reported in various species, in-
cluding plants (Borsani et al., 2005; Zhang et al., 2012; Li 
et al., 2013; Yu et al., 2016), fungi (Lee et al., 2010) and 
animals (Tam et al., 2008; Watanabe et al., 2008; Oka-
mura et al., 2011; Werner et al., 2014; Ling et al., 2016). 
The mechanism of endo-siRNA maturation from NAT-
derived dsRNA that is understood the most, suggests 
a Dicer-dependent character of dsRNA processing to 
short siRNA, followed by Argonaute loading into the 
molecular silencing machinery, RNA-induced silenc-
ing complex (RISC) (Czech & Hannon, 2011; Kwak & 
Tomari, 2012). However, studies of Neurospora crassa sug-
gest that siRNA is formed using an unknown Dicer-un-

related pathway, forming the so-called dicer-independent 
small interfering RNA (disiRNA) (Lee et al., 2010). Natu-
ral antisense transcripts were also described as a source 
of short RNA (Sox4_sir3) in mouse, which resembled 
piRNA rather than siRNA. Sox4_sir3 is 24-nt long and 
possesses a 5’-end-sequence bias for uridine. Compara-
tive in silico analyses suggest that Sox4_sir3 is a central 
nervous system-related piRNA (Ling et al., 2016).

Formation of dsRNA may protect natural antisense 
transcripts from single-stranded RNase activity and si-
multaneously limit the prevalence of NATs primarily to 
the nucleus. Formation or transport of a double-strand-
ed RNA to the cytoplasm could trigger an immune re-
sponse. Cellular machinery recognizes dsRNA as a viral 
infection and promotes the inhibition of protein synthe-
sis and the transcriptional induction of interferon and 
other cytokines, which may ultimately lead to cell death 
(Wang & Carmichael, 2004; Kumar et al., 2004; Gantier 
& Williams, 2007). NAT-related dsRNAs are primar-
ily located in the nucleus, possibly to avoid the above-
mentioned immune response (Faghihi & Wahlestedt, 
2006; van Heesch et al., 2014; Portal et al., 2015). The 
regulatory function of NATs in the cytoplasm is limited 
to regulation by endo-siRNAs, which are present in the 
nucleus and cytoplasm (Portal et al., 2015). However, 
stable sense-antisense duplexes that were predominantly 
located in the cytoplasm were also reported (Dallosso 
et al., 2007; Michael et al., 2011). Therefore, the extent 
to which the cellular interferon pathway is activated in 
response to naturally occurring dsRNAs is debatable 
(Wang & Carmichael, 2004).

Genome-wide analyses using RNA-Seq and single-
stranded RNA-Seq protocols, strengthened by parallel 
analyses of small RNA or degradome sequencing, were 
proposed in recent years to expand our knowledge of the 
NATs involved in the endogenous RNA interference (Lu 
et al., 2012; Li et al., 2013; Werner et al., 2014; Yu et al., 
2016). These studies revealed that nearly 4% of the Arabi-
dopsis thaliana cis-NATs produce putative endo-siRNAs,  
and approximately 200 of these endo-siRNAs exhibit rel-
atively high expression levels ≥ 10 RPKM (Reads Per Ki-
lobase per Million mapped reads) (Li et al., 2013). Studies 
in orchid (Dendrobium officinale) identified 63 natural anti-
sense transcripts that produced endo-siRNAs (Yu et al., 
2016). A total of 2292 NATs were reported as a source 
of endo-siRNA in rice (Oryza sativa) (Lu et al., 2012). A 
large-scale analysis of the small RNA transcriptome in 
human embryonic kidney cells revealed that the sense-
antisense transcription of 169 RefSeq genes may lead 
to the formation of endo-siRNAs. These endo-siRNAs  
were also mostly enriched by AGO1 and RNAPII, 
which correlated with the actively transcribed  
endo-siRNA precursors (Werner et al., 2014). Our un-
derstanding of the biological impact of these findings 
requires further study, but the use of next-generation se-
quencing for large-scale endo-siRNA studies has already 
revealed their widespread occurrence and regulatory po-
tential.

Epigenetic modifications

Natural antisense transcripts may regulate expression 
levels of the sense genes and mediate chromatin modifi-
cations within the gene sequence, promoter or enhancer 
regions, the entire locus or even surrounding genomic loci 
(Li & Ramchandran, 2010; Halley et al., 2013; Wight & 
Werner, 2013). For example, expression of the HBA2 
gene may be down-regulated by a repressive chromatin 
modification within the HBA2 promoter regions by its 
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antisense transcript, LUC7 (Tufarelli et al., 2003). An-
other example is brain-derived neurotrophic factor (BDNF) 
and its antisense, BDNF-AS, which may play a role in 
the guidance, introduction and maintenance of the his-
tone H3K27me3 modification within the BDNF locus 
(Modarresi et al., 2012b). BDNF-AS was associated with 
the recruitment of polycomb repressive complex 2 (PCR2), 
which locally induces the trimethylation of histone 
H3K27 within the locus, without exerting any effect on 
the surrounding loci (Modarresi et al., 2012b). Decreased 
expression of BDNF is associated with Alzheimer’s, 
Parkinson’s, and Huntington’s diseases (Bathina & Das, 
2015). Knockout of BDNF-AS results in an up-regu-
lation of BDNF expression levels, which supports the 
therapeutic potential of this mechanism (Modarresi et al., 
2012a). In contrast to BDNF-AS, which locally induces 
histone modifications, an antisense of the mouse Kcnq1 
gene, Kcnq1ot1, may impact the entire Kcnq1 domain.  
Kcnq1ot1 is responsible for the recruitment of PCR2 and 
G9a methylotransferases and the induction of repressive 
histone modifications of the Kcnq1 gene and several up- 
and down-stream localized genes (Pandey et al., 2008). 
Notably, large-scale interactions of Kcnq1ot1 were present 
in a linage-specific manner in mouse placenta, but not 
fetal liver. The regulatory significance of Kcnq1ot1 is em-
phasized by the insertion of a premature transcriptional 
stop signal and synthesis of a truncated Kcnq1ot1 tran-
script, which results in an up-regulation of all genes in 
the Kcnq1 domain (Mancini-Dinardo et al., 2006). NAT 
recruitment of PCR2 is also involved in the X-chromo-
some inactivation by X-inactive specific transcript (Xist) and 
its antisense, Tsix (Halley et al., 2013). Tsix biallelic ex-
pression before the X-inactivation leads to the silencing 
of Xist on both X chromosomes via H3K27me3 histone 
modifications over the Xist promoter regions (Ohhata 
et al., 2015). Tsix expression becomes monoallelic at the 
early stage of chromosome inactivation, which results in 
a de-repression of the Xist promoter and heterochroma-
tization of the chromosome X where Tsix was silenced 
(Lee et al., 1999, Ohhata et al., 2015). Tsix dysfunctions 
may lead to several X-linked diseases (Chaligné & Heard, 
2014; Charles Richard & Ogawa, 2016).

NAT REGULATORY FUNCTIONS IN TRANS

Natural antisense transcripts that function in a trans 
arrangements (trans-NAT) have not been studied as in-
tensively as cis-NATs. Trans-NAT sequences within the 
“overlap” region may not be fully complementary to the 
target sequence because these sequences originate from 
different genomic loci (Vanhée-Brossollet & Vaquero, 
1998). However, this partial complementarity may still 
lead to the formation of double-stranded RNAs. Re-
cent studies demonstrated that thousands of human 
(Szcześniak & Makałowska, 2016) and plant (Szcześniak 
et al., 2016) transcripts exhibit the potential to form ln-
cRNA-RNA duplexes, and new functional trans-NATs 
are continuously being discovered (Roberts & Morris, 
2013). Every DNA-mediated duplication and retrotrans-
position event is generally a source of a sequence that 
is complementary to the original sequence. The emerged 
copy possesses the potential for expression, which may 
lead to trans-NAT formation (Muro & Andrade-Navarro, 
2010; Roberts & Morris, 2013). One well-studied exam-
ple is the nitric oxide (NO) neurotransmitter in Lymnaea 
stagnalis, which is involved in long-term memory for-
mation and associated with food-reward conditioning 
(Kemenes et al., 2002). NO production is catalyzed by 

NO-synthase (NOS), which is negatively regulated in trans 
by the NOS pseudogene antisense transcript (antiNOS-2) 
via dsRNA formation of NOS mRNA and antiNOS-2. 
Decreased antiNOS-2 expression levels facilitate memory 
formation in classical conditioning (Korneev et al., 1999; 
Korneev et al., 2002; Korneev et al., 2013). Pseudogenes 
in mouse oocytes are also a source of endo-siRNAs 
that originate from dsRNA that forms between parental 
mRNA and homologous pseudogene antisense sequenc-
es (Tam et al., 2008; Watanabe et al., 2008). The iden-
tified endo-siRNAs complex are Dicer-dependent and 
enriched with Ago2. Target sequence expression levels 
of the detected complex increased in Dicer and Ago2 
knockout mutants (Watanabe et al., 2008).

Three potential endo-siRNA precursor regions,  
esiRNA1, esiRNA2 and esiRNA3 were identified in the 
human hepatocellular carcinoma pseudogene ψPPM1K 
sequence. Endo-siRNA may arise from these precursors 
in two ways. The first mechanism is related with 

esiRNA3 and based on dsRNA formation by ψPPM1K 
antisense and the cognate gene (PPM1K) transcripts. The 
second mechanisms involves esiRNA1 and leads to en-
do-siRNA maturation from the hairpin structure formed 
by the ψPPM1K transcript. esiRNA1 may down-regulate 
the expression of the cognate PPM1K (protein phospha-
tase, Mg2+/Mn2+-dependent) gene and NEK8 (NIMA-relat-
ed kinase 8) gene. These effects were not observed in a 
ψPPM1K mutant with deletion of the esiRNA1 precur-
sor region (Chan et al., 2013).

Trans-NATs also induce chromatin epigenetic changes. 
Methylation of the Oct4 gene promoter region by the re-
cruitment of Ezh2 methylotransferase is linked to an an-
tisense transcript of Oct4-pseudogene 5 – asOct4-pg5. Sepa-
rate knockdowns of Ezh2 and asOct4-pg5 resulted in Oct4 
up-regulation via demethylation of its promoter regions. 
A down-regulatory influence of the asOct4-pg5 was also 
RNAi independent (Hawkins & Morris, 2010).

Natural antisense transcripts are able to regulate the 
sense gene expression levels in a cis and trans manner in 
some genomic arrangements. For example, the DHRS4 
gene cluster is composed of three highly homologous 
genes, DHRS4, DHRS4L1 and DHRS4L2, and the 
DHRS4 gene is regulated in cis by AS1DHRS4, a head-
to-head antisense transcript. AS1DHRS4 also regulates 
DHRS4L1 and DHRS4L2 genes in trans. AS1DHRS4  
controls the epigenetic silencing of all promoter re-
gions within the DHRS4 gene cluster via interaction 
with EZH2 and G9c methylotransferases. Knockout of 
AS1DHRS4 increases the expression of genes in the 
DHRS4 gene cluster (Li et al., 2012).

The number of known pseudogenes that gained a new 
regulatory function by antisense transcription is small, 
but yearly discoveries refine our understanding of the 
potential of trans-NATs to regulate gene expression on 
another level.

CONCLUDING REMARKS

Natural antisense transcripts possess a great potential 
to regulate the sense gene expression at transcriptional 
and post-transcriptional levels, and their functional rel-
evance is supported by the numerous reports of their 
tissue-specific expression (Lu et al., 2012; Conley & Jor-
dan, 2012; Ling et al., 2013).

 Notably, a growing number of studies link NATs 
with various human diseases, including the Fragile X 
syndrome (Ladd et al., 2007; Khalil et al., 2008), Alzhei-
mer’s (Parenti et al., 2007; Faghihi et al., 2008; Faghihi 
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et al., 2010; Bathina & Das, 2015), Parkinson’s (Scheele 
et al., 2007; Bathina & Das, 2015), and Huntington’s 
diseases (Chung et al., 2011; Bathina & Das, 2015), and 
cancer (Dallosso et al., 2007; Yu et al., 2008; Pasmant et 
al., 2011; Chaligné & Heard, 2014). NATs also play a 
role in hypertension, asthma or thyroid dysfunction (Mi-
chael et al., 2011), and metabolic (Li et al., 2012), immune 
(Hatzoglou et al., 2002) or cardiovascular disorders (An-
nilo et al., 2009). The medical applications of the regula-
tory functions exerted by NATs over their sense gene 
counterparts were scrutinized in comprehensive reviews 
by Khorkova (Khorkova et al., 2014) and Halley (Halley 
et al., 2013).

The biological significance of natural antisense tran-
scripts will likely be debatable for a long time. However, 
our increasing understanding of the NAT biology sheds 
new light on the functional importance of antisense tran-
scription, which may not regulate every single natural 
sense-antisense pair, but is surely essential for the proper 
functioning of all living organisms.
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