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Introduction. Blood biomarkers may support early di-
agnosis of lung cancer by enabling pre-selection of 
candidates for computed tomography screening or dis-
crimination between benign and malignant screening-
detected nodules. We aimed to identify features of se-
rum metabolome distinguishing individuals with early-
detected lung cancer from healthy participants of the 
lung cancer screening program. Methods. Blood samples 
were collected in the course of a low-dose computed 
tomography screening program performed in the Gda-
nsk district (Northern Poland). The analysis included 
31 patients with screening-detected lung cancer and 
the pair-matched group of 92 healthy controls. The gas 
chromatography coupled to mass spectrometry (GC/
MS) approach was used to identify and quantify small 
metabolites present in serum. Results. There were sev-
eral metabolites detected in the sera whose abundances 
discriminated patients with lung cancer from controls. 
Majority of the differentiating components were down-
regulated in cancer samples, including amino acids, car-
boxylic acids and tocopherols, whereas benzaldehyde 
was the only compound significantly upregulated. A 
classifier including nine serum metabolites allowed sepa-
ration of cancer and control samples with 100% sensitiv-
ity and 95% specificity. Conclusions. Signature of serum 
metabolites discriminating between cancer patients and 
healthy participants of the early lung cancer screening 
program was identified using a GC/MS metabolomics 
approach. This signature, though not validated in an in-
dependent dataset, deserves further investigation in a 
larger cohort study.
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INTRODUCTION

Lung cancer is the leading cause of cancer mortality, 
responsible for about one-fifth of cancer-related deaths 
worldwide. The majority of lung cancer cases are diag-
nosed at advanced stages and have a grim prognosis (the 
average 5-year survival of about 10–15%). However, in 
the case of disease detected at early stages, prognosis is 

much better (the average 5-year survival in the range of 
65–85%). Thus, in addition to primary prevention (i.e., 
tobacco smoking control), screening for the early detec-
tion of lung cancer might be the major strategy to re-
duce lung cancer mortality (Hoffman et al., 2000; Jemal 
et al., 2010; Torre et al., 2012). Several diagnostic tools 
allowing early lung cancer detection have been investi-
gated within the past decades, but none have found their 
routine application in clinical practice. Nevertheless, the 
low-dose computed tomography (LD-CT) screening in 
a high-risk group had shown a 20% reduction in lung 
cancer-specific mortality as compared with convention-
al chest X-ray examination (Aberle et al., 2011). Hence, 
lung cancer screening based on LD-CT is now the most 
efficacious strategy for lung screening, with a perspec-
tive for world-wide cancer mortality reduction. However, 
relatively low positive predictive value and sensitivity of 
this test may lead to “over-diagnosis”. In our own expe-
rience, around 75% of patients with screening-detected 
lung abnormalities underwent unnecessary diagnostic 
work-up, including around 25% of patients subjected to 
further invasive procedures (Rzyman et al., 2013). For 
these reasons, complementation of CT-based screen-
ing with other tests allowing effective and reliable pre-
selection of individuals for LD-CT examination, or bet-
ter discrimination between benign and malignant nodules 
detected by LD-CT, seems a critical issue for practical 
application of this strategy (Priola et al., 2013; Rzyman 
et al., 2015). Blood is the most available source of bio-
markers potentially enhancing the power of early lung 
cancer detection or differentiating lung nodules. Several 
components of blood, including circulating tumor cells, 
circulating tumor DNA, micro RNA, autoantibodies and 
specific serum/plasma proteins have been analyzed in 
the search for such biomarkers (Hassanein et al., 2012; 
Hassanein et al., 2011; Sozzi et al., 2014), but none has 
yet been adopted in the clinics.

The overall response of human organism to patho-
logical conditions is mirrored in different molecular 
fractions of body fluids, including the metabolome. In 
recent years, monitoring of cancer-related metabolites in 
blood has been an emerging approach to detection and 
diagnosis of different malignancies (Spratlin et al., 2009). 
Several studies have demonstrated that profiling serum 
or plasma samples by mass spectrometry (MS) or nuclear 
magnetic resonance (NMR) spectroscopy could reveal 
metabolites whose blood levels discriminate patients with 
lung cancer from healthy individuals or from patients 
with non-malignant lung diseases. Such differentiating 
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compounds included phospholipids, carboxylic acids, 
amino acids, sugars and many other small metabolites 
(Jordan et al., 2010; Rocha et al., 2011; Hori et al., 2011; 
Guo et al., 2012; Wang et al., 2013; Deja et al., 2014; Liu 
et al., 2014; Chen et al., 2015). More recently, two rela-
tively large studies using NMR-based analysis of plasma 
or serum metabolome revealed a promising diagnos-
tic potential of multicomponent lung cancer signatures 
built of different types of small metabolites (Puchades-
Carrasco et al., 2016; Louis et al., 2016). Another study, 
using MS-based approaches, revealed a large set of me-
tabolites whose serum levels discriminated lung cancer 
patients from matched controls, and allowed for building 
multicomponent cancer classifiers (Mazzone et al., 2016). 
However, lung cancer patients enrolled in the above-
mentioned studies included both, early and advanced 
cancer cases, and no study has yet been performed us-
ing material obtained exclusively from high-risk subjects 
participating in the LD-CT screening. Hence, potential 
relevance of proposed biomarkers for early detection of 
lung cancer remains to be verified. Here, we assessed 
the applicability of a GC-MS-based approach to identify 
a signature of serum metabolites discriminating between 
patients with screening-detected lung cancer and healthy 
participants of the LD-CT screening program. 

MATERIALS AND METHODS

Study subjects. Material for this study was collected 
in the course of the Pomeranian Lung Cancer Screening 
Program performed by Gdansk Medical University be-
tween 2008 and 2010. This program enrolled over 8 000 
participants and offered LD-CT examination for current 
or former smokers with at least a 20 pack-year history, 
aged from 50 to 75 years. Blood samples were collected 
from about 3 600 participants. The study group involved 
material from 31 participants who were finally diagnosed 
with lung cancer (i.e., 0.9% of the screened group) (Ta-
ble 1). Each cancer case was accompanied by three 
controls, with no detected malignancy, matched accord-
ing to sex, age and smoking history, who were selected 
from the participants of the LD-CT screening program 
(92 cases). The study was approved by the Ethics Com-
mittee of Gdansk Medical University (approval number 
NKEBN/42/2009), and each participant provided a 
written informed consent indicating her/his voluntary 

participation in the project and provision of blood sam-
ples for future research. 

Sample preparation. Peripheral blood was collect-
ed into a 5 mL BD Vacutainer Tube, incubated for 30 
min. at room temperature to allow clotting, and then 
centrifuged at 1 000×g for 10 min. to remove the clot. 
The serum was aliquoted and stored at –70°C prior to 
analysis. 25 µl of serum was added to 200 µl mixture of 
MeOH:H2O (1:1 v/v), vortexed for 20 min., centrifuged 
for 10 min. at 18 000 g, and then the supernatant 1 was 
collected into a new tube. The pellet was re-suspended in 
200 µl mixture of CH2Cl2:MeOH (3:1 v/v). The mixture 
was placed in the ultrasonic bath for 5 min, vortexed for 
10 min and centrifuged for 10 min at 18 000×g, and then 
the supernatant 2 was collected into a new tube. Both 
supernatant fractions were combined and evaporated in 
a vacuum concentrator. 

GC/MS analysis. Dried extracts were derivatized di-
rectly before GC/MS. Each sample was mixed with 25 µl 
of methoxyamine hydrochloride in pyridine (20 mg/ml) 
and vortexed (950 rpm) for 90 min. at 37°C, and then 
80 µl of N-methyl-N-trimethylsilyl-trifluoro-acetamide 
was added to the mixture and vortexed (950 rpm) for 30 
min. at 37°C. The GC/MS analysis was performed with 
Agilent 7890A gas chromatograph (Agilent Technolo-
gies) combined with Pegasus 4D GCxGC-TOFMS mass 
spectrometer (Leco). Compounds were separated using 
the DB-5 bonded-phase fused-silica capillary column (30 
m length, 0.25 mm inner diameter, 0.25 µm film thick-
ness) (J&W Scientific Co.); the GC oven temperature 
program was as follows: 2 min. at 70°C, raised by 8°C/
min. to 300°C and held for 16 min. at 300°C (the total 
time of GC analysis was 46.75 min). Helium was used 
as the carrier gas at a flow rate of 1 ml/min. One mi-
croliter of each sample was injected in a splitless mode. 
The initial injector temperature was 20°C for 0.1 min., 
then temperature raised to 350°C at the 600°C/min. 
rate. The septum purge flow rate was 3 ml/min. and the 
purge was turned on after 60 s. The transfer line and ion 
source temperatures were set to 250°C. In-source frag-
mentation was performed with 70 eV energy. 

Analysis of spectra. Mass spectra were recorded in 
the mass range of 35–650 m/z. All spectra were sub-
jected to automatic peak detection, deconvolution, re-
tention index calculation and library search by Leco 
ChromaTOF-GC software (v4.51.6.0). The alkane series 
mixture (C-10 to C-36) was used to correct retention 
time (Rt) and to determine the retention index (RI) for 
each compound. Automated identification of metabolites 
was based on the Replib, Mainlib and Fiehn libraries; the 
quality threshold was set for similarity index (SI) above 
700 and retention index ± 10. The unique quantification 
masses were specified for each component and the sam-
ples were reprocessed in order to obtain accurate peak 
areas for the deconvoluted components. The obtained 
profiles were normalized against the sum of chromato-
graphic peak area (using the TIC approach). All peaks 
that were identified as artifacts (column bleed, alkanes, 
plasticizer, derivatization reagents) and peaks correspond-
ing to unidentified compounds were excluded from fur-
ther analysis.

Statistical analysis. Quantitative spectral data were 
log transformed and missing values were imputed using 
the k-nearest-neighbor approach with the standardized 
Euclidean metric on a per-group basis (only metabolites 
present in more than 2/3 of samples in each set were 
used for further analyses). For each compound, the nor-
mality of the distribution of abundance and the homo-
geneity of variances were assessed using the Lilliefors 

Table 1. Characteristics of the donor groups.

Group Controls
(n=92)

Cancer cases
(n=31)

Clinical stage N.A

– IA
– IB
– IIA
– IIB
– IIIA

20
2
0
3
6

Histopathology N.A.

– adenocarcinoma
– squamous cell carcinoma
– not otherwise specified NSCLC

21
9
1

Sex

– female
– male

40
52

14
17

Age (years) [median] 52–73 [59] 52–72 [60]

Smoking (pack-year) [median] 10–43 [24] 15–60 [20]

N.A., not applicable
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test and Bartlett’s test, respectively. Then, the signifi-
cance of differences between groups was estimated us-
ing either the two-sample T test (with a correction for 
heteroscedasticity, if necessary) or the nonparametric U 
Mann-Whitney test; the Benjamini-Hochberg approach 
was applied to the p-values for multiple testing correc-
tion (q-value). A multivariable logistic regression model 
was constructed to find the signature describing the rela-
tion between metabolite abundances and patient status. 
A stepwise procedure combined with the Bayesian In-
formation Criterion (BIC), R2 and p-value of likelihood 
ratio test was used for model selection. The contribution 
of individual predictors was measured using the Wald 
test. The optimal threshold for the discriminating func-
tion was found by maximizing the value of Youden’s 
index based on the receiver operating characteristics 
(ROC) and the random guess line. The standard clas-
sification performance indices (sensitivity, specificity, 
positive predictive value, negative predictive value) were 

calculated as appropriate ratios of false/right negatives/
positives.

Bioinformatics analysis. Metabolomic pathways were 
identified using the Metabolite Set Enrichment Analysis 
(accessed on 10.2016 at http://www.msea.ca/MSEA/
faces/Home.jsp); a statistical significance of resulting 
over-representation was estimated using the hypergeo-
metric test.

RESULTS

The GC/MS approach, a standard analytical tool in 
metabolomics study (Spratlin et al., 2009), was used to 
characterize profile of metabolites in serum samples col-
lected from participants of the LD-CT screening pro-
gram for early detection of lung cancer. The study in-
cluded 31 patients with screening-detected lung cancer 
and 92 matched controls. In general, there were 195 
unique metabolites identified in the analyzed samples. 

Table 2. Compounds with differential abundance between early lung cancer and control samples

Metabolite Type of compound
Lung cancer Healthy controls Difference between groups

mean 
[a.u.] C.V. mean 

[a.u.] C.V. cancer/control 
ratio p-value q-value

Compounds upregulated in lung cancer samples 

Benzaldehyde cyclic compound 1.60 0.41 0.96 0.80 1.67 <0.00001 0.0007

Hydroxypyruvic acid carboxylic acid 0.53 1.07 0.35 0.98 1.51 0.122 0.427

Urea amide 574.00 0.98 486 0.86 1.18 0.242 0.576

Compounds downregulated in lung cancer samples

Glycolic acid carboxylic acid 0.44 0.88 0.79 0.72 0.56 0.0007 0.020

β-Hydroxybutyric acid carboxylic acid 2.20 0.95 3.88 0.98 0.57 0.003 0.068

L-Isoleucine (Ile) amino acid 14.61 0.72 23.20 0.75 0.63 0.0002 0.006

Gluconic acid lactone carboxylic acid ester 0.34 0.82 0.52 0.95 0.64 0.038 0.242

γ-Tocopherol polycyclic compound 0.28 0.41 0.41 0.69 0.69 0.009 0.124

Indol-3-acetic acid carboxylic acid 0.44 0.59 0.62 0.76 0.71 0.018 0.179

Ketoleucine carboxylic acid 0.43 0.62 0.59 0.73 0.72 0.004 0.071

Hexadecanol fatty alcohol 0.35 0.53 0.47 1.17 0.74 0.038 0.264

α-Tocopherol polycyclic compound 6.00 0.48 7.82 0.50 0.77 0.032 0.241

L-Valine (Val) amino acid 42.65 0.37 55.05 0.53 0.77 0.017 0.201

L-Proline (Pro) amino acid 56.39 0.42 72.43 0.49 0.78 0.028 0.241

Inositol sugar 0.17 0.61 0.22 0.71 0.79 0.048 0.266

Allyl laurate carboxylic acid ester 0.17 0.23 0.22 0.48 0.79 0.012 0.149

L-Glycine (Gly) amino acid 53.53 0.77 67.12 0.59 0.80 0.009 0.124

Phosphoryethanolamine amine 0.51 0.49 0.63 0.49 0.81 0.023 0.212

Citrulline amino acid 0.65 0.78 0.79 0.61 0.82 0.035 0.242

Pregn-4-ene-3,11,20-trione polycyclic compound 0.74 0.88 1.35 2.72 0.55 0.180 0.504

Pipecolinic acid amino acid 28.26 0.99 50.15 1.78 0.56 0.118 0.454

Parabanic acid nitrogenous acid 1.03 0.75 1.63 1.36 0.63 0.105 0.431

α-Hydroxybutyric acid carboxylic acid 5.44 0.35 8.51 0.96 0.64 0.397 0.677

Dihydrouracil heterocyclic compound 3.78 0.76 5.88 1.23 0.64 0.191 0.523

Cholesta-4,6-dien-3-ol polycyclic compound 1.17 0.76 1.80 3.16 0.65 0.387 0.677

Linolenic acid fatty acid 12.63 0.37 14.51 0.47 0.87 0.188 0.506

L-Phenylalanine (Phe) amino acid 6.34 0.42 7.17 0.63 0.88 0.702 0.819

Compounds present in the cancer classifier are underlined; compounds with differences below and above the threshold of statistical significance 
(p≥0.05) are separated by horizontal lines; C.V., coefficient of variation; a.u., arbitrary units.
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Out of them, 102 compounds detected and quantified in 
the majority of the samples in each group were used for 
further analyses and testing of a cancer classifier (Supple-
mentary Table S1 at www.actabp.pl). In general, the in-
ter-individual variability in levels of the detected metabo-
lites was similar in both groups: the mean coefficient of 
variation was 0.65 and 0.83 in cancer and control sam-
ples, respectively.

First, we looked for individual metabolites discriminat-
ing groups of cancer patients and healthy controls. We 
found 17 metabolites that showed significant difference 
between both groups (p<0.05), including 16 compounds 
with abundances lower in cancer compared to control 
samples (fold change 0.56 to 0.82; Table 2). The only 
compound significantly upregulated in cancer samples 
(fold change 1.67) was benzaldehyde (Fig. 1A). However, 
only three compounds, namely benzaldehyde, isoleucine 
and glycolic acid, retained statistical significance after 
correction for multiple testing (q<0.05). Additionally, 
there were six metabolites showing at least 50% down-
regulation in cancer samples and one metabolite showing 
at least 50% upregulation (fold change <1.50 or >0.67), 
yet observed differences were below the threshold of 
statistical significance (p>0.05; Table 2). 

Metabolites whose abundances in serum discriminat-
ed patients with early lung cancer and healthy donors 
included mostly carboxylic acids and amino acids (Ta-
ble 2). To reveal systemic information about potential 
functional importance of these differences, the identi-
fied differentiating compounds (p<0.05) were annotated 
to metabolic pathways using the Metabolite Set Enrich-
ment Analysis (Fig. 1B). This type of analysis allowed 
identification of “over-represented” pathways associated 
with metabolites discriminating between cancer and con-
trol samples (i.e., pathways associated with the types of 
compounds that were more numerous than expected by 
chance). It is noteworthy that primary pathways associat-
ed with compounds downregulated in cancer samples in-
cluded those involved in protein metabolism; there were 
two pathways that had shown a statistical significance of 
overrepresentation: protein biosynthesis, and Val, Leu 
and Ile degradation.

Finally, we built and tested a multicomponent signa-
ture that allowed separation of cancer and control sam-
ples. The optimum classifier included nine metabolites: 
benzaldehyde, hydroxypyruvic acid and urea (cancer-up-

regulated compounds), and glycolic acid, isoleucine, glu-
conic acid lactone, allyl laurate, phenylalanine and lino-
lenic acid (cancer-downregulated compounds; Table 2). 
This classifier allowed separation of cancer and healthy 
samples with 100% sensitivity, 95% specificity, 86% pos-
itive predictive value and 100% negative predictive value. 
The ROC characteristic of such a separator is shown in 
Fig. 2. The obtained classifier was not validated with an 
independent dataset, yet high indices observed in the 
discovery set apparently inspire for its testing in further 
studies.

DISCUSSION

General features of cancer metabolism that could be 
mirrored in blood metabolome include enhanced glycoly-
sis and gluconeogenesis in combination with suppressed 
Krebs cycle and lipid catabolism. These features of can-
cer metabolism were also demonstrated in blood of lung 
cancer patients (Rocha et al., 2011; Hori et al., 2011; Lou-
is et al., 2016). This characteristic of blood metabolome 
was accompanied by a decreased level of different amino 
acids, including Ala, Cys, Glu, His, Met, Pro, Thr, Trp, 
Tyr and Val (Rocha et al., 2011; Puchades-Carrasco et al., 
2016; Mazzone et al., 2016). Metabolites specifically as-
sociated with glycolysis and gluconeogenesis were not 
differentiating in the current study, likely due to inclu-
sion of only low-stage, early-detected cancer patients. On 
the other hand, decreased levels of amino acids (Gly, Ile, 
Pro, Val) and carboxylic/fatty acid (and their derivatives) 
were compatible with the known characteristic of the 
cancer metabolome. Among compounds with decreased 
abundance in the samples of early-detected lung cancer 
were vitamin E species (α-tocopherol and γ-tocopherol). 
The use of antioxidant vitamins in lung cancer chemo-
prevention has long been speculated, but there is no 
evidence that increased intake of vitamin E is associated 
with reduced risk of lung cancer in smokers (Willett et 
al., 1984; Wright et al., 2000; Mahabir et al., 2008; Vir-
tamo et al., 2014; Wu et al., 2015). Similarly, plasma level 
of α-tocopherol does not seem to be associated with 
lung cancer risk (Comstock et al., 2008). On the other 
hand, however, α-tocopherol was downregulated while 
γ-tocopherol and δ-tocopherol were upregulated in se-
rum of lung cancer patients when compared to healthy 
controls (Mazzone et al., 2016). Hence, results of the lat-
ter study may suggest some association between metabo-
lism of vitamin E and the development of lung cancer. 
The general characteristic of early lung cancer signature 
developed in the present study seems to be coherent 
with the already known features of lung cancer metabo-

Figure 1. Metabolites discriminating early lung cancer patients 
from healthy controls. 
(Panel A) Serum level of benzaldehyde; boxplots show mini-
mum, lower quartile, median, upper quartile and maximum values 
(abundance in arbitrary units). (Panel B) Metabolite sets enrich-
ment overview of discriminating compounds, showing a relative 
over-representation (fold enrichment) of pathways associated with 
cancer-downregulated metabolites and its statistical significance 
(only pathways showing fold enrichment ≥4 are presented).

Figure 2. ROC characteristic of the separator including nine se-
rum metabolites discriminating the cancer and control samples. 
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lome, yet only a small fraction of specific compounds 
discriminating cancer and control samples matched me-
tabolites reported in previous studies.

We found that benzaldehyde was the only com-
pound showing significantly increased abundance in 
samples collected from screening-detected lung cancer 
cases. Benzaldehyde was previously shown to be present 
among volatile compounds detected in exhaled breath of 
lung cancer patients (Bajtarevic et al., 2009). Important-
ly, this compound was specific for cancer patients (i.e. 
was not detected in breath of healthy volunteers), and 
its presence was not related to the smoking behaviour. 
Moreover, signature composed of different volatile com-
pounds, including benzaldehyde, allowed discrimination 
between lung cancer patients and healthy controls with 
50–80% sensitivity and 100% specificity. Hence, an in-
creased level of benzaldehyde observed in serum of lung 
cancer patients apparently confirms the relevance of this 
compound in lung cancer detection. 

A unique feature of our metabolomics study is the 
use of material derived solely from screening-detected 
cancer cases and corresponding controls collected in 
the course of the LD-CT lung cancer screening pro-
gram in a population of high-risk smokers. Owing to 
a relatively low number of study samples, our results 
should be confronted with results of a previous large-
cohort studies including general population of lung 
cancer patients. A comprehensive study using the MS-
based approaches, which involved 94 cancer patients 
and 190 matched controls, was recently published by 
Mazzone et al. (Mazzone et al., 2016). This study re-
vealed tocopherols among essential components of 
signatures discriminating lung cancer patients from 
healthy controls, either in a general lung cancer popu-
lation (downregulated α-tocopherol) or in the group 
of patients with squamous cell cancer (upregulated 
γ-tocopherol and δ-tocopherol). Moreover, all amino 
acids that showed reduced abundance in sera of can-
cer patients analyzed in the current study (Gly, Ile, 
Phe, Pro, Val), were also cancer-downregulated in the 
former study. The results of two other large metabo-
lomics studies based on NMR spectroscopy involving 
296 cancer cases vs. 114 controls (Puchades-Carrasco 
et al., 2016) and 357 cancer cases vs. 347 controls 
(Louis et al., 2016) were not confirmed in our study. 
This inconsistency could be attributed to both, dif-
ferent features of analytical approaches and different 
donor characteristics. Nevertheless, we are aware of 
some limitations of the study presented here, which 
include a relatively low number of donors and its 
“snapshot” design (no follow-up of controls is avail-
able). Our results should therefore be considered as 
exploratory.

CONCLUSIONS

In conclusion, we developed a signature based on a 
set of serum metabolites that discriminate cancer cases 
from the matched healthy subjects in a unique series of 
early lung cancer screening participants. Remarkably, sev-
eral components of this signature were associated with 
the known features of cancer metabolism revealed in 
previous studies that included a general population of 
lung cancer patients. Hence, a further validation study 
is warranted to confirm the robustness of our data and 
to assess a potential clinical utility of the signature. Such 
study has been recently initiated in conjunction with a 
large LD-CT screening program carried by our group.
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