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Cellular stress responses determine tissue development, 
homeostasis and pathogenesis. Paracrine signaling, ex-
change of mechanical stimuli and intercellular transfer 
of small metabolites via connexin-built gap junctional 
channels are involved in the cellular stress detection and 
propagation of stress stimuli in multicellular networks. 
Cellular stress responses are also regulated through the 
activity of unpaired connexons (hemichannels) and via 
the intracellular interference of connexins with the cell 
cycle and pro-apoptotic machinery. Therefore, connex-
ins are considered as multidirectional transmitters of the 
“outside-in” and “inside-out” stress signaling that are 
crucial for tissue homeostasis, regeneration and pathol-
ogy. In particular, the disturbance of connexin function 
during the multi-stage process of tumor development 
leads to abnormal reactions of tumor cells to stress stim-
uli. In this review, we outline the current knowledge on 
the multidirectional role of connexins in the detection 
of stress signals. We also discuss the role of connexin-
mediated intercellular transmittance of stress signals in 
tumour promotion, progression and metastatic cascade.
Highlights:
1. Connexins and gap junctions protect cells from the 
microenvironmental stress and are involved in propaga-
tion and intracellular processing of stress signals.
2. The quality and quantity of stress stimuli, which may 
lead to cell adaptation or death by apoptosis, is deter-
mined by intrinsic properties of connexins and the cell 
phenotype.
3. Connexin deficiency increases the resistance of tumor 
cells to the “outside-in” stress signaling.
4. The connexin-mediated “inside-out” stress signaling 
participates in tumor cell invasion during the metastatic 
cascade.

Key words: carcinogenesis; connexin; gap junctions; cellular stress; 
tumor

Received: 18 March, 2017; revised: 19 April, 2017; accepted: 19 April, 
2017; available on-line: 17 May, 2017

*e-mail: jarek.czyz@uj.edu.pl
*The lecture that partly covered this subject had been presented 
during XLIV Winter School of Faculty of Biochemistry, Biophysics 
and Biotechnology, Jagiellonian University in Zakopane, 2017.
Abbreviations: AKT, protein kinase B; AML cells, acute myeloid leu-
kemia cells; ATRA, all-trans retinoic acid; Bax, bcl-2-like protein 4; 
Bcl2, B-cell lymphoma 2; cAMP, cyclic adenosine monophosphate; 
Cxs, connexins; EMT, epithelial-mesenchymal transition; ERK1/2,  
extracellular signal-regulated kinases 1/2; GJIC, gap junctional in-
tercellular coupling; GSK-3β, glycogen synthase kinase 3 beta; HEK, 
human embryonic kidney cells; IP3, inositol trisphosphate; MAP, 
mitogen-activated protein kinase; MDR, multi-drug resistance; PI3K, 
phosphoinositide 3-kinase; PKC, protein kinase C; ROS, reactive oxy-
gen species; STAT3, signal transducer and activator of transcription 
3; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; TNF, tumor necrosis 
factor; TPhT, triphenylotin; ZO-1/2, tight junction protein 1/2

INTRODUCTION

Cells that reside in multicellular systems are exposed 
to miscellaneous stress signals. The way, a cell responds 
to exogenous stress stimuli is determined by their quality, 
amplitude and duration, as well as by a cellular long-term 
phenotype and momentary physiologic status. The initial 
response of cells to a stress stimulus aims at preserving 
their integrity through activation of survival pathways. 
However, when the noxious stimulus is unresolved, 
death signaling pathways that eventually eliminate dam-
aged cells are activated. Cellular responses to stress stim-
uli (i.e., growth arrest, differentiation apoptosis, necrosis 
or autophagic cell death) depend on the “secular” ability 
of cells to manage stressful conditions and on their per-
manent phenotype (Fulda et al., 2010; Samali et al., 2010). 
Integrated intercellular communication networks propa-
gate stress stimuli between cells and synchronize cellular 
stress reactions in tissues. They consist of membrane re-
ceptors of soluble factors, ion channels, juxtacrine recep-
tors and gap junctional channels.

Gap junctions are semicrystalline clusters of intercel-
lular channels, which consist of connexin family pro-
teins (Sohl & Willecke, 2004). Human connexins (Cxs) 
represent a relatively conservative family of at least 20 
integral membrane proteins ranging in molecular mass 
between 25 (Cx25) and 57 (Cx57) kDa. Connexins in-
clude four transmembrane a-helical domains, two intra-
cellular termini, two extracellular and one intracellular 
loop. They spontaneously form hexameric hemichannels, 
the so-called connexons. When docking to its counter-
part contributed by an adjacent cell, connexons form 
aqueous intercellular channels which mediate intercellu-
lar exchange of small (<1.5 kDa) metabolites and sec-
ond messengers in all the vertebrate tissues (Fig. 1; Na-
kagawa et al., 2010). These channels provide a route for 
metabolic and electrical synchronization of multicellular 
compartments in the process of gap junctional intercel-
lular coupling (GJIC). Electrical coupling is crucial for 
synchronous excitability of tissues. In turn, metabolic 
coupling synchronizes cellular functions in non-excit-
able tissues through gap junction-mediated intercellular 
propagation of metabolites (Nielsen et al., 2012). The gap 
junction-mediated “outside-in” and “inside-out” signaling 
participates in the formation of local multicellular net-
works and governs tissue development and homeosta-
sis in all Metazoans (Nelson & Bissell, 2006). However, 
undocked connexons can also serve as membrane chan-
nels which couple the cells with their extracellular milieu 
(Saez et al., 2005). Finally, single connexin molecules and 
their fragments act as effectors of intracellular signaling 
pathways that regulate cell proliferation, differentiation 
and apoptosis (Mroue et al., 2011).
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Accumulating reports show that gap junctions confer 
physiologic and pathogenic stress stimuli between cells 
and/or mediate intercellular exchange of information on 
tissue constraints (Dbouk et al., 2009). Connexins also 
interfere with multiple pathways which regulate cell re-
actions to intracellular stress in the GJIC-independent 
manner. Cellular stress reactions are involved in devel-
opmental malformations and in chronic diseases, such as 
tumorogenesis (Lopez-Otin et al., 2013). In this review, 
we outlined the involvement of connexins in the “out-
side-in” and “inside-out” stress signaling between cells 
and their microenvironment. We also discussed the in-
volvement of connexins in the regulation of tumor cells 
reactivity to stress, in particular to (i) tissue constraints 
and to (ii) systemic defense systems. Finally, we outlined 
the role of connexins in the “inside-out” stress signaling 
that facilitates cancer cell invasion and metastasis.

THE ROLE OF CONNEXINS IN INTERCELLULAR STRESS 
SIGNALING

According to the canonical view on the functions of 
connexins, these proteins participate in cell adaptation to 
microenvironmental dynamics and to tissue constraints 
via constituting the routes for intercellular metabolic 
cooperation. For example, the gap junctional channels 
mediate the intercellular transfer of signaling molecules, 
nutrients and oxygen (Berthoud & Beyer, 2009). GJIC 
can locally limit cellular stress resulting from shortages 
of food and oxygen supply. Furthermore, gap junctions 
and unpaired connexons participate in the intercellular 
dissipation of metabolic products (e.g., CO2 and urea), 
reactive oxygen species (ROS) and antioxidants. Reactive 
products of oxygen are amongst the most potent and 
omnipresent threats which cells face. Import of the ROS 
scavengers through gap junctions can help cells to re-
cover from the pro-oxidant:antioxidant imbalance. GJIC 
intensity is determined by the abundance of connexins 
in cell-to-cell interfaces and selectivity of channels’ con-
ductance. The composition of connexons and phospho-
rylation status of connexin molecules affect the quality 
and quantity of the transmitted molecules in a cell con-
text-specific manner (Fig. 1; Maeda & Tsukihara, 2011; 
Ek-Vitorin & Burt, 2013; Su & Lau, 2014). Together 
with GJIC-independent functions of undocked connex-
ons and connexins localized in cytoplasm, GJIC-medi-
ated metabolic coupling evokes tissue-specific protective 
responses at the cellular and tissue level. Connexin-mod-
ulated stress signaling regulates local tissue integrity and 
architecture (cell density and positioning, extracellular 
matrix properties, quality and quantity of physical cell-
cell interactions) through the activation/inhibition of cell 
proliferation/differentiation and apoptosis. Below, we 
outline consequences of intrinsic sensitivity of connex-
in molecules to stress stimuli and of connexin-mediated 
inter- and intracellular stress signaling for the physiology 
of single cells and multicellular networks.

Cytoprotective connexin responses to stress stimuli

The efficiency of GJIC depends on the availability of 
gap junctional channels at cell-to-cell interfaces. There-
fore, connexins need to be efficiently transported from 
the places of their synthesis to plasma membranes to 
fulfill these canonical (GJIC-dependent) functions. Con-
nexins are usually synthesized in the perinuclear zone. 
Upon translation, they are incorporated into the mem-
branes of endoplasmic reticulum. Connexins localized in 
the cytoplasm regulate numerous intracellular signaling 

pathways in a GJIC-independent manner (Dbouk et al., 
2009). Concomitantly, they spontaneously oligomerize 
into hexameric hemichannels (connexons; Laird, 2006; 
VanSlyke et al., 2009), undergo post-translational modi-
fications (i.e. glicosylation and acetylation) in the Golgi 
apparatus and are trafficked towards plasmalemmae, 
where they can either reside as unpaired connexons or 
form intercellular channels (Fig. 1). Vesicular transport 
of connexins is predominantly governed by microtu-
bules, whereas the “gap junction proteome”, i.e. proteins 
associated with gap junctions (such as β-catenin, ZO-1 
and ZO-2, vinculin, myosins, small G proteins, kinases 
etc.), regulates the structure and functional status of the 
gap junctional plaques (Laird, 2006; Mroue et al., 2011). 
Abundance of gap junctional channels in cellular inter-
faces is determined by the transport of newly-synthesized 
connexons, the stability of gap junctional plaques and 
the rate of their degradation. Stress signals affect GJIC 
via the effect on the expression and oligomerization of 
connexins, their intracellular trafficking, docking of con-
nexons and recruitment of the gap junction proteome. 
Actually, numerous studies demonstrated that cells can 
activate or attenuate connexin turn-over in response to 
external stress (VanSlyke & Musil, 2005).

A relatively high rate of connexin turn-over enables 
cells to adapt GJIC efficiency to the dynamics of mi-
croenvironmental stress conditions (Leithe, 2016; Wong 
et al., 2017). Additionally, the gating of gap junctional 
channels is often evoked by extreme deviations in the 
concentrations of ions, nutrients, oxygen, metabolic 
products, temperature, pH, and osmolarity of interstitial 
fluids (Chovatiya & Medzhitov, 2014). When a cell dies 
due to the exposure to permanent starvation, the inhibi-
tion of protein glycosylation, disturbance of Ca2+ homeo-
stasis and/or oxygen deprivation, the intrinsic mecha-
nisms which close gap junctions are activated (for review 
see: Oshima, 2014). Activity of Cx40, Cx43 and Cx45 
channels in cardiac tissue constitute an example of this 
function. These connexins built gap junctions that enable 
rapid transfer of Ca++ waves between cardiac cells. Due 
to the accidental cell necrosis, intracellular Ca++ concen-
trations typically reach pathologic (milimolar) concentra-
tions. Gap junctional channels are closed in such condi-
tions, thus preventing Ca++ influx from dying to intact 
cells (Orellana et al., 2012). A similar mechanism has 
been described in endothelial and epithelial cells, neurons 
and astrocytes, fibroblasts and muscle cells (for review 
see: Decrock et al., 2011). Gap junctional permeability is 
also sensitive to pathologic changes in intracellular pH, 
Mg2+, Cl– and Na+ levels (for review see: Oshima, 2014), 
to the reactive oxygen species (ROS), plant toxins and 
to heavy metal ions. For instance, H2O2-induced inhibi-
tion of gap-junction intercellular communication (GJIC) 
in liver epithelial cells (Kim et al., 2016). The inhibitory 
effect of oxidative stress on GJIC was reported in neu-
rons (Quintanilla et al., 2012), lung (Johnson & Koval, 
2009), lenses (Berthoud & Beyer, 2009) and cardiac cells 
(Pogoda et al., 2016; Sovari, 2016). Moreover, administra-
tion of phorbol esters from croton oil attenuates GJIC 
in numerous cell types (for review see: Lampe, 1994). 
Cell-protective responses of gap junctions are also elic-
ited by the challenges that are not stress signals them-
selves but can disrupt homeostasis (e.g. infections and 
allergens; Chovatiya & Medzhitov, 2014). Consequently, 
the attenuation of GJIC restricts the intercellular flux of 
harmful compounds, whereas the quality and quantity of 
intercellular transfer of cytoprotective and stress mole-
cules is determined by the selectivity of channels’ con-
ductance.
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Furthermore, unopposed connexons can fulfill cy-
toprotective function by facilitating cellular adaptation 
to hypoxia/reoxygenation, metabolic starvation and 
excessive mechanoosmotic stress. Connexin hemichan-
nels mediate the rapid exchange of ions, second mes-
sengers and metabolites between the cell interior and 
interstitial space. They predominantly exist in a closed 
state under normal physiological conditions. Howev-
er, it was reported that stress conditions cause the 
opening of hemichannels (Saez et al., 2010; Retamal 
et al., 2015; Pogoda et al., 2016). Increased microen-
vironmental osmolarity, haemodynamic load and ex-
cessive contractile forces can open mechanosensitive 
hemichannels and trigger compensatory ion fluxes be-
tween the cells and their milieu (De Vuyst et al., 2006; 
Evans et al., 2006; Saez et al., 2010; Plotkin & Stains, 
2015). In this way, the cells regulate their osmolarity, 
adapt cytoskeletal architecture to the vectors of ex-
cessive mechanical load and prevent the activation of 
pathologic cell death signalling. Collectively, sensitivity 
of connexin trafficking and gap junction permeability 
to stress signals determines the involvement of con-
nexins in tissue and cell homeostasis. Channel gating 
mechanisms protect the cells from extrinsic stress via 
regulation of the balance between intercellular cooper-
ation and metabolic isolation (Sohl & Willecke, 2004; 

Maeda & Tsukihara, 2011). They participate in cell 
protection from toxic microenvironment, for instance 
from the “by-stander” propagation of cell death sig-
nals (Little, 2006). These mechanisms situate connex-
ons and gap junctions in the category of effective and 
relatively universal sensors of cellular stress that iso-
late the cells from stressful conditions.

Connexin-mediated protective cell responses

Cellular responses to stress signals depend on their 
amplitude and the cell phenotype. They range from 
cell adaptation to necrotic or apoptotic cell death. Al-
though channel perm-selectivity determines the qual-
ity and amplitude of stress signals received by cells, the 
connexin-dependent regulatory system extends beyond 
the rapid channel opening and closure events associated 
with channel gating. As already mentioned, GJIC-depen-
dent intercellular dissipation of toxic substances, such as 
ROS, helps to sustain equilibrium between pro-oxidant 
species and antioxidant defense mechanisms such as 
ROS-metabolizing enzymes. This mechanism is present 
in lenses (Berthoud & Beyer, 2009) and in myocardium, 
where sarcolemmal and mitochondrial Cx43 contribute 
to activation of a major cytoprotective PI3K in PI3K-
Akt-GSK-3β signaling in cardiomyocytes (Ishikawa et al., 
2012). Finally, connexins, connexons and gap junctions 

Figure 1. Gap-junction-dependent and gap-junction-independent involvement of connexins in stress signaling. 
Oligomerized connexins interact with intercellular stress signaling pathways that control cell proliferation, differentiation and viability in 
a manner independent of gap junction-mediated intercellular coupling. When incorporated into plasmalemmae, connexons can act as 
paracrine conduits of intercellular stress signaling. Upon docking of two opposing connexons, an aqueous channel that enables inter-
cellular propagation of stress stimuli is established. Compatibility of connexons and interactions of connexins with other structural and 
signaling molecules (i.e. the gap junction proteome) determines the channel permeability to stress signals. Abbreviations: C, C-terminus; 
Cdc2, cyclin-dependent kinase 1; IP3, inositol trisphosphate; MAPK, mitogen-activated protein kinase; PKA, protein kinase A; PKC, protein 
kinase C; PKG, protein kinase G; skp2, S-phase kinase-associated protein 2; ZO-1, tight junction protein ZO-1.
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participate in cellular perception of stress signals and in 
intracellular signalling responsible for cellular adaptation 
to stress conditions.

An illustrative example of the role of connexins in 
adaptative cell responses is the involvement of GJIC in 
regulation of cell proliferation. GJIC cooperates with 
chemical (paracrine) and nanomechanical stimuli during 
the transition of normal cells from the “activated” to 
“dormant” phenotype (Schalper et al., 2012). The so-
called contact-inhibition of cell proliferation (Abercrom-
bie, 1970; Castor, 1970) is commonly observed in con-
fluent monolayers of normal cells. It is accompanied by 
(i) a dramatic decrease of cell motility along with the 
increasing cell density and by (ii) establishment of a sta-
tionary post-confluent state which is insensitive to nu-
trient renewal (for review see: Heckman, 2009; Puliafito 
et al., 2012). A picture of the mechanism that regulates 
these processes is still incomplete. GJIC-dependent inter-
cellular transmission of inhibitory signals, such as cAMP 
and Ca2+ may account for contact inhibition of growth 
in crowded cell populations. For instance, it is required 
for endothelial quiescence in stabilized vessels. Actually, 
down-regulation of Cx43 can be sufficient to release en-
dothelial cells from contact-inhibition of growth (Choud-
hary et al., 2015). Also toxic aryl hydrocarbon receptor 
(AhR) ligands (such as 2,3,7,8-tetrachlorodibenzo-p-diox-
in; TCDD) decrease the amount of gap junction plaques, 
down-regulate GJIC in the AhR-dependent manner and 
disrupt contact-inhibition growth in liver cells (Andrysik 
et al., 2013). Down-regulation of Cx43/GJIC may also 
be an inherent part of disruption of anchorage-depen-
dence of thyroid cells (Jensen et al., 2011).

Regulation of the contact phenomena extends beyond 
the events associated with GJIC-dependent functions of 
connexins. Contact inhibition of cell proliferation may 
be regulated by GJIC-independent interactions of gap 
and adherens junctions. The recruitment of E-cadher-
in to cell-cell contacts and the subsequent maturation 
of the adherens junctions in epithelial cells (Heckman, 
2009; Tinkle et al., 2008) usually inhibits cell prolifera-
tion, while their disruption can induce cell proliferation. 
E- and N-cadherin and β-catenin are present within the 
gap junction proteome (Sirnes et al., 2015), where they 
can interact with protein kinases, ion channels and small 
G proteins (for review see: Laird, 2006). Apparently, cad-
herin- and connexin-dependent sub-membranous protein 
complexes constitute a system (Meens et al., 2013) that 
integrates regulation of “social” cell behavior in tissues 
with the intracellular cell cycle machinery.

Moreover, numerous studies demonstrated interac-
tions of single connexin entities with STAT3, ERK1/2 
and src-dependent pathways (for review see: Vinken et 
al., 2011; Vinken et al., 2012). The interactions of con-
nexins with intracellular signaling are often attributed to 
C-terminal of connexins and to their phosphorylation. 
This is well manifested in cardiomyocytes, where phos-
phorylation of serine262 in Cx43 inhibits DNA synthe-
sis independently of GJIC (Doble et al., 2004). Cx43 in-
terferes with the function of cyclins, p27kip and S phase 
kinase-associated protein 2 (skp2), which regulates p27 
ubiquitination in a GJIC-independent manner (Zhang et 
al., 2003b; Zhang et al., 2003c). Notably, these interac-
tions inhibit logarithmic cell growth rather than partici-
pate in retardation of cell growth in confluent cultures.

Collectively, connexins take part in imposing “social” 
tissue constraints through suppressive “by-stander ef-
fects” mediated by GJIC. Even though the signals from 
neighbor cells in crowded populations do not necessarily 
affect cell welfare, contact-inhibition of cell proliferation 

can be interpreted as a pre-stress adaptation response. 
Multiple interceptions of connexins, connexons and gap 
junctions with sub-membrane assemblies of cytoskele-
tal and signaling molecules (i.e. gap junction proteome 
(Mroue et al., 2011)) and with the cell cycle machinery 
prevent excessive cellular crowding in tissues. They ap-
parently create conditions for the initiation of cell differ-
entiation and permanent reprogramming, thus participat-
ing in the maintenance of tissue integrity and functional-
ity (Iyyathurai et al., 2016).

Consequences of connexin-dependent stress signaling 
at the tissue level

Whereas most insults can be overcome by the cells’ 
natural defenses, sustained perturbations of tissue ho-
meostasis and/or tissue rearrangements during mor-
phogenesis or regeneration may result in the execution 
of pro-apoptotic programs. Whether the extrinsic and 
intrinsic connexin-mediated stress stimuli are interpret-
ed by a cell as a death signal, depends on the cellular 
context, i.e. a phenotype of the stress-generating and 
stress-receiving cells. Furthermore, the amplitude, perma-
nence and quality of stress signal, as well as the abun-
dance, functional status and “perm-selectivity” of gap 
junctional channels, determines the quality and quantity 
of apoptotic cell responses to extrinsic stress signals.

There is ample evidence for the involvement of 
GJIC-mediated transfer of Ca2+, cAMP, IP3, and reac-
tive oxygen/nitrogen species in the programmed cell 
death. “By-stander” effects, i.e. gap junction-mediated 
intracellular propagation of stress signals induces the 
apoptosis in virtually all tissues (Krysko et al., 2005). The 
involvement of GJIC in the intercellular propagation 
of pro-apoptotic stimuli is illustrated by the spread of 
apoptotic cell death in ischemia (Contreras et al., 2004; 
Jeyaraman et al., 2012) and in the morphogenic processes 
(Krutovskikh et al., 2002). These signals can trigger the 
release of Ca2+ from endoplasmic reticulum. Intracellu-
lar Ca2+ contributes to the regulation of apoptotic cas-
cades and mitochondrial permeability, thereby amplifying 
the intracellular pro-apoptotic signaling (Orrenius et al., 
2003). Corresponding involvement of GJIC in apoptotic 
cell responses was observed in liver, where hepatic gap 
junctions play a crucial role in local propagation of anti-
viral immune response signaling (Knabb et al., 2007). By 
contrast, GJIC inhibition in hepatocytes down-regulated 
the activity of caspase-3, a major contributor in the pro-
apop totic cascades (Naiki-Ito et al., 2010). Gap junctions 
and hemichannels built of Cx43 are also involved in 
H2O2-mediated cell death in epithelial cells and osteo-
cytes (Ramachandran et al., 2007; Hutnik et al., 2008; Kar 
et al., 2013). Cx43 modulates H2O2- and H/R-induced 
cell death in astrocytes and these distinct effects of Cx43 
correlate with differential regulation of Cx43 phosphory-
lation and spatial distribution.

Furthermore, the intracellular fraction of connexins 
participates in GJIC-independent intracellular amplifica-
tion of pro-apoptotic signals (Kardami et al., 2007). For 
instance, mitochondrial connexons may confer cell fate/
death signals (Baines, 2010). Along with a panoply of 
mitochondrial proteins/complexes involving Bcl2, Bax 
and K(ATP) channels, Cx43 has been implicated in mi-
tochondrium-related cell death. These functions can also 
be executed by single connexin molecules and hemichan-
nels localized in the nucleus (Rodriguez-Sinovas et al., 
2007). Finally, due to the multiple interceptions between 
signaling pathways that regulate cell proliferation/growth 
arrest, the interference of connexins with the function 
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of MAP kinases, p27 and other cell cycle effectors can 
be translated into apoptotic cell responses (Vinken et al., 
2012).

Collectively, connexin-mediated stress signaling acti-
vates cell adaptation mechanisms, which prevent abnor-
mal tissue hyperplasia and are important for elimination 
of excessive or irreversibly damaged cells. These mecha-
nisms add to the role of connexin-mediated stress signal-
ing in tissue homeostasis, development and regeneration. 
Notably, “outside-in” signalling pathways can activate 
signaling loops that close gap junctional channels in the 
apoptotic cells. This mechanism represents an adaptation 
system that protects tissue homeostasis through metabol-
ic isolation of apoptotic cells. Multidirectional functions 
of connexins in the regulation of cell proliferation and 
apoptosis place them in the category of multifunctional, 
signaling micro-domains involved in “outside-in” stress 
signaling that preserves tissue integrity and homeostasis 
(Dbouk et al., 2009).

CONNEXIN-MEDIATED CELLULAR STRESS IN TUMOR 
DEVELOPMENT

Tissue homeostasis, development and regeneration de-
pend on the cooperation between connexin-dependent 
intra- and intercellular pathways and paracrine/mechani-
cal signaling (Nelson & Bissell, 2006). Accordingly, ab-
normal propagation and amplification of intercellular 
stress signaling, which disturbs cell reactivity to extrinsic 
stress stimuli, is the physiological outcome of connexin 
dysfunctions. At the tissue level, the disturbances in gen-
eration, detection and propagation of stress signals lead 
to numerous abnormalities, such as developmental mal-
formations, inflammatory diseases and tumor (for review 
see: Wong et al., 2016; Wong et al., 2017). For instance, 
increased proliferation of keratinocytes in psoriasis is at-
tributed to increased Cx26 levels (Aasen, 2015). Notably, 
subtle changes of connexin expression, trafficking and 
turnover participate in dysfunctional social behavior of 
the cells, leading to cell transformation. Cx32-knockout 
mice exhibited resistance to liver cell death induced by 
d-galactosamine and carbon tetrachloride (Asamoto et al., 
2004), and the increased predisposition to liver cancer 
(Hokaiwado et al., 2007). It is conceivable that injured 
hepatocytes may escape apoptosis upon Cx32 removal, 
which poses a risk factor in carcinogenesis (Naiki-Ito et 
al., 2010). Indeed, associations between low expression 
of connexins in tumors and a poor prognosis have been 
reported for numerous tumors, including prostate, colo-
rectal and breast cancer (Benko et al., 2011; Teleki et al., 
2014; Sirnes et al., 2015; Grek et al., 2016). The relevance 
of connexin (dys)function for carcinogenesis was also 
supported by reports (i) on the interference of chemi-
cal carcinogens with the function of connexins in normal 
cells, (ii) on the postulated role of connexin deficiency in 
anchorage-independent and contact-resistant tumor cell 
proliferation, (iii) on the interrelations between connexin 
(dys)functions and the resistance of tumor cells to apop-
tosis and (iv) on the role of connexin-mediated “inside-
out” signaling in tumor invasion and metastasis. Below, 
we propose how the combination of these effects can 
contribute to cancer promotion and progression (Fig. 2).

Connexin deficiency and cell transformation

Occasional transmission of stress signals through gap 
junctions can lead to “physiologic” apoptosis that elimi-
nates excessive or damaged cells from tissues. Therefore, 
the resistance of tumor cells to these signals may result 

from connexin dysfunction. The role of intracellular 
transfer of metabolites in cancer promotion was experi-
mentally analysed for the first time in the late 1960s, i.e. 
long before connexins had been discovered (Loewen-
stein & Kanno, 1966; Loewenstein & Kanno, 1967). 
Early demonstrations of the fact that cancer cells are 
less communicated than their normal counterparts were 
underlined by a plethora of reports on connexin dys-
function in cancer cells (Laird, 2006; Leithe et al., 2006). 
Chemical carcinogenes, such as phorbol esters, exert an 
inhibitory effect on the expression and/or function of 
connexins in numerous cell types, incl. hepatocytes and 
keratinocytes (Ren et al., 1998; Langlois et al., 2010). Ac-
cordingly, it is commonly assumed that connexins, gap 
junctions and GJIC may stabilize a “normal” cell phe-
notype, whereas connexin dysfunctions participate in the 
resistance of tumor cells to stressful microenvironment 
of primary tumors.

Phorbol esters impair GJIC through the protein ki-
nase C (PKC)-dependent phosphorylation of connex-
ins (Chipman et al., 2003). A similar activity of lindane 
(hexachlorocyklohexan) in liver and myometrial cells was 
attributed to the oxidation of glutathione (Loch-Caruso 
et al., 2004; Caruso et al., 2005). We have demonstrated 
that triphenylotin (TPhT) closes Cx43 channels in hu-
man embryonic kidney (HEK) cells through ROS-depen-
dent activation of PKC (Sroka et al., 2008). This finding 
confirms that Cx43 functions as a sensor of oxidative 
stress. Metabolic isolation of tumor cells is the primary 
outcome of connexin deficiency and dysfunction. Thus, 
the cells are released from the control regime of the 
tissue because GJIC impairment prevents intercellular 
propagation and intracellular amplification of stress stim-
uli. On the other hand, the dysfunction of connexins can 
also attenuate intercellular fluxes of harmful compounds 
from dysfunctional cells to their intact neighbors, leading 
to accumulation of toxic metabolites (such as ROS) in 
metabolically isolated cells (Tsujino et al., 2007; Vinken 
et al., 2012). Deficient/abnormal connexin expression, 
disturbance of connexin trafficking (Leithe, 2016), dereg-
ulated gating and selective permeability of gap junction 
channels may thus contribute to the accumulation of 
mutations in tumor cells’ genome (incl. connexin-coding 
genes). Such mutations are commonly observed in the 
genes encoding the effectors of GSK3β, src/PKC and 
cAMP-dependent cascades. Because these pathways par-
ticipate in the”oncogenic transformation” and concom-
itantly regulate connexin expression (reviewed by: Lee 
et al., 1991; Chipman et al., 2003), “vicious circles” that 
account for heritable Cx43, Cx32 and Cx26 dysfunction 
in tumor cells may be constituted. Due to the possible 
involvement of connexin dysfunction in disturbed genet-
ic stability of tumor cells, connexins are often claimed to 
represent class II suppressors.

Connexin deficiency and stress-resistance of tumor cells

Tumor cell populations in vitro and in vivo are char-
acterized by extreme phenotypic heterogeneity, which 
concerns gene expression, proteome, secretome, com-
position and architecture of surface complex, adhesive 
properties, morphology, motility, contractility etc. Ap-
parently, this heterogeneity illustrates the complexity of 
microevolution routes undertaken by tumor cell lineages 
in the dynamic microenvironment of primary tumor. In 
contrast, anchorage-independent growth and relative in-
sensitivity to cellular crowding are characteristic for the 
vast majority of tumor cells. Even though there are sev-
eral reports on cytoprotective effects of Cx32, Cx43 and 
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Cx46 on cancer cells (Banerjee et al., 2010), their dys-
function generally attenuates the sensitivity of tumor cells 
to growth-retarding and pro-apototic signals (Table  1). 
Accordingly, misperception of the presence of neighbor-
ing cells is considered as a fundamental milestone in the 
development of tumors. Numerous studies showed that 
the ectopic Cx26, Cx32 and Cx43 expression in connex-
in-deficient glioma (Goldberg et al., 2000), melanoma (Su 
et al., 2000), breast (Hirschi et al., 1996; Momiyama et al., 
2003) and prostate cancer cells (Mehta et al., 1999) leads 
to a partial reversion of their transformed (anchorage-in-
dependent) phenotype and to restoration of the contact-
inhibited growth.

The up-regulation of connexins has also been shown 
to increase the sensitivity of tumor cells to the pro-apop-
totic stimuli (for review see: Kandouz & Batist, 2010). 
For instance, Cx43 up-regulation induced by all-trans 
retinoic acid (ATRA) increased the sensitivity of pros-
tate cancer cells to docetaxel (Nehme et al., 2001). Ecto-
pic Cx43 expression was shown to sensitize HeLa cells 
to apigenin (Czyz et al., 2005). Cx43 also increases the 
sensitivity of prostate cancer cells to ganciclovir after 
adenoviral delivery of the herpes virus thymidine kinase 
suicide gene and to combined ganciclovir/tumor necro-
sis factor (TNF) therapy (Hattori & Maitani, 2005; Wang 
et al., 2007). Similarly, Cx43 up-regulation increased the 
sensitivity of human glioblastoma cells and AML cells 

to etoposide, paclitaxel and doxorubicin (Li et al., 2006; 
Foss et al., 2010). Chemosensitivity of tumor cells may 
also be increased by the ectopic expression of Cx26 and 
Cx32 (Foss et al., 2010). Collectively, disturbed intercel-
lular propagation of growth inhibitory and pro-apoptot-
ic signals, which results from connexin deficiency/dys-
function in tumor cells, supports their clonal expansion 
and unrestricted growth. In turn, restoration of connex-
in functions augments the sensitivity of tumor cells to 
pro-apoptotic signals (Table 1).

In addition to the GJIC-dependent connexin functions, 
the GJIC-independent signaling pathways regulate cytostatic 
and pro-apoptotic cell responses to extrinsic stress (Carette 
et al., 2014). Accordingly, connexin deficiency may attenu-
ate the activity of these pathways in tumor cells, thus aug-
menting their resistance to stress signaling. For instance, 
GJIC-independent interference of C-terminal fragments of 
Cx43 with skp2/p21-dependent cascade is dysfunctional 
in tumor cells. Down-regulation of cyclin D1 was shown 
upon Cx43 transfection in E9 mouse lung carcinoma and 
osteosarcoma cells. This effect correlated with up-regulation 
of p27kip-1 (Koffler et al., 2000; Zhang et al., 2003c; Vinken 
et al., 2011). On the other hand, GJIC-independent involve-
ment of Cx26 in the regulation gene expression was seen in 
breast tumor cells (Qin et al., 2003). Cytoplasmic, mitochon-
drial and nuclear connexins also regulate pro-apoptotic cas-
cades in the GJIC-independent manner. They contribute to 

Table 1. Effect of connexin manipulations on the susceptibility of tumor cells to pro-apoptotic and cytostatic signals

Connexin Tumor Parameter Mechanism References

Cx43↑ prostate cancer apoptosis↑ proliferation↓ n.d. (Lu et al., 2015; Li et al., 2016)

Cx43↑ glioma apoptosis↓ proliferation↑ GJIC-independent (Gielen et al., 2013)

Cx43↑ glioma apoptosis↑ n.d. GJIC-independent (Huang et al., 2001)

Cx43↑ hepatoma apoptosis↑ proliferation↓ GJIC-dependent (Liu et al., 2009)

Cx43↑ mammary carcinoma apoptosis↑ proliferation↑ GJIC-dep/indep (Shishido & Nguyen, 2016)

Cx43↑ breast cancer apoptosis↑ n.d. GJIC-dependent (Chang et al., 2013)

Cx43↑ medulloblastoma apoptosis↑ n.d. n.d. (Sun et al., 2012a)

Cx43↑ mesothelioma apoptosis↑ proliferation↓ GJIC-independent (Sato et al., 2009)

Cx43↑ nasopharyngeal tumor apoptosis↑ proliferation↓ GJIC-independent (Hattori et al., 2007)

Cx43↑ melanoma apoptosis↑ proliferation↓ GJIC-dependent (Tittarelli et al., 2015)

Cx43↑ pancreatic cancer apoptosis↑ n.d. GJIC-independent (Sun et al., 2012b)

Cx43↓ prostate cancer apoptosis↓ proliferation↓ n.d. (Li et al., 2012)

Cx43↓ bladder cancer apoptosis↑ proliferation↓ n.d. (Ai et al., 2017)

Cx43↓ glioma apoptosis↓ proliferation↑ n.d. (Jin et al., 2013)

Cx43↓ Giant-cell tumor of the bone apoptosis↓ n.d. GJIC-dependent (Balla et al., 2015)

Cx32↑ hepatoma apoptosis↑ proliferation↓ n.d. (Wu et al., 2016; Liu et al., 2009)

Cx32↑ lung adenocarcinoma cells apoptosis↑ n.d. n.d. (Sato et al., 2007a)

Cx32↑ renal carcinoma apoptosis↑ proliferation↓ n.d. (Sato et al., 2007b)

Cx32↑ renal cancer apoptosis↑ proliferation↓ GJIC-dependent (Fujimoto et al., 2004)

Cx26↑ prostate cancer apoptosis↑ proliferation↓ n.d. (Tanaka & Grossman, 2004)

Cx26↑ bladder cancer apoptosis↑ proliferation↓ n.d. (Tanaka & Grossman, 2001)

Cx37↑ gastric tumor apoptosis↑ n.d. n.d. (Jing et al., 2014)

Cx37↑ insulinoma apoptosis= proliferation↓ n.d. (Burt et al., 2008)

Cx46↓ breast cancer apoptosis↑ proliferation↓ n.d. (Banerjee et al., 2010)

Cx25↓ leukemia apoptosis↑ proliferation↓ GJIC-dependent (Sinyuk et al., 2015)

Cx30↑ glioma apoptosis↓ proliferation↓ n.d. (Artesi et al., 2015)
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bcl2, bax- and caspase-dependent signaling pathways and to 
the release of ROS from mitochondria (Krysko et al., 2005; 
Rodriguez-Sinovas et al., 2007). Thus, deficiency of Cx43, 
Cx32 and Cx26 in tumor cells can disturb the apopto-
sis-related gene expression in a GJIC-independent manner, 
whereas their re-expression is associated with the re-activa-
tion of pro-apoptotic signaling in tumor cells (Huang et al., 
2001) (Table 1).

Collectively, the accumulating data show that con-
nexin dysfunctions augment the resistance of con-
nexin-deficient tumor cells to steric tissue constraints 
and to systemic defense mechanisms (for review see: 
Vinken et al., 2011; Aasen, 2015). Resistance of tumor 
cells to contact-phenomena facilitates the expansion 
of stress- and drug-resistant sub-clones within the 
primary tumors. Disturbed propagation/amplification 
of pro-apoptotic signals in connexin-deficient tumor 
cells cooperates with hyperactive multi-drug resistance 
(MDR) and autophagy systems, further augmenting 
tumor cells’ resistance to adverse micro environmen-
tal factors, i.e. to toxic metabolites, ROS species or 
chemotherapeutics. The connexin dysfunction in tu-
mor cells can also help them to overcome the pres-
sure from the immune system (Oviedo-Orta & Evans, 
2002). Consequently, tumor cells are more resistant to 
extreme deviations of the parameters that determine 
tissue and cellular homeostasis. Together with repro-
grammed energy metabolism (i.e. Warburg effect), the 
dysfunction of connexins facilitates the microevolu-

tion adaptation of the cells to the dynamic conditions 
of the developing tumor. Furthermore, it can increase 
their predilection to undertake erroneous differentia-
tion programs, which result in the formation of inva-
sive sub-populations (Loewenstein, 1979; Yamasaki et 
al., 1999; Leithe et al., 2006; Naus & Laird, 2010; Ha-
nahan & Weinberg, 2011; Czyz et al., 2012) (Fig. 2).

Connexins, intercellular stress signaling and tumor 
progression

Clonal evolution of invasive tumor cells governs tu-
mor malignacy, i.e. its predilection for colonisation of 
distant organs. Tumor cell invasiveness is determined by 
their susceptibility to permissive microenvironmental sig-
nals, chemotactic motility and nanomechanical elasticity 
(Wysoczynski et al., 2007; Kumar & Weaver, 2009; Boiko 
et al., 2010; Bechyne et al., 2011; Friedl & Alexander, 
2011; Langley & Fidler, 2011; Visvader, 2011; Frede-
bohm et al., 2012; Shibata & Shen, 2013). Although con-
nexins inhibit tumorigenesis at its early stages, relatively 
high expression of connexins often correlates with the 
invasive potential of tumor cells (Leithe et al., 2006; Mol 
et al., 2007; Czyz, 2008; Czyz et al., 2012). Data on the 
involvement of connexins, connexons and gap junctional 
channels in the “metastatic cascade” of tumors started 
to accumulate in 1990s (Brauner et al., 1990; Brauner & 
Hülser, 1990). Since then, interrelations between high 
Cx26, Cx32 and Cx43 levels and an invasive cell pheno-

Figure 2. Connexin-dependent stress signaling in cancer promotion and progression. 
Connexin deficiency/dysfunction promotes aberrant cancer cell proliferation and differentiation during tumor initiation and promotion. It 
drives the phenotypic diversity of the cells constituting the primary tumor cell mass and the expansion of invasive cancer cell sub-pop-
ulations. They are characterized by high motile activity, nanomechanical elasticity, and the expression of connexins (Cx). During tumor 
progression, connexins expressed by invasive (post-EMT) cells participate in the inside-out stress signaling which facilitates tumor cell 
diapedesis and metastatic cascade.
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type were described in the populations of glioma, lung, 
prostate, breast cancer and melanoma cells (for review 
see: Defamie et al., 2014). Nowadays, it is clear that the 
erroneous up-regulation of connexins is a part of herita-
ble switches that promote invasive behavior of tumour 
cells during tumor progression. These findings prompted 
the discussion on the stage-dependent connexin function 
during tumor promotion and progression, incl. the for-
mation of metastases (Czyz, 2008; Dbouk et al., 2009; 
Czyz et al., 2012; Defamie et al., 2014). However, they 
also stimulated discussions on the significance of micro-
environmental stress for the formation and expansion 
of Cx26-, Cx32- and Cx43-positive cell sub-populations 
within the connexin-negative primary tumors.

Numerous reports show the mechanistic links between 
the invasive cell behavior and connexin expression in 
normal and cancer cells (Czyz et al., 2005; Li et al., 2007; 
Omori et al., 2007; El Saghir et al., 2011; Czyz et al., 2012; 
Sin et al., 2012; Zucker et al., 2013). Conceivably, these 
links are related to the GJIC-dependent and GJIC-inde-
pendent involvement of connexins and connexons in cell 
adhesion, mechanosensitivity and directed motility (Elias 
et al., 2007; Cotrina et al., 2008; Cronier et al., 2009). The 
increased expression of Cx26 and Cx43 has been cor-
related with the increased motility of glioma, glioblasto-
ma, melanoma cells as well as prostate, gastric and breast 
cancer cells. It also enhances their nanomechanical elas-
ticity, susceptibility to chemotactic and haptotactic cues, 
and secretion of cytokines and metalloproteinases (Tate 
et al., 2006; Bechyne et al., 2011; Garcia-Rodriguez et 
al., 2011; Lamiche et al., 2011; Szpak et al., 2011). This 
correlation results from interactions of connexins and 
connexons with a myriad of submembrane protein as-
semblies within the gap junction proteome (for review 
see: Dbouk et al., 2009; Mroue et al., 2011). Noteworthy, 
cells that constitute malignant tumors are predominantly 
characterized by over-active multi-drug resistance (MDR) 
systems, dysfunctional pro-apoptotic pathways and re-
programmed energy metabolism. Thus, they are less sus-
ceptible to connexin-dependent generation, propagation 
and amplification of stress signals. Consequently, phe-
notypic shifts that prompt the “re-expression” of con-
nexins in originally connexin-deficient cells can enhance 
their malignant behavior without a considerable effect 
on their welfare.

For instance, Cx43 increases the invasive potential 
of prostate cancer cells through direct involvement in 
epithelial-mesenchymal transition (EMT). EMT is a se-
quence of phenotypic shifts that augments the invasive 
potential of cancer cells. These shifts include the acqui-
sition of rear-front cell polarity, plasticity and motility by 
originally benign epithelioid tumor cells. EMT is induced 
by numerous extrinsic stimuli and regulated by a pleth-
ora of transcriptional regulators, including Snail-1 (Berx 
et al., 2007; Thiery et al., 2009; Savagner, 2010). We have 
shown that Cx43 constitutes a positive feedback loop 
with Snail-1/Smad2-dependent signaling, which induc-
es EMT in prostate cancer cells (Ryszawy et al., 2014). 
Its activation leads to the concomitant EMT and Cx43 
up-regulation in prostate cancer cells. Because EMT in-
creases the ability of tumor cells to cross tissue barriers, 
it can help them to avoid/escape stressful conditions. 
Moreover, EMT was found to correlate with the resis-
tance of tumor cells to the extrinsic stress (for review 
see: Koumenis, 2014). Further studies are necessary to 
verify whether Cx43/Snail-1/Cx43 loop may regulate the 
activity of MDR systems. However, it is clear that con-
nexins can participate in the microevolution of stress-re-

sistant tumor cell lineages and in the functional stabiliza-
tion of the invasive front of tumor (Brabletz, 2012).

The relationships between Cx43 and the invasive phe-
notype of tumor cells may also underlie the mechanisms 
of tumor cell homing in a “comfortable” metastatic 
niche. Connexins participate in the penetration of natu-
ral barriers by invasive tumor cells, thus facilitating their 
homing in metastatic niches. Connexins and gap junc-
tions apparently confer “inside-out” stress signaling from 
tumor cells to the stroma that favors tumor cell extrav-
asation. Cx43 is involved in the diapedesis of melano-
ma, glioblastoma, breast, lung and gastric cancer cells (El 
Sabban & Pauli, 1991; El Sabban & Pauli, 1994; Ito et 
al., 2000; Zhang et al., 2003a; Pollmann et al., 2005; Naoi 
et al., 2007; Elzarrad et al., 2008; Tang et al., 2013; Pi-
wowarczyk et al., 2015; Ryszawy et al., 2014). Cx43 func-
tion during this process may be attributed to the distur-
bance of endothelial calcium homeostasis by GJIC-medi-
ated calcium fluxes from tumor to endothelial cells (Le-
walle et al., 1998). We have recently demonstrated that 
prostate cancer cells can also activate the “inside-out” 
stress signaling axis with endothelial cells in Cx43-de-
pendent, GJIC-independent manner (Piwowarczyk et al., 
2015; Piwowarczyk et al., 2017). Other studies showed 
increased apoptosis of endothelial cells in the proximi-
ty of tumor cells, however the involvement of connex-
in in this process still requires experimental verification. 
Collectively, multifaceted functions of connexins provide 
the background for their complex involvement in gener-
ation, propagation and detection of stress signals during 
tumor invasion. They may be responsible for high lev-
els of Cx43, Cx32 and Cx26 in secondary tumors in vivo 
(Kanczuga-Koda et al., 2006; Kanczuga-Koda et al., 2007; 
Chao et al., 2011; Stoletov et al., 2013) and for increased 
drug-resistance of progressed tumors.

SUMMARY AND OUTLOOK

Gap junctional channels provide a route for metabolic 
and electrical synchronization of multicellular compart-
ments. As such, they are indispensable in limiting cellu-
lar stress resulting from nutritious starvation, hyper- and 
hypoxia. However, connexins can also serve as univer-
sal and sensitive transmitters and sensors of intercellular 
stress signals. Connexin-dependent stress signaling acti-
vates cell death programs that eliminate damaged cells 
from the organism. It also regulates cellular adaptation 
to tissue constraints, and preserves tissue functional-
ity through promoting cellular specialization/apoptosis 
during developmental and regenerative processes. These 
multiple, context-specific functions situate connexins in 
the centre of the integrated system that generates, prop-
agates and amplifies stress signals. Further studies on the 
role of connexins and gap junctions in regulating cell 
sensitivity to environmental stress signals, in cell adap-
tation to stressful conditions and in cell death signaling 
may help to better understand the mechanisms underly-
ing embryogenesis and tissue homeostasis.

In the light of these data, pharmacological modula-
tion of connexin-mediated stress responses presents a 
potentially attractive strategy in the therapy of numerous 
chronic diseases. For instance, there are numerous spec-
ulations concerning application of the connexin-based 
gene transfer technology in combination with conven-
tional approaches in a tumor therapy. During cancer 
development, connexin-dependent stress signaling and 
cell responses to extrinsic stress signals participate in the 
selective pressure conferred by different environments, 
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which lead to different growth rates of the cell clones 
within neoplasm. In particular, connexins cooperate with 
stochastic genetic and epigenetic changes in determining 
the heterogeneity of primary tumor cells and in the mi-
croevolution of invasive cancer cell subsets. Due to the 
role of connexins in determining tumor cells’ sensitivi-
ty to stress, the approaches based on the restoration of 
connexin expression in connexin-deficient tumor cells 
could help to increase the efficiency of chemotherapeutic 
approaches in tumor treatment. However, connexins-de-
pendent stress signaling cooperates with dynamically 
established loops of intercellular communication during 
tumor progression and metastatic cascade (Marusyk & 
Polyak, 2013). Connexins and gap junctions also partici-
pate in “inside-out” stress signaling between tumor cells 
and microenvironment that increases their drug-resis-
tance, and facilitates their expansion and metastasis. Fur-
ther studies should elucidate the consequences of switch-
ing between connexin-positive and connexin-negative cell 
phenotypes for survival strategies of tumor cells in fluc-
tuating environment. Owing to this pleiotropic involve-
ment of connexins in tumor development, thera peutic 
regimens based on the modulation of connexin-mediated 
cellular stress responses should be considered with cau-
tion and tailored to individual patients.
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