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Commensal bacteria and their genes associated with 
host are known as microbiome. In recent years, micro-
bial influence on host endocrine system has been under 
detailed investigation. The role of microbiome in the 
pathogenesis of insulin resistance and obesity, the func-
tion of hypothalamic-pituitary-adrenal axis and secre-
tion of hormones regulating appetite is well described 
in world literature. In this article we discuss poorly re-
viewed issues: the microbiome role in modulation of 
non-peptide (sex and thyroid) and peptide (growth hor-
mone and parathyroid hormone) functions. Understand-
ing complex bidirectional relations between host endo-
crine system and bacteria is of fundamental importance 
to understanding microbial impact on host reproduc-
tion, risk of endocrine-related cancers, pathogenesis of 
non-thyroidal illness syndrome, growth failure in chil-
dren and hormonal changes during chronic kidney dis-
ease. This article also highlights effects of dietary com-
pounds on microbiome composition and bacterial en-
zymes activity, and thus host hormonal status.
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INTRODUCTION

By definition microbiome is the catalog of commen-
sal bacteria (microbiota) and their genes associated with 
host (Ursell et al., 2012). Human microbiome is strongly 
associated with the number of processes, which occur 
in host organism, affecting its immunological, nutrition-
al and metabolic functions. That is why in recent years 
the conception of human‑microbiome superorganism 
was proposed (Dietert & Dietert, 2012).  The microbi-
al composition is established in early life and is mainly 
dependent on mode of delivery and diet. After infancy 
the main factors which affect microbiome are diet, an-
tibiotic treatment, obesity, sex and geography. There are 
complex bidirectional relations between host‑endocrine 
system and bacteria, which justifies the use of term 
“human‑microbiome superorganism” also in hormonal 
system. Microbes sense and react for example to host 
adrenaline, noradrenaline, triiodothyronine and sex hor-
mones, which changes their metabolism, growth and 
virulence (Sperandio et al., 2003; Hughes & Sperandio, 
2008; García‑Gómez et al., 2013). In turn, many reviews 
and original papers analyzing the influence of microbi-
ota on hormones regulating appetite, insulin sensitivity, 
pathogenesis of diabetes and obesity and hypothalamic–

pituitary‑adrenal axis have been published (Sudo et al., 
2004; Gao et al., 2009; Vrieze et al., 2010; Burcelin et al., 
2011; Zimomra et al., 2011; Holzer et al., 2012; Norris et 
al., 2013). In this review, we focus on less well described 
issues: the microbiome role in modulation of non‑pep-
tide (sex and thyroid) and peptide (growth hormone ‑ 
GH and parathyroid hormone — PTH) functions.

In animals, bacteria influence their endocrine sys-
tem via various mechanism, i.e. intestinal metabolism 
of bile‑excreted hormones, intestinal conversion of ex-
ogenous molecules to endocrine‑active derivatives, pro-
duction/release of endocrine‑active molecules like short 
chain fatty acids (SCFAs) and lipopolysaccharide (LPS). 
The first way concerns steroid and thyroid hormones, 
which are metabolized in the liver and excreted with 
bile. A large number of intestine bacteria are capable of 
hydrolysis of hormone conjugates and afterward modify 
chemical structure of free molecules.  Another important 
aspect concerns the ability of microorganisms associ-
ated with plants to produce phytohormones and hor-
mone‑like substances, which may modify host metabo-
lism (Tsavkelova et al., 2006).

SEX HORMONES AND REPRODUCTION

Steroid sex hormones such as estradiol (E2), testos-
terone (T) and progesterone (P4) modulate a number of 
physiological processes, both related and unrelated to re-
production. They are produced in endocrine glands such 
as adrenal cortex, ovaries and testes as well as in periph-
eral tissues like skin. They act through intracellular and 
extracellular receptors and affect e.g. host blood pres-
sure, energy homeostasis and metabolism, bone remod-
eling, mood, erythropoiesis and cells growth. Then they 
are metabolized in the liver and excreted with the bile. 
Thus, liver metabolism of steroid hormones includes: re-
duction of the sterol ring A, conjugation with sulfate or 
glucuronide, and excretion in the bile. Afterward these 
compounds are deconjugated by bacterial sulfatases (Van 
Eldere et al., 1988) and glucuronidases synthesized both 
in the intestinal wall and by bacteria (Macdonald et al., 
1983). Moreover steroids undergo enterohepatic circula-
tion (EHC).

Large number of species found in human intestinal 
or other microbiomes, such as Eubacterium lentum, Bac-
*e-mail: jawit@gumed.edu.pl
Abbreviations: E2, estradiol; EHC, enterohepatic circulation; GH, 
growth hormone; hCG, human chorionic gonadotropin  ; hPL, hu-
man placental lactogen ; HSD, hydroxysteroid dehydrogenase; IL, 
interleukin; LBP, LPS-binding protein; LPS, lipopolysaccharide; P4, 
progesterone; PAH, polycyclic aromatic hydrocarbons; PTH, para-
thyroid hormone; SCFA, short chain fatty acid; T, testosterone; TLR, 
Toll-like receptor

Vol. 63, No 2/2016
189–201

http://dx.doi.org/10.18388/abp.2015_1093



190           2016M. Kunc and others

teroides sp., Bifidobacterium sp., Streptococcus sp. posses en-
zymes which are involved in degradation of unconju-
gated steroids, like 21‑dehydroxylase, 17,20‑desmolase, 
16‑dehydratase and various dehydrogenases (Macdonald 
et al., 1983). Interestingly, hydroxysteroid dehydroge-
nases (HSDs) which are involved in the production of 
steroid hormones and regulation of their receptor‑active 
and receptor‑inactive derivative levels in host cells, were 
found in bacteria. Accumulating evidence indicates that 
members of the normal human gastro‑intestinal flora 
(especially members of Actinobacteria, Proteobacteria and 
Firmicutes), possess HSDs, which are active on keto‑ or 
hydroxyl‑groups at positions C3, 7, 12, 17 and 20 of 
steroid compounds (Kisiela et al., 2012). It follows that 
bacterial HSDs may influence concentration of active 
steroid derivatives which return to blood throughout 
EHC. Furthermore, bacterial steroid metabolism has its 
local long‑term effects, since it is known that increased 
number of bacterial strains capable of steroid degrada-
tion in colon is associated with higher risk of colon can-
cer (Debas, 1981).

Except of direct metabolism of steroid hormones, 
bacteria may change expression of host genes involved 
in steroid hormones metabolism and function. Some 
studies highlight the effects of oral probiotic supple-
mentation on sex hormones metabolism and function. 
Research conducted on female zebrafish fed with Lacto-
bacillus rhamnosus revealed an increase of transcription of 
aromatase cytochrome p 19 (cyp19a), vitellogenin (vtg), 
α isoform of the estrogen receptor (erα), luteinizing hor-
mone receptor (lhr), 20‑β hydroxysteroid dehydrogenase 
(20β‑hsd), membrane progesterone receptors α and β and 
activin βA1 genes. These changes of respective genes’ 
expression affect sex differentiation during larval devel-
opment and improve fertility in adults (Carnevali et al., 
2013). In turn metabolomic analysis with use of murine 
typhoid infection model revealed that during Salmonella 
typhimurium infection the 3β‑HSD2 and 17β‑HSD2 gene 
expression in the liver is repressed (Antunes et al., 2011). 
During acute shigellosis in human volunteers, signifi-
cant reduction in fecal steroid metabolites was observed 
(Huang et al., 1976). Changes in steroid metabolism dur-
ing infection may diminish the HPA axis function and 
thus hinder proper reaction to pathogen invasion.

LPS‑DEPENDENT EFFECTS

Not to be underestimated is bacterial impact on host 
steroid hormone metabolism and function which is ex-
erted via LPS (endotoxin). LPS is a part of Gram‑neg-
ative bacteria cell wall and is a trigger of septic shock. 
Nevertheless, Marshall stated that LPS is “not less an 
endotoxin than an exohormone” (Marshall, 2005). He 
pointed out some LPS features similar to human hor-
mones: 1. its exposure arises from endogenous stores 
(commensal, Gram‑negative bacteria of the gastrointes-
tinal tract), 2. it has a dedicated carrier protein, 3. it in-
teracts with specific cellular receptor, 4. its signaling is 
specifically modulated by endogenous mechanisms and 
in turn LPS downstream signal interferes with endog-
enous hormones pathways. Endotoxemia and thus in-
creased LPS influence on host occur under various con-
ditions, such as major vascular surgery (Roumen et al., 
1993), cigarette smoking (Hasday et al., 1999), mechanical 
ventilation (Nahum et al., 1997), laparoscopic abdominal 
surgery (Schietroma et al., 2006, 2013), colorectal carci-
noma (Iarŭmov et al., 2004), high‑fat diet (Erridge et al., 
2007), inflammatory bowel disease (Aoki, 1978), inten-

sive care (Guidet et al., 1994), stomatological intervention 
and tooth‑brushing (Jacob et al., 2012). Increased translo-
cation of LPS in leaky gut syndrome may cause chronic 
dysfunction of some elements of endocrine and other 
systems (Maes et al., 2008).  LPS is composed of three 
parts: lipid A, a core oligosaccharide, and an O side 
chain (Pålsson‑McDermott & O’Neill, 2004). In blood-
stream LPS is recognized by LPS‑binding protein (LBP), 
an acute phase protein produced in the liver. Afterward, 
LBP facilitates LPS binding to CD14, which enables 
transfer of LPS to the TLR4/MD‑2 receptor complex. 
LPS causes TLR4/MD‑2 homodimerization, thus aids 
interactions between intracellular domains of TLR‑4 and 
Toll/IL‑1R (TIR) domains of adaptor proteins. Subse-
quent signals activated by TLR4 have been divided into 
MyD88‑dependent and MyD88‑independent (TRIF‑
dependent) pathways. MyD88‑dependent pathway leads 
to the activation of IRAKs/TRAF6 and in consequence 
NF‑κB, AP‑1 and IRF‑5 transcription factors. In turn 
TRIF signals recruit TRAF3 and RIP1, thus induce Type 
I interferons by activation of IRF3, NF‑κB and AP‑1. 

Signaling pathways of human hormones are regulated 
by various negative feedback loops. Similarly, LPS action 
is inhibited by circulating inhibitors and factors caus-
ing acceleration of LPS degradation, inhibition of TLR4 
signaling or enhancement of TLR4 degradation (Lu et al., 
2008).

LPS intravenous injection activates HPA and leads 
to increased secretion of CRH and AVP into hypo-
physeal portal blood (HPB), which is mediated by EP1 
and EP3 pathway activation in periventricular nucleus 
(PVN) (Dadoun et al., 1998; Matsuoka et al., 2003). This 
effect was even observed in tilapia, which may reflects 
evolutionary preservation of hypothalamic response 
to LPS (Pepels et al., 2004). Simultaneously, LPS sup-
presses GnRH pulsatile release into HPB and indirectly 
LH concentrations and pulse amplitude thus inhibits 
reproduction (Battaglia et al., 1997, 1998). LPS elevates 
the E2/P4 ratio and alters the function of FSHR and 
LHR in uterus during the preimplantation days of preg-
nancy in mouse leading to the failure of implantation 
(Agrawal et al., 2011, 2012). Furthermore, after im-
plantation LPS decreases placental endocrine function, 
reducing amounts of trophoblast‑released human cho-
rionic gonadotropin (hCG), human placental lactogen 
(hPL), and P4 and hence leading to preterm delivery 
(Okada et al., 1997). LPS is known to be a direct sup-
pressor of E2 secretion by ovarian granulosa cells in 
bovine, which could explain a mechanism of infertility 
in pelvic inflammatory disease (Williams et al., 2008). 
Ovarian follicles do not contain immune cells, however 
granulosa cells express the TLR4 and via this receptor 
LPS down‑regulates transcripts for aromatase (Herath et 
al., 2007). Similar effects were observed after primary 
bovine granulosa cells exposure to the Pam3CSK4 and 
peptidoglycan that bind TLR2 (Shimizu et al., 1998; 
Price et al., 2013). LPS or peptidoglycan treatment of 
theca cells under LH exposure results in suppressed 
P4 and androstenedione (A4) production (Magata et al., 
2014b, 2014a). It follows that in cows uterine infec-
tions may lead to ovarian dysfunction. In humans, high 
expression of TLR1, 2, 4, 5, 6 and COX2 gene in fol-
licular cells was observed in patients with poor ovarian 
response to gonadotropin stimulation (Taghavi et al., 
2014). It suggests that increased TLR pathways activity 
may be associated with declining fertility rates.

Testicular functions, both spermatogenesis and ster-
oidogenesis, are also disrupted after LPS treatment. 
Leydig cells (LC) and Sertoli cells (SC) — the key 
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players in the hormonal function of testes — express 
TLR‑2 and TLR‑4, similarly as testicular macrophages 
(Winnall et al., 2011). In the response to LPS, these 
latter cells start to produce reactive oxygen species 
(ROS) and nitric oxide, which alter the function of 
LC mitochondria (Pomerantz & Pitelka, 1998; Allen 
et al., 2004). Furthermore, LPS increases NF‑κB path-
way activity in LC, hence reducing testicular Cyp11a, 
StAR and 3β‑HSD protein levels. In consequence, 
plasma T level decreases. This effect is partially de-
pendent on LH secretion reduction and inflammatory 
cytokine level elevation caused by LPS. In SC, LPS 
acts via MyD88 pathway and activates expression of 
IL1, IL6 and activin A. In turn, FSH increases cAMP 
level and promotes lactate, transferrin, stem cell fac-
tor (SCF) and inhibin B expression. Intriguingly, these 
two pathways have probably reciprocal inhibitory ef-
fects (Hedger, 2011). It is well established that acute 
and chronic bacterial infections may be associated 
with temporary or constant infertility. Vitamin K may 
contribute to inhibition of inflammatory pathways in 
testis and may help maintain steady levels of T (Ta-
kumi et al., 2011).

NON‑LPS‑DEPENDENT EFFECTS

Estrogens

Apart from LPS‑dependent influence on estrogen 
function, bacteria may also directly metabolize them and 
similar particles, like phytoestrogens. To better under-
stand these processess we describe host estrogen me-
tabolism first. 

Before excretion with bile, estrogens are metabolized 
in several steps in the liver (Fig. 1). First of all, intercon-
vertible primary estrogens estrone (E1) and estradiol (E2) 
are hydroxylated by cytochrome P450 enzymes, yielding 
catechol estrogens: either 2‑hydroxy (2‑OH) or 4‑hy-
droxy (4‑OH) metabolites. Another derivative is made 
by hydroxylation at C‑16α position yielding 16α‑hydroxy 
(16α‑OH) derivative. Both 16α‑OH and produced in 
small portion 4‑OH derivatives have greater estrogenic 
activity compared to 2‑OH, thus domination of C‑16α 
pathway has been hypothesized as a potential risk factor 
of breast cancer. However, recent studies do not support 
this hypothesis (Eliassen et al., 2008). Catechol estrogens 
might be oxidized into harmful derivatives‑ quinones‑ 

Figure 1. Metabolism of estrogens and estrogenic compounds. 
The bold font denotes the metabolic pathways dependent on bacterial activity. Details, see main text. COMT, catechol-O-methyl trans-
ferase; DHT, dihydrotestosterone; ER, estrogen receptor; E, estrogens; E1, estrone; E2, estradiol; E3, estriol; FOS, fructooligosaccharides; 
LCS, lariciresinol; MAT, matairesinol; O-DMA, O-desmethylangolensin; PRS, pinoresinol; SDG, secoisolariciresinol diglucoside; SHBG, sex 
hormone binding protein
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that can react with DNA to form depurinating adducts, 
thus are potential breast cancer initiatiors (Cavalieri et 
al., 2006). Methylation of 2‑OH and 4‑OH estrogens by 
catechol‑O‑methyltransferase (COMT) prevents the for-
mation of estrogen quinones, therefore the metoxy and 
catechol estrogen proportions may influence the cancer 
risk. Another metabolic pathway includes E2 conversion 
to 16‑ketoE2 and further epimerization to 16‑epi‑E3 and 
17‑epi‑E3 (Jobe et al., 2013). This latter steroid is very 
interesting, since it has an anti‑inflammatory, but not 
glycogenic activity (Latman et al., 1994). The phase II of 
estrogen metabolism includes either glucuronidation or 
sulfation or methylation, which facilitates its elimination 
from the organism via bile in feces and with urine.

Plottel and coworkers proposed the term “estrobo-
lome” to define the aggregate of enteric bacterial genes 
whose products are capable of metabolizing estrogens 
(Plottel & Blaser, 2011). Every individual has its own, 
unique estrobolome, which influences EHC of estro-
gens. Bacterial β‑glucuronidases hydrolyze glucuronides 
which are excreted via bile, thus promotes recycling of 
aglycone forms through enterohepatic cycle. Excess of 
β‑glucuronidase activity may be associated with high-
er estrogen‑dependent cancers risk. Most species with 
β‑glucuronidase expression are members of Firmicutes 
phylum and Enterobacteriaceae family (Lactobacillus, Strep-
tococcus, Clostridium, Ruminococcus, Roseburia, Faecalibacterium, 
Eubacterium and Escherichia), however bacteria capable 
of β‑glucuronidase production are also among Actino-
bacteria (i.e. Bifidobacterium dentium) (Gloux et al., 2011). 
Administration of oral oxytetracyclin diminished urinary 
excretion and increased losses of conjugated estrogen 
metabolites in feces in men, probably by destruction of 
β‑glucuronidase‑producing microflora and the interrup-
tion of the estrogen recycling (Hämäläinen et al., 1987). 
In one study fecal β‑glucuronidase activity and diversity 
of fecal microbiome were found to be directly associated 
with higher concentrations of systemic estrogens (Flo-
res et al., 2012a).  Lactic acid bacteria supplements and 
high‑fiber diet (like vegetarian) decrease fecal bacterial 
β‑glucuronidase, which leads to increased fecal excretion 
and a decreased plasma concentration of estrogen (Gol-
din et al., 1980, 1982; Goldin & Gorbach, 1984; Han et 
al., 2005). Other factors which diminish β‑glucuronidase 
activity include oral antibiotic treatment (Hämäläinen 
et al., 1987), lactic acid bacteria probiotics (Goldin & 
Gorbach, 1984), high‑fiber diet (Gorbach, 1984), cellu-
lose‑fructooligosaccharides (FOS) diet (Gudiel‑Urbano & 
Goñi, 2002), cabbage and sweet pepper pectin protein 
complexes (Borisenkov et al., 2011), calcium‑d‑glucarate 
(Zółtaszek et al., 2008), silymarin (Kim et al., 1994), 
ascorbic acid (Young et al., 1990) and yoghurt (de More-
no de LeBlanc & Perdigón, 2005). In turn bile salts en-
hance β‑glucuronidase activity (Fujisawa & Mori, 1996), 
while weight loss elevates its fecal level (Flores et al., 
2012b). Advanced age and childhood are associated with 
higher β‑glucuronidase activity than middle age, prob-
ably due to microflora composition changes throughout 
life (Goldin & Gorbach, 1977; Mroczyńska & Libudzisz, 
2010).

In addition to the ability of deconjugation of steroid 
hormone glucuronides, intestinal bacteria are also able to 
interconvert steroid derivatives. Alcatigenes faecalis, Pseu-
domonas aeruginosa, Staphylococcus aureus and Bacteroides fragi-
lis interconvert E2 to E1 and participate in regulation of 
E2 concentration (Järvenpää et al., 1980). Other reactions 
performed by intestinal bacteria include: E1 formation 
from E1‑3‑sulfate, estriol (E3) from 16α‑OHE1, 16‑ke-
toE2 reduction to 16‑epiE3 (Macdonald et al., 1983). 

Ampicillin treatment diminishes reductive metabolism of 
estrogens in intestine, thus increases E1/E2 and E2/E3 
ratio in both urine and feces (Adlercreutz et al., 1984). 
Catechol estrogens 2‑OHE1 and 2‑OHE2 are intercon-
verted by human fecal bacteria in anaerobic and aerobic 
conditions (Järvenpää et al., 1980). Fecal flora is capable 
of formation of catechol estrogens from metoxyestro-
gens. It follows that bacteria are able to convert bio-
logically inactive estrogens into active forms (Axelson & 
Sjövall, 1983).

Gingival bacteria, similarly to the intestinal ones are 
capable to metabolize sex hormones (García‑Gómez et 
al., 2013). During the pubertal period gingivitis rate sig-
nificantly increases and this effect is thought to be relat-
ed with higher concentration of steroids in saliva, which 
may be the carbon source for gingivitis‑related bacteria 
as Prevotella intermedia. This species uptakes estrogens and 
P4, when its important growth factor, vitamin K, is una-
vailable (Kornman & Loesche, 1982). 

Bacterial colonization of germ‑free mice led to the 
normalization of estrous cycles and increase of repro-
duction, probably due to direct influence on intravaginal 
epithelial cells and indirect effect via EHC of estrogen 
metabolites (Shimizu et al., 1998). The bidirectional con-
nection between vaginal microflora and estrous cycle was 
also the conclusion of other studies (Minami et al., 1987).

Van Wiele et al. showed that colon microbiota are 
able to bioactivate ingested polycyclic aromatic hydro-
carbons (PAHs) like naphthalene, phenanthrene, pyrene, 
and benzo(a)pyrene to estrogenic hydroxylated metabo-
lites (Van de Wiele et al., 2005). That conversion can 
exacerbate cancerogenic effect of PAHs and affect en-
docrine system; nevertheless the real role of estrogenic 
PAHs is still unclear (Gozgit et al., 2004).

Another group of exogenous molecules with estro-
genic activity are plant‑derived phytoestrogens. Lignans 
and isoflavones are the best studied groups of phytoes-
trogens and are of interest of this article, because their 
activity is partly dependent on bacteria. 

Flaxseeds, sesame seeds, soybean, berries and nuts 
are known lignan‑rich foods. Lignans are classified as 
phytoestrogens, despite their lack of biological activity 
per se. Intestinal bacteria in the upper part of the large 
bowel convert lignans (secoisolariciresinol, pinoresinol, 
matairesinol, lariciresinol) to compounds with estrogenic 
activity called enterolignans: enterolacton (ENL) and en-
terodiol (END). Enterolignans induce the production of 
sex hormone‑binding globulin (SHBG) in the liver and in-
hibit aromatase activity, therefore reduce the levels of free 
and total estrogens in circulation (Hall, 2001). Both ENL 
and END act as ERα agonist, however they have weaker 
agonist activity than endogenous estrogens (Carreau et al., 
2008). When endogenous estrogens level is low, ENL and 
END increase total systemic estrogenic effect, whereas 
when estrogens level is high they prevent estrogen from 
exerting its effects. Flaxseed‑derived enterolignans de-
crease proliferation fraction in prostate cancer (Azrad 
et al., 2013) and risk of colorectal adenoma (Kuijsten et 
al., 2006). They may increase survival of postmenopausal 
breast cancer patients (Buck et al., 2011) and lower risk of 
ER+/PR+ breast cancer (Touillaud et al., 2007). However, 
other studies did not show associations between enterol-
ignans and lower breast cancer risk (Peeters et al., 2003; 
Zaineddin et al., 2012). The main lignan, secoisolaricires-
inol (SECO) and its diglucoside (SDG), pinoresinol (PRS) 
and lariciresinol (LCS) are converted into enterolignans via 
multistage route to END, whereas matairesinol undergoes 
direct conversion to ENL (Wang et al., 2010). END may 
then be irreversibly converted to ENL. The final ENL 
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to END ratio depends on type of food and individual 
composition of gut microflora (Bartkiene et al., 2011). In 
one study the subdominance of ENL‑producing bacteria 
in gastrointestinal tract was found (Eeckhaut et al., 2008). 
High colon concentrations of Peptostreptococcus productus, 
Eggerthella lenta and Clostridium coccoides, which are able to 
demethylase and dehydroxylate SECO are associated with 
higher serum enterolignans level (Clavel et al., 2005). To 
conclude, microflora composition affects bioavailability of 
enterolignans and therefore its action.

Human intestinal flora metabolizes also another class 
of phytoestrogens, isoflavones in similar to lignans way. 
Fabaceae is the plant family, which members (e.g. soy-
bean) almost exclusively produce isoflavones. Dietary 
isoflavones occur in the form of glycosides: genistin, 
daidzin and glycitin, which are bioactivated by bacterial 
β‑glucosidases in colon to aglycones: genistein, daidzein 
and glycitein. Daidzein is further metabolized to S‑(‑)eq-
uol and O‑desmethylangolensin (O‑DMA). Interestingly, 
not all people are able to produce these derivatives ‑ the 
first can be found only in 20–60% (so called “equol‑pro-
ducers”) and the latter in 80–90% of the population (At-
kinson et al., 2005). Some studies indicate that ability to 
produce these metabolites, especially equol, is associated 
with lower risk of breast and prostate cancer, acne and 
male‑pattern baldness (Lund et al., 2004).  Intestine‑de-
rived S‑(‑)equol is a selective ERβ agonist and antiandro-
gen. Mechanism of its antiandrogenic effect is associated 
neither with 5α‑reductase inhibition nor with binding to 
androgen receptor, but rather with direct binding to di-
hydrotestosterone (DHT) (Setchell et al., 2005). Equol 
non‑producers have probably higher risk of some dis-
eases (e.g. prostate cancer) than equol‑producers (Akaza, 
2012). It was demonstrated that supplementation of eq-
uol‑producing bacteria may convert non‑equol producer 
into an equol‑producer (Decroos et al., 2006). Lactococ-
cus garvieae is used to produce S‑(‑)equol rich substance, 
called SE5‑OH (Yee et al., 2008). Supplementation with 
this food ingredient improved mood in perimenopau-
sal/postmenopausal equol non‑producers (Ishiwata et 
al., 2009). There are some differences in estrogen me-
tabolism by fecal bacteria between equol‑producers and 
non‑producers. The latter are more likely than former 
to convert E1 to E2, and l6α‑OHE1 to E3 (Atkinson, 
2004). Increased E2 and E3 formation may have mutu-
ally exclusive effects in evaluation of breast cancer risk.

Interestingly, amongst species capable of soy milk iso-
flavone bioconversion are lactic acid bacteria which are 
also potentially able to influence the renin‑angiotensin 
hormonal system (Yeo & Liong, 2010). These bacteria 
have special proteolytic enzymes and produce angioten-
sin‑I‑converting enzyme (ACE) inhibitory peptides from 
milk proteins. Inhibitory peptide mixtures are resistant to 
digestive enzymes and dairy processing (Gobbetti et al., 
2000). Significantly lower pressor effect after intravenous 
angiotensin I injection, was observed in rats which were 
pre‑fed with milk fermented using certain strains of Lac-
tobacillus helveticus (Fuglsang et al., 2003). 

Androgens

B. fragilis reversibly reduces 17‑keto group of A4 to 
a 17β‑hydroxy derivative — T (Winter et al., 1984b), 
whereas a steroid‑inducible 17α‑HSD, capable of con-
verting T to epitestosterone (epiT) was isolated from 
Eubacterium sp. VPI 12708 (de Prada et al., 1994). It is 
possible that intestinal microbiota are capable of epimer-
izing T to epiT, when both activities are present. EpiT 
is a hormone which regulates some androgen‑dependent 

action and inhibits 5α‑reductase (Stárka, 2003). Pathways 
which contribute in T‑epiT interconversion were not 
conclusively identified in human, so one cannot exclude 
significant role of microbiota in this process (Bellemare 
et al., 2005). These findings suggest possible role of mi-
crobiota in the regulation of T level and release of ex-
cessive androgens in humans (Donova et al., 2005). 

Clostridium scindens belongs to the small number of 
intestinal bacterial species capable of bile acid 7α/β de-
hydroxylation, which leads to formation of secondary 
bile acids (Winter et al., 1984a). Furthermore, C. scindens 
possess steroid‑17,20‑desmolase which converts corticos-
teroids to androgens (Bokkenheuser et al., 1986; Krafft 
et al., 1987). In this process cortisol is transformed 
into 11‑β‑hydroxyandrostendione (11‑OHA4), which 
is reabsorbed into the bloodstream and excreted in the 
urine (Ridlon et al., 2013).  Since its discovery in 1953,  
11‑OHA4 has been a molecule of unknown biological 
significance. 11‑OHA4 has insignificant androgen activ-
ity, nevertheless, in accordance with last studies, its de-
rivatives are important metabolites in formation of nov-
el androgens (Bloem et al., 2013). The main source of 
11‑OHA4 in humans is adrenal cortex, but intestine‑de-
rived 11‑OHA4 may be also the important source of an-
drogens precursors.

Studies conducted in nonobese diabetic (NOD) 
mouse model of type 1 diabetes (T1D) showed that in 
germ free (GF) environment gender bias in T1D had 
diminished (Markle et al., 2013). Relative to GF males, 
specific pathogen free (SPF) males had significantly high-
er levels of T. Interestingly, after transplantation of mi-
crobiome from SPF males to females, recipient T levels 
had elevated and T1D morbidity had decreased. Similar 
results were observed in another study (Yurkovetskiy et 
al., 2013). These findings indicate a key role of microbi-
ome in determining host T level and sex differences in 
susceptibility to autoimmune diseases. Lactobacillus reuteri 
in drinking water prevents aging male mice from age‑re-
lated testicular atrophy and elevates theirs T level, prob-
ably acting on hypothalamic‑pituitary level (Poutahidis et 
al., 2014).  Authors of this study theorize that microbial 
impact on host T level may favor evolutionary success 
for the microbe and mammalian host. In general, GF 
compared to conventional mice have significantly lower 
weights of testis, epididymis, ductus deferens, kidneys, 
and adrenals (Fujiwara et al., 1990).

Gingival pathogens, Aggregatibacter actinomycetemcomitans, 
P. intermedius and Porphyromonas gingivalis are capable of re-
ducing T to DHT and increase DHT synthesis by fibro-
blasts (Soory, 1995). Bacillus cereus and Streptococcus mutans 
also possess 5α‑steroid reductase activity and moreover, 
3β‑, 17β‑ and 20α‑HSDs, which allows them to metabo-
lize T and P4 within easy reach in the gingival tissues. 
During inflammatory periodontal disease, local elevated 
DHT level foster fibroblast metabolism and matrix pro-
duction, thus has an impact on inflammatory repair. On 
the other hand, DHT influence bacterial metabolism, 
promoting gene expression which facilitates survival and 
dissemination of bacteria (Markou et al., 2009).

Thus, we propose a new term, analogous to estrobo-
lome, the “androbolome”. Detailed analysis of bacterial 
genes involved in androgens metabolism is necessary to 
understand a role of microbiome in androgen‑dependent 
conditions like baldness, acne and prostate cancer.

Progestins

C. innocuum synthesize the 3α‑5β‑reductase and C. par-
aputrificum the 3β‑5β‑reductase which are involved in in-
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activation of natural and synthethic progestins by reduc-
tion in the ring A (Bokkenheuser et al., 1983). Neverthe-
less, synthetic progestins, which are used as contracep-
tives, are much more resistant to reducing enzymes than 
natural analogs.

Reports on the impact of concomitant use of oral 
contraceptives and antibiotics on contraception effec-
tiveness are contradictory (Weisberg, 1999; Dickinson 
et al., 2001; DeRossi & Hersh, 2002; Toh et al., 2011). 
Rifampicin induces hepatic microsomal enzymes, thus 
facilitates oral contraceptive (OC) inactivation, whereas 
other commonly used antibiotics have neither pharma-
cokinetic nor pharmacodynamic interactions with OC. 
Probably rare cases of failure of OC associated with an-
tibiotic use are caused by reduction of some microbial 
populations with β‑glucuronidase activity and substantial 
loss of EHC of hormones.

As mentioned before, LPS reduces placental endo-
crine function. LPS administration to pregnant mice and 
ascending intrauterine infection in pregnant rabbits re-
sults in rapid P4 decrease and preterm parturition (Fidel 
et al., 1998).

THYROID HORMONES

The very first hypothesis concerning the role of intes-
tinal bacteria in thyroid function appeared in early 1900s 
(Smith, 1982). Sir Arbuthnot Lane theorized that chronic 
constipation may lead to systemic dysfunction, including 
“exopthalmic goitre” (Graves disease) due to toxin ab-
sorption from intestine. Basing on this theory D. J. Har-
ries concluded that intestinal bacteria unbalance leads to 
Graves disease due to an excessive absorption of trypto-
phan from the intestine, whereas parenchymatous goiter 
— from an excessive destruction of tryptophan (Har-
ries, 1923). Current studies suggest that sir Lane was not 
completely wrong, because LPS actually influences thy-
roid function.

Nonthyroidal illness syndrome (NTIS, euthyroid sick 
syndrome) is a condition characterized by clinical euthy-
roidism with low triiodothyronine (T3), total thyroxine 
(T4), and normal or low thyroid stimulating hormone 
(TSH) concentration (McIver & Gorman, 1997). NTIS 
is usually associated with serious disease (either infec-
tious or non‑infectious) or wasting. The Gram‑negative 
bacterial LPS exposure may participate in pathogenesis 
of this condition in several ways. Endotoxin directly 
and by induced cytokines inhibits hepatic type I iodo-
thyronine deiodinase (D1), that converts T4 to T3 (Yu 
& Koenig, 2000) and induces the type II iodothyronine 
deiodinase (D2) in the mediobasal hypothalamus and 
anterior pituitary gland (Baur et al., 2000; Fekete et al., 
2004). Induction of D2, that converts T4 to T3, in the 
central nervous system may cause suppression of TRH 
and TSH release. These effects are partly dependent on 
competition for limiting amounts of coactivators caused 
by the surplus of cytokines. IL‑1, IL‑6, TNFα signaling 
pathways include NF‑κB and AP‑1, which interact with 
SRC‑1 thus decreasing its availability for other pathways. 
SRC‑1 in healthy individual increases the expression 
of hepatic D1 gene and its deficit decreases D1 activi-
ty (Yu & Koenig, 2000; Boelen et al., 2004). It is worth 
pointing out that thyroid changes observed after com-
bined administration of IL‑1α, TNFα, IL‑6 and IFNγ are 
smaller than after administration of LPS (Boelen et al., 
1995). Another mechanism responsible for NTIS during 
infection is LPS influence on thyroid hormone receptor 
(TR) in the liver. LPS decreases RXR and TR expression 

in hepatic extracts, reducing RXR/TR DNA binding 
(Beigneux et al., 2003). 

Na+/I– symporter (NIS) plays a crucial role in thyroid 
physiology by participating in iodide uptake which is the 
main rate‑limiting step in thyroid hormonogenesis. TSH 
induces NIS expression and stimulates its transport to 
basolateral membrane of thyrocytes. In turn, iodide in-
hibits NIS expression and increases NIS protein turn-
over, which contributes to the reduction of thyroid hor-
mones’ levels after treatment with large amounts of io-
dine (Wolff‑Chaikoff effect) (Bizhanova & Kopp, 2009). 
Studies conducted on Fisher rat thyroid cell line FRTL‑5 
revealed that LPS binding to TLR‑4 on thyroid cells ac-
tivates NF‑κB pathway, which leads to the p65 subunit 
of NF‑κB interaction with a specific κB site at the NIS 
enhancer (Nicola et al., 2010). Consequently, TSH‑in-
duced NIS expression and iodide uptake are stimulated 
(Nicola et al., 2009). Thyroglobulin (TG) gene expression 
is also enhanced by LPS, which acts with the involve-
ment of Pax8 and TTF‑1(Vélez et al., 2006). Apart from 
transcriptional level, LPS modifies TG expression also at 
posttranscriptional and posttranslational levels.

The exact role of these changes in thyroid hormone 
metabolism is unclear. Some authors postulate that 
NTIS should be treated with levothyroxine, despite clin-
ical euthyroidism (Warner & Beckett, 2010). On the oth-
er hand, low T3 concentration may be associated with 
lower energy expenditure and be beneficial in serious in-
fection. Then, reaction of thyroid gland to bacterial LPS 
could be an adaptive change and proper physiological re-
action to bacterial invasion.

Gut condition is strongly associated with thyroid 
function (Ebert, 2010). Hypothyroidism may lead to 
heartburn, dysphagia, vomiting, dyspepsia, intestine mo-
tility disorder and constipation. In turn, hyperthyroid-
ism may be associated with diarrhea. Thyroid hormones’ 
influence on gut condition is dependent on their direct 
action in enterocytes. T3 induces intestinal alkaline phos-
phatase (IAP) and represses lactase gene transcription in 
these cells, thus regulates their differentiation and func-
tion (Meng, 2001). SCFAs produced by the resident mi-
crobiota in the intestine lumen may accompany T3 in 
these processes. SCFAs (butyrate, propionate, acetate) 
are used by enterocytes as an energy source and are in-
volved in regulation of host appetite and glucose level. 
They are mainly produced by Clostridium sp., which be-
long to the Gram‑positive phylum of bacteria, Firmicutes. 
Most of their effects is exerted via free fatty acid recep-
tors (FFAR) 2 and 3 (former G‑protein coupled recep-
tors (GPR) 43 and 41), locally in colon (Lin et al., 2012). 
They stimulate release of incretins, GLP‑1 and PYY by 
intestinal cells L (Tolhurst et al., 2012). Nevertheless SC-
FAs are absorbed into bloodstream and SCFAs sensing 
receptors are expressed also in immune cells, adipose tis-
sue and peripheral nervous system (Georgiadi & Kersten, 
2012). Main effects of SCFAs on endocrine system seem 
to be related to energy homeostasis ‑ insulin sensitivity 
increases after SCFAs treatment, while in adipose tissue 
the SCFAs improve leptin secretion. These molecules are 
considered beneficial, improving colon function and car-
bohydrate metabolism. However, studies performed in 
vitro suggest that SCFAs may modulate hormonal sys-
tem function in various locations, such as anterior pitu-
itary gland, where they suppress GH secretion (Ishiwata 
et al., 2000, 2005) and enhance T3‑induced stimulation 
of prolactin expression (Stanley & Samuels, 1984). 

SCFAs inhibit histone deacetylase HDAC‑1 activi-
ty and activate the Mitogen‑Activated Protein Kinase 
(MAPK) signaling pathway, which leads to hyperacetyl-



Vol. 63       195Microbiome impact on selected host hormones

ation of some histones and hyperphosphorylation of nu-
clear receptors (NR) coactivators, which in turn increas-
es transcription of various NR, such as TR (Meng et al., 
1999; Jansen et al., 2004). This leads to the enhancement 
of TRβ‑1 function and increases the T3‑dependent IAP 
induction. IAP is a marker of crypt‑villus differentiation, 
so we can conclude that bacterial SCFAs and host T3 
cooperate in maintaining the proper intestinal epithelial 
development and homeostasis (Malo et al., 2013).

Varian et al. showed that L. reuteri supplementation 
improve function of thyroid gland in mice. L. reuteri 
consuming mice had higher fT4 levels, higher mass of 
thyroid gland tissue and increased height of the thyroid 
glandular epithelia as compared with their untreated 
counterpart (Varian et al., 2014). Mice treated with L. re-
uteri were also slimmer, more active and had healthier 
skin than control mice, which correlated with fT4 lev-
els. These bacteria induce interleukin‑10 production in 
the intestine, which stimulates host immune tolerance, 
triggered by anti‑inflammatory CD25+ regulatory T cells. 
In CD25+‑depleted mice, L. reuteri supplementation was 
not beneficial for the thyroid function. Positive effects 
of bacteria on the thyroid function were also observed in 
other animals. For instance, female GF rats have smaller 
thyroids than CV (Vought et al., 1972). Moreover, lac-
tic acid bacteria supplementation in the broiler chicken 
diets increased the blood plasma thyroid hormone level 
(Sohail et al., 2010; Chotinski & Mihaylov, 2013). It is 
suggested that positive impact of probiotics on testicles, 
thyroid and probably ovaries in animals, inducing chang-
es in GI microbiome composition may affect both the 
endocrine and immunological systems, thus influencing 
aging course (Varian et al., 2014). 

Sulfation of T4 and T3 in the liver significantly facili-
tates deiodination by D1 to inactive derivatives rT3 and 
T2 (Wu et al., 2005). Under some conditions like pro-
phylthiouracyl treatment, fetal development, selenium 
deficiency, or NTIS when D1 activity is low, sulfocon-
jugates may be hydrolyzed to bioactive T4 and T3 due 
to expression of sulfatases in different tissues and by 
intestinal bacteria (Kester et al., 2002). However, the sig-
nificance of gut microflora in maintaining T3 level under 
conditions of reduced D1 activity is disputed (Veronikis 
et al., 1996). Physiologically about 20% of serum T3 is of 
intestine origin and T3‑sulfate (T3S) is a reservoir, which 
can be recovered by sulfatases. Similarly, major billi-
ary‑excreted T3 metabolite — T3 glucuronide — may be 
hydrolyzed by microflora, which enables EHC of thyroid 
hormones (de Herder et al., 1989; Rutgers et al., 1989). 
Gut may be an important site in production of bioac-
tive thyroid hormones and intestinal dysbiosis may lead 
to reduced T3S to T3 conversion and to T3 enterohe-
patic cycle dysfunction. One study suggests that intesti-
nal bacteria are even capable of deiodination of thyroid 
hormones (DiStefano et al., 1993). However, this finding 
remains unconfirmed.

7α‑dehydroxylation of primary bile acids by intestinal 
microbiota results in formation of secondary bile acids: 
lithocholic and deoxycholic. Main 7α‑dehydroxylating 
species isolated from human feces include Clostridium and 
Eubacterium (Wells & Hylemon, 2000). Taurine‑conjugat-
ed secondary bile acids, taurolithocholic acid and tauro-
deoxycholic acid are the most potent TGR5 ligands. In 
response to these compounds, the G‑protein‑coupled 
receptor TGR5 activates and subsequently intracellular 
cAMP level raises. Afterward, in brown adipocytes and 
human skeletal myocytes induction of the cAMP‑de-
pendent D2 occurs, which promotes energy expenditure 
(Watanabe et al., 2006). Paradoxically, some studies show 

that GF rats have significantly higher T3 to T4 ratio in 
the blood plasma than conventional animals (Ukai & 
Mitsuma, 1978). It is possible that greater reabsorption 
of bile acids in these animals may lead to enhanced T3 
producing enzymes expression (Wostmann, 1973).

GROWTH HORMONE

GH is secreted by anterior pituitary gland in a pul-
satile manner dependent on the action of GH releasing 
hormone (GHRH) and ghrelin, which stimulates GH 
secretion, and somatostatin which inhibits GH secretion 
(Vijayakumar et al., 2010). The physiological effects of 
GH results from direct by interacting with a specific re-
ceptor on the surface of cells and stimulation of insulin 
growth factor 1 and 2 (IGF‑1 and ‑2) secretion by liver.

Lactobacillus plantarum may promote Drosophila systemic 
growth by affecting the TOR‑dependent host nutrient 
sensing system controlling hormonal growth signaling 
(Storelli et al., 2011). Similarly, L. rhamnosus administra-
tion to zebrafish cause elevation of IGF‑I, IGF‑II, thus 
accelerates backbone calcification (Avella et al., 2012). 
It has been hypothesized that intestinal microbiota may 
also influence growth of mammals. For instance, in rab-
bits fed with probiotics, GH level elevates (Ghoneim & 
Moselhy, 2013), whereas human infants fed with formula 
enriched with L. rhamnosus GG grew better compared to 
their control counterpart (Vendt et al., 2006).

LPS is a known exogenous factor which affects GH 
secretion and action (Figure 2). Studies performed on 
rats and domestic fowls revealed that LPS causes GH 
release inhibition (Curtis et al., 1980; Kasting & Martin, 
1982), whereas in human and sheep transitionally en-
hances GH secretion, probably acting on pituitary level 
(Lang et al., 1997; Briard et al., 1998; Daniel et al., 2002). 
Despite sustained increase in GH concentration, LPS in-
jection results in a state of resistance to GH. LPS in-
creases the production of proinflammatory cytokines like 
TNF‑α, interleukin‑1β (IL‑1b), and interleukin‑6 (IL‑6). 
TNF‑α suppresses GH receptor (GHR) expression by 
reduction of transactivators Sp1/Sp3 binding to a GHR 
promotor (Denson et al., 2001), IL‑6 up‑regulates strong 
inhibitor of GH intracellular signal transduction, SOCS‑3 
(Wang et al., 2002a; Denson et al., 2003). Other mecha-
nisms of LPS‑dependent GH resistance are: decrease in 
IGF‑1 concentration caused by liver cyclooxyganase‑2 
activation (Briard et al., 2000; Wang et al., 2002b; Mar-
tín et al., 2008), direct suppression of GHR expression 
by MyD88‑dependent and ‑independent TLR4 signaling 
pathways (Dejkhamron et al., 2007) and promotion of 
proteolytic GHR cleavage (Wang et al., 2008). Moreover, 
the ability of GH to promote phosphorylation of signal 
transducer and activator of transcription (STAT) in the 
liver is reduced during sepsis (Hong‑Brown et al., 2003). 
Furthermore, LPS administration alters IGFBP serum 
concentrations. In normal condition, IGFBP‑3 forms 
a stable ternary complex with IGF and the acid labile 
subunit (ALS), so that IGF half‑life is extended, IG-
FBP‑1 serves as an inhibitor of IGF bioactivity, whereas 
IGFBP‑2 is an optional IGF carrier in condition of low 
IGFBP‑3 level (Donaghy & Baxter, 1996). LPS admin-
istration promotes increased IGFBP‑3 proteolysis in se-
rum and/or its decreased synthesis in the liver (Priego et 
al., 2003), while IGFBP‑1 accumulates in certain tissues, 
like skeletal muscles and blocks IGF‑dependent protein 
synthesis (Frost & Lang, 2004). 

These studies may be crucial to understanding the 
mechanism of growth failure in children with inflamma-
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tory bowel diseases (IBD). Due to increased intestinal 
permeability, systemic endotoxemia is a common find-
ing in these patients and may underpin extra‑intestinal 
complications. Chronic elevation of LPS binding protein 
(LBP) serum level has been proposed as a potentially 
useful marker of high refractory growth failure risk in 
pediatric IBD (Pasternak et al., 2010). During chronic in-
fection or after sepsis, GH resistance develops in periph-
eral tissues, that may result for instance in muscle mass 
loss. Thus, LPS‑dependent pathways leading to GH re-
sistance may become the future therapy targets. 

Another mechanism of bacteria‑associated growth 
failure in children is observed in Helicobacter pylori car-
riers. An assessment of the anti‑H. pylori antibodies in 
GH deficient short stature group, an idiopathic short 
stature group and control group, revealed that in chil-
dren with idiopathic short stature the antibody positivity 
rate was significantly higher than in other groups (Taka-
hashi et al., 2002). Possible explanation of this effect is 
decreased ghrelin production by enteroendocrine cells in 
the gastric mucosa. Ghrelin is a GH releasing peptide as 
a GH secretagogue type 1A receptor (GHSR) ligand and 
has an important role in maintaining energy homeosta-
sis and regulation of hunger. Chronic damage of gastric 
ghrelin‑positive cells during H. pylori infection leads to 

decreased GH secretion, impaired hunger signals and in 
consequence growth retardation. Importantly, body com-
position improves in children after therapy (Osawa et al., 
2006). Surprisingly, in some patients after H. pylori eradi-
cation, plasma ghrelin concentrations decrease and BMI 
increases (Pacifico et al., 2008). These variances may be 
dependent on the strain of bacteria: type I (producing 
the cag) is associated with lower ghrelin concentration 
than type II (without virulence factors), so eradication of 
different strains may lead to different effects (Deng et al., 
2012).

Maternal oral Campylobacter rectus or P. gingivalis infec-
tion may cause intrauterine growth restriction (IUGR). 
These bacteria may invade placental tissues and promote 
hypermethylation in the promoter region‑P0 of the Igf2 
gene (Bobetsis et al., 2007). TLR‑4 knockout mice do 
not develop IUGR phenotypes after systemic C. rectus in-
fection, which emphasizes the crucial role of this recep-
tor in placental immunity (Arce et al., 2012).

PARATHYROID HORMONE AND GUT‑KIDNEY AXIS

Due to the deterioration of renal clearance during 
chronic kidney disease (CKD), many compounds accu-
mulate and contribute to the uremic syndrome. These 

Figure 2. LPS influence on GH action. 
Details, see main text. COX-2, cyclooxygenase-2; IGF-1, insulin like growth factor 1; IGFBP3, IGF binding protein 3; GH, growth hormone; 
GHR, GH receptor; LPS, lipopolysaccharide
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molecules, called uremic toxins are classified as: small 
water‑soluble compounds (urea, guanidines, oxalate, 
phosphorus, polyamines), protein‑bound compounds (p‑
cresol and p‑cresylsulfate, indoles, homocysteine, furan-
propionic acid) and middle molecules (β2‑microglobulin, 
PTH) (Duranton et al., 2012). The originator of some 
uremic toxin is colon microbiome, which changes its 
composition during CKD. Low dietary fiber intake and 
impaired protein assimilation in the small intestine de-
creases carbohydrate to protein ratio in colon, thus pro-
moting proteolytic bacterial species over saccharolytic 
ones. SCFA production by Lactobacillaceae and Prevo-
tellaceae families decreases, whereas Bacteroides fam-
ily overgrows and generates toxic solutes (Poesen et al., 
2013). Gut bacteria convert tryptophan to indole, which 
is hydroxylated and sulfonated to indoxyl sulfate (IS) in 
the liver, whereas p‑cresyl sulfate (PCS) is the product of 
bacterial tyrosine degradation followed by sulfate conju-
gation. Bone mineralization deficiency in CKD is called 
renal osteodystrophy. Endocrine changes which cause 
this condition are secondary hyperparathyroidism (SHP) 
and low vitamin D activation rate in kidneys. SHP in 
CKD may be a result of phosphate retention, hypocal-
cemia, decreased production of or resistance to calcitriol, 
abnormal sensitivity to calcium, direct effects of phos-
phate and skeletal resistance to PTH (Fukagawa et al., 
2002). The mechanism of the latter stimulus, skeletal re-
sistance to PTH, is related to IS and PCS produced by 
anaerobic bacteria. IS is taken up by osteoblasts via or-
ganic anion transporter 3 (OAT3) and afterward increas-
es intracellular free radical production. Furthermore, IS 
down‑regulates PTHR gene and decreases PTH‑induced 
cAMP production in osteoblasts, that might lead to skel-
etal resistance to PTH (Nii‑Kono et al., 2007; Goto et al., 
2010). 

Uremic toxins produced by bacteria might have an 
impact on function of other hormones. For instance, 
PCS activates ERK1/2 in mice skeletal muscle, thus pro-
moting insulin resistance (Koppe et al., 2013). Also, ure-
mic patients usually have low total T3 level, which may 
be caused by inhibition of T4 hepatocyte transport and 
subsequent T4 deiodination by IS (Lim et al., 1993).

CONCLUSIONS

Bacterial influence on endocrine system is difficult to 
understand and investigate, however new metabolomics 
and bioinformatics research provide information about 
bidirectional cross‑talk between host hormones and mi-
crobiome. This knowledge is necessary to comprehend 
hormonal changes during a bacterial infection, antibiotic 
or probiotic treatment and diet modifications. Rational 
modifications of intestinal flora may decrease some hor-
mone‑dependent diseases risk, like breast and prostate 
cancer.
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