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Proteins in the post-genome era impose diverse research 
challenges, the main are the understanding of their 
structure-function mechanism, and the growing need 
for new pharmaceutical drugs, particularly antibiotics 
that help clinicians treat the ever- increasing number of 
Multidrug-Resistant Organisms (MDROs). Although, there 
is a wide range of mathematical-computational algo-
rithms to satisfy the demand, among them the Quantita-
tive Structure-Activity Relationship algorithms that have 
shown better performance using a characteristic train-
ing data of the property searched; their performance 
has stagnated regardless of the number of metrics they 
evaluate and their complexity. This article reviews the 
characteristics of these metrics, and the need to recon-
sider the mathematical structure that expresses them, di-
recting their design to a more comprehensive algebraic 
structure. It also shows how the main function of a pro-
tein can be determined by measuring the polarity of its 
linear sequence, with a high level of accuracy, and how 
such exhaustive metric stands as a “fingerprint” that can 
be applied to scan the protein regions to obtain new 
pharmaceutical drugs, and thus to establish how the sin-
gularities led to the specialization of the protein groups 
known today.
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INTRODUCTION

In Proteomics, the Supervised learning (Larrañaga 
et al., 2006) essentially seeks to identify a regularity 
(Oestreicher, 2007) among a group of proteins with 
a particular characteristic or “training data”, once this 
regularity is isolated, a mathematical-computational al-
gorithm is built (Kitaev, 1997) to find the same regu-
larity or the absence of it in other groups of proteins. 
The best scenario is when the desired regularity is 
evident in a group of proteins, however, that is not 
usually the case as the efficiency of algorithms is fre-
quently low; this occurs particularly when trying to 
identify the primary function of a protein. Proteins do 
not normally have a unique action associated to them, 
i.e. only 1% of the peptides located in APD2 database 
(Wang et al., 2009) have a unique pathogenic action. 
The search of a non-evident regularity, such as the 

main function associated to a protein, cannot be done 
by finding similarities in the protein linear sequence, 
like sequence alignment algorithms do e.g. BLAST 
(Madden et al., 1996) or FASTA (GenBank, 2011). 
It requires strategies where it is possible to identify 
minimal regularities. Within the group of Supervised 
learning algorithms there are some that focus on re-
lating chemical structure to biological activity, evalu-
ating only one physico-chemical property and obtain-
ing the best results in the identification of the main 
action or function of a protein, these algorithms are 
called Quantitative structure-activity relationship mod-
els (QSAR models) (Putz et al., 2011). The more than 
80 QSAR algorithms known (Qureshi et al., 2014) use 
physico-chemical metrics involving the linear repre-
sentation and/or the 3D structure of the protein and 
evaluate one or more properties simultaneously. What 
differentiates each QSAR model is the metrics they 
use, however, all of them produce a real value from a 
predetermined range, e.g. isoelectric point (Kosmulski, 
2009) at 25°C for tungsten (VI) oxide WO3 in water: 
[0.2–0.5]. At first glance, the greater number of phys-
ico-chemical properties, lesser the number of “false 
positives”, but this is not true here, there are QSAR 
models that include all known physico-chemical prop-
erties in their metrics (Yap, 2011), and yet the false 
positives still occur, with the percentage of efficiency 
not exceeding 80% in most of the models (Brendel et 
al., 1992). The probable cause is that when the result 
comes from a predetermined range, the completeness 
property of the real numbers is not considered, there-
fore, the combination of the physico-chemical proper-
ties does not add effectiveness to the algorithm, but it 
adds complexity to the computational implementation. 
A minimalist approach to the assessment of the phys-
ico-chemical properties can significantly improve the 
performance of a QSAR model, this approach con-
sists of identifying the fundamental physico-chemical 
property influencing the studied phenomenon, and 
building a metric that expresses its dynamic and static 
behavior.

An example of this new family of QSAR models 
is polarity index method (Polanco et al., 2012), which 
assumes that the three-dimensional conformation of 
a protein defines its specific function and is the re-
sult of its electromagnetic balance. It also conjectures 
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that this 3-D conformation is expressed in the line-
ar sequence formed by its amino acids and that this 
balance can be measured through their polarity. For 
this purpose, amino acids are classified in four differ-
ent groups: polar positively charged, polar negatively 
charged, polar neutral, and non-polar. If the amino 
acid sequence is read from N-terminal to C-terminal 
from left to right, moving one amino acid at a time 
and the 16 possible incidents are registered in an ar-
ray, a comprehensive metric of the polar behavior of 
the protein will be obtained from this linear sequence. 
If this procedure is carried out with a training data, an 
array of polar incidents representative of that particu-
lar set will be generated. This array can be considered 
a “fingerprint” of the protein group studied and since 
this algorithm can simultaneously evaluate multiple 
proteins, it can be used for the polar classification of 
the existent protein groups (Boman, 1995), the explo-
ration of peptide regions of a determined length, the 
construction of new pharmaceutical drugs from fully 
synthetic proteins, or in basic science, for discovering 
the profile of the first proteins from four billion years 
ago (Gaucher et al., 2010; Polanco et al., 2013; 2014; 
2014b).

FOUNDATION

The mathematical-computational algorithm called 
polarity index method (Polanco et al., 2012) had its 
foundations in the early studies this team did on po-
lymerization of prebiotic proteins that had to be pre-
sent 4 billion years ago (Gaucher et al., 2010), since 
it was not possible to use the current genetic code 
(Sharp, 1985), consisting of 20 amino acids, a random 
generation of amino acids from also randomly pro-
duced nucleotide triplets was used. It was observed 
that although the first amino acids did not corre-
spond to the 20 amino acids known today, neither in 
number nor in type, it was possible to use the po-
lar profile that was the result of the electromagnetic 
balance reached by each one of these amino acids, as 
this property was defined for all of them. This led to 
the construction of a polar equivalence (injective map-
ping) (Vinogradov, 1985) that allowed the comparison 
of the prebiotic proteins computationally built with 
those known today.

From this polar equivalence we obtained an array 
called “Polarity matrix” (Polanco et al., 2013b; Rabi-
ner, 1989), that once normalized to one, represented 
the relative frequencies of all possible polar interac-
tion; subsequently this matrix was expressed with 
a smooth curve. Here we present three groups that 
were identified by this method: (i) a set of lipopro-
teins related to atherosclerosis (Guyton & Klemp, 
1989; Polanco et al., 2009), i.e. large VLDL, small 
dense LDL, and small DHDL subclasses (Koba et al, 
2003), downloaded from UniProt Database (Magrane, 
2011) (Fig. 1); (ii) the sets of natively unfolded pro-
teins and natively folded proteins (Dunker et al., 2001; 
Polanco et al., 2015a; Uversky et al., 2000; 2002; 2008; 
2008a; 2009; 2010; 2010a; 2010b; 2013; Wright & 
Dyson, 1999) from the supplementary material (Old-
field et al., 2005) (Fig. 2). Some of these proteins are 
known to produce serious pathological conditions, 
including the neurodegenerative diseases grouped un-
der the term amyloidoses (Polanco et al., 2015a); and 
(iii) a set of selective cationic amphipathic antibacte-
rial peptides (SCAAP) (Fig. 3) (Polanco & Samanie-

Figure 1. Relative Frequency distribution for lipoproteins related 
to atherosclerosis (Polanco et al., 2015). The X-axis represents 
the 16 polar interactions.

Figure 2. Relative frequency distribution for the unfolded and 
folded proteins (Polanco et al., 2015a). The X-axis represents the 
16 polar interactions.
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go, 2009) from (Polanco et al., 2013b). This small set 
of peptides is characterized by being highly toxic to 
bacterial membranes and present negligible toxicity to 
mammalian cells.

These groups of peptides and proteins (Figs. 1–3) 
do not have any coincidence in the minimum, maxi-
mum, or turning points. The intrinsically disordered 
protein group (Fig. 2) has similarities, however, there 
is a translation between the curves. The SCAAP group 
(Fig. 3), is substantially different from the others. The 
characteristics of the curves is typical for each group, 
and the proteins in each group are similar. This is the 
reason why the polarity profile is an effective discri-
minant for the functional (bacteria, fungi, virus, etc.) 
and structural groups (disordered proteins) studied.

The graphical representations used in different 
groups of peptides and proteins showed that the po-
larity matrix is neither symmetric nor antisymmetric 
(Munkres, 2000), we could verify that the inflection 
points (Munkres, 2000) located in the X-axis of the 
smooth curves characterize the group studied, i.e. the 
location of these points was an effective discriminant 
(80–90% in a double-blind statistical test), it was test-
ed in more than 14 protein and peptide groups stud-
ied (Polanco & Samaniego, 2009; Polanco et al., 2012; 
2013a; 2013b; 2014a; 2014c; 2014d; 2014e). However, 
we decided to choose the most accurate computation-
al interpretation of the matrix and the analytical con-
struction of the smooth curve presented a problem as 
the characteristic polynomial of the curve differed for 
each of the techniques used to obtain it.

If we consider these 16 polar interactions are 
the characteristics of the main action of a particu-
lar group of proteins, then the space where the pro-

tein is defined would be either ℝ16 (real field) or ℂ8 
(complex field) (Munkres, 2000), and as the num-
ber of inflection points will always be minor to this 
number of incidents, the space where the discrimi-
nant property is defined will be a subspace of ℂ8. 
Furthermore, vector “x” whose 16 components are 
the elements of the polarity matrix, can be measured 
||x|| (Munkres, 2000) therefore, every protein can 
be assigned to a group not only according to the 
similarities of their 16 components but also accord-
ing to the length of the vector searched. From these 
considerations we can emphasize one aspect of the 
attributes of the discriminant — the feature that dis-
criminates is identified by the singularities or inflec-
tion points (singularities degenerated), and not by 
the regularities or maximum-minimum points (sin-
gularities non-degenerated) observed in the smooth 
curve, this is how the physico-chemical property 
studied was identified (Polanco et al., 2012).

As mentioned before, the electromagnetic balance 
of the peptide or protein is classified into four po-
lar groups (Pauling, 1960) closely related to the nature 
of the elements in all living matter, mainly formed by 
carbon (C), hydrogen (H), oxygen (O), and nitrogen 
(N). Therefore, the electromagnetic balance should 
be defined as a quantum electromagnetic balance i.e. 
the nature of the balance is not Newtonian, since this 
balance is the result of the energy exchange between 
the atoms and the particles in conjunction with the 
nucleus of the elements. At this level it can be ex-
plained as the polarity profile or electronegativity of 
the amino acid.

MEDICAL IMPLICATIONS

The medical implications of Bioinformatics in the 
manufacture of new pharmaceutical drugs is incipi-
ent (Khan, 2011), mainly because the mathematical-
computational algorithms known today do not include 
an exhaustive computational verification, this means 
they focus on the assessment of a property that is 
presumed to be an effective discriminant, and exclude 
the virtual recreation of the environment where the 
synthetic peptide acts. The complexity involved in 
simulating this virtual scenario is certainly high, cur-
rently this virtual scenario is replaced by the synthesis 
of peptides and their subsequent experimental test-
ing in a laboratory. However, the new generation of 
Bioinformatics algorithms will have to provide a vir-
tual scenario as well as a drastic reduction of the lab 
testing of the synthetic proteins produced by them. 
Furthermore, we think that the construction of such 
virtual scenario to test peptides should be a global ini-
tiative (Goodman, 2011) involving research groups in 
Bioinformatics from different countries, for two rea-
sons: the complexity of the construction of the virtual 
scenario, and the standardization of the factors and 
variables that will have to be considered so the syn-
thetic peptides are always evaluated under similar con-
ditions. This initiative is important as it would prevent 
using bioinformatics algorithms as “filter algorithms”, 
improving their efficiency, and bridging the gap be-
tween academic and industry institutions with regula-
tory agencies (Lesko, 2012).

In this work, we presented the results obtained 
with polarity index method for three groups of pro-
teins that are a current topic in medicine: SCAAPs, 
intrinsically disordered proteins, and lipoproteins 

Figure 3. Relative frequency distribution for the selective cation-
ic amphipathic antibacterial peptides (SCAAP) (Polanco & Sam-
aniego, 2009). The X-axis represents the 16 polar interactions.
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related to atherosclerosis. The efficiency of the 
SCAAPs found in nature is high, however, there are 
two problems: the increasing difficulty to find them 
in other organisms and the high costs involved in 
their synthesis and experimental verification. There-
fore, it is imperative to encourage the identification 
of SCAAPs, given the resurgence of MDROs and 
the epidemic outbreaks that turned pandemic during 
the last decade. The intrinsically disordered proteins 
have shown their association with neurodegenerative 
diseases known as Amyloidosis, which will have a 
high impact on the world population during the next 
decades; and the proteins related to atherosclerosis 
are associated with coronary artery disease, which is 
the first cause of death in the USA and in Europe 
it has been for decades a problem that impacts the 
health of workers.

PERSPECTIVES

In humans 25 000–30 000 genes encode proteins so 
it is reasonable to consider existence of 500 thousand 
to one million different proteins, this is the result of 
two factors: a gene may express different proteins and 
they undergo post-translational changes (Crawford et 
al., 2004). Considering that a computational algorithm 
takes only one second to analyze the linear sequence 
of a protein, it will mean eleven days of continuous 
processing in case of a uniprocessor computer, or an 
hour in case of a 200 processor cluster (Niiler, 2001). 
The problem lies not in processing but in the effec-
tiveness of the algorithm and, as it was noted before, 
the sum of all known algorithms applied to the same 
protein does not provide more effectiveness but it 
makes the analysis impractical due to the time-con-
suming processing. The hardware-software is not and 
will never be an impediment for the bioinformatics 
processes applied to Proteomics, but efforts should be 
aimed at duplicating massive storage capacity and si-
multaneously at reducing data processing time.

We think that in the near future, the approach to 
the metrics in new algorithms should be reconsidered 
to improve their effectiveness, using the known phys-
ico-chemical properties but changing their algebraic 
structure in such a way that they thoroughly inform 
the dynamic-static aspect of the property studied. 
As already mentioned, the physico-chemical property 
Polarity has been considered in many Bioinformatics 
algorithms (Qureshi et al., 2014), however, it was its 
comprehensive assessment that considers 16 possible 
polar interactions, which made the difference. To re-
consider the approach does not mean to start from 
scratch, but to examine the most evaluated physico-
chemical properties, and study them separately to 
avoid the over-expression of a property. This aspect 
in a minimalist approach means not only the expres-
sion of the physico-chemical property in the broadest 
sense, but also its isolation i.e. if a property defines 
what is sought it should not coexist with another 
property as this will distort the algorithm. Future al-
gorithms should aim to be exhaustive but minimalist 
at the same time. A final aspect to consider during 
the design of these algorithms is that they should be 
embarrassingly parallel (Snir, 1998), this means pro-
gramming should process the instructions or tasks of 
the algorithm simultaneously and computer programs 
should take into account the same outlook; it is worth 

mentioning that this technique is not new, its history 
goes back to 1950 (Wolinsky, 2007).

Finally, in our opinion it is essential to continue the 
exploration of the polar profile of the first proteins 
and the effect the bombarding of minimally biased 
amino acids had on them billion years ago, as the 
actual knowledge on proteins is negligible compared 
with the information this span of time can provide, 
particularly about the role the biases played during 
the forming of amino acids. On this topic it will be 
essential to implement broad prebiotic scenarios that 
allow the recreation of multiple variables from sto-
chastic processes (Rabiner, 1989). In few decades, the 
design of new drugs will face a drastic reduction in 
experimental tests on animals (European ℂommission, 
2014), this will involve the design of new algorithms 
not only according to the guidelines mentioned above 
but also consistently with the outline of computation-
al biological scenarios that minimize the number of 
the synthetic proteins tested. The challenges are great 
and the financial implications considerable, but with 
the emergence of Multidrug-Resistant Organisms it is 
evident that it is the human race which is at stake and 
we have to be prepared to spare no efforts in that 
endeavor (Zuckerman et al., 2009).

Availability

The test-files, and polarity index method program 
must be requested from the corresponding author (po-
lanco@unam.mx).
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