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Sequence tagged site (STS) markers are valuable tools
for genetic and physical mapping that can be successful-
ly used in comparative analyses among related species.
Current challenges for molecular markers genotyping
in plants include the lack of fast, sensitive and inexpen-
sive methods suitable for sequence variant detection. In
contrast, high resolution melting (HRM) is a simple and
high-throughput assay, which has been widely applied
in sequence polymorphism identification as well as in
the studies of genetic variability and genotyping. The
present study is the first attempt to use the HRM analy-
sis to genotype STS markers in narrow-leafed lupin (Lu-
pinus angustifolius L.). The sensitivity and utility of this
method was confirmed by the sequence polymorphism
detection based on melting curve profiles in the parental
genotypes and progeny of the narrow-leafed lupin map-
ping population. Application of different approaches,
including amplicon size and a simulated heterozygote
analysis, has allowed for successful genetic mapping of
16 new STS markers in the narrow-leafed lupin genome.
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INTRODUCTION

Sequence tagged site markers represent single copy se-
quences in the genome and are commonly used in genet-
ic and physical mapping. Moreover, these markers can be
used as skeleton markers that allow comparison between
genetic maps among one species or synteny analysis be-
tween different species (Croxford ez al, 2008; Kroc ¢f al.,
2014). In the case of species with unsequenced genomes
such an approach is still desirable in comparative studies.
The gene-based STS legume anchor markers (Leg mark-
ers) used in this study were designed to facilitate the
comparative genomics of less known legumes (Fredslund
et al., 2006; Hougaard ez al., 2008). To date these markers
have been successfully applied in the synteny analyses
of Phaseolus vulgaris, Lotus japonicas, Medicago truncatula and
Arachis (Hougaard ez al., 2008, Bertioli e al., 2009). Leg
markers were also included within a larger set of markers
used in the recent synteny analysis of Lupinus angustfolius
and Medicago truncatula (Kroc ef al., 2014).

High resolution melting (HRM) is a powerful tech-
nique used for genotyping and mutation scanning. This
method takes advantage of special saturation dyes prop-
erties that fluoresce only in the presence of double

stranded DNA. After PCR, amplicons bound to the flu-
orescent dye are denaturated and the fluorescence fades
away. Since various genetic sequences melt at different
temperatures, changes in the fluorescence registered
during the analysis can be applied to single nucleotide
polymorphism (SNP), simple sequence repeat (SSR),
small insertion and/or deletion (InDel), as well as length
polymorphism detection (Montgomery et al., 2007; Dis-
tefano ¢ al, 2012). The HRM assay has been success-
fully applied in studies of genetic variability and SNP/
SSR marker genotyping of various plants, e.g. legumes,
including alfalfa (Han e/ al, 2012), pea (Knopkiewicz ez
al., 2014), soybean (Monteros ef al., 2010) and white lu-
pin (Croxford e al., 2008).

Various molecular markers, such as amplified frag-
ment length polymorphism (AFLP), microsatellite an-
chored fragment length polymorphism (MFLP), restric-
tion fragments length polymorphism (RFLP), diversity
arrays technology (DArT), InDel and STS have already
been applied in various studies focused on the narrow-
leafed lupin genetic mapping (Nelson e/ al, 2006; Nelson
et al., 2010; Yang ez al., 2013; Kroc ez al., 2014; Kamphu-
is et al., 2014). In the case of STS markers, DNA poly-
morphism has been detected with the aid of restriction
enzymes such as either CAPS (cleaved amplified poly-
morphic sequence) or dCAPS (derived-CAPS) markers
or the SNaPshot assay (Life Technologies Inc.) (Nelson
et al., 2010; Kroc et al., 2014). However, these techniques
have some limitations. Their protocols are multi-stage,
time-consuming and labor-intensive. Moreover, in CAPS
and dCAPS systems, SNP must create a restriction site,
while polymorphism detection requires gel electrophore-
sis. On the other hand, the SnaPshot assay needs capil-
lary electrophoresis to detect polymorphisms. In contrast
to both these methods, HRM is a simple and fast analy-
sis. Furthermore, it can be performed directly after PCR
without additional sample processing (Wu ¢# al., 2008).

The main aim of this study was to evaluate the effec-
tiveness of the HRM method in genotyping STS markers
in narrow-leafed lupin (Lupinus angustifolins 1.) as well as
HRM method optimization.
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MATERIALS AND METHODS

Plant material. The mapping population of 96 F8
generation recombinant inbred lines (RILs) used in this
study was established by the single seed descent meth-
od from a cross between a domesticated breeding line
83A:476 and a wild type P27255 (Boersma e al, 2005)
and was provided within the framework of cooperation
with Dr. Hua’an Yang (Western Australia Department of
Agriculture and Food, Perth, Australia).

Young leaf samples were colleted from plants grown
in the field and processed for DNA extraction using a
DNeasy Plant Mini Kit (Qiagen) according to the manu-

facturer’s protocol with minor changes. These included:
(1) an additional incubation step (30 min at room tem-
perature) after the addition of Buffer AP1 and 3 ul of
RNase A stock solution, (2) increased duration of the
cell lysis step (30 min at 65°C) and (3) increased dura-
tion of the precipitation step (15 min on ice).
Polymorphic markers detection. Leg markers were
designed with the aid of a bioinformatics pipeline on
the basis of the coding sequences of model legumes
(Lotus japonicus, Medicago truncatnla) and legume crop spe-
cies (Glycine max, Phaseolus vulgaris), with Arabidopsis thali-
ana genome sequence data used as a reference genome
(Fredslund ez af, 2005; 2006). A list of all Leg primer

Table 1. A list of markers selected for HRM analyses and incorporated into the narrow-leafed lupin genetic map.

Marker name Primer sequences

Amplicon size  SNP variations in 83A:476 x

(bp) P27255 mapping population

Forward TGGGTATTCATTCTGACCCACT

Leg33MGm_HRM 156 43 T>C; 78 G>A; 81 G>T
Reverse GAACATAATGTCCAACTACTCCAGAA
Forward TTCAAGCCAAATCCAAATGA

Leg050_HRM 82 62G>C
Reverse ATGAGATTATGGCCCCATGC
Forward CCTGACACAGCAAAGTTATGAGA

Leg055_HRM 89 28A>G
Reverse CCAGAGAGAGAGAATTATTTCCAA
Forward ACTCAAACTTTGCTGTTCAGGT

Leg074_HRM 144 99_101delTTG; 108 T>C
Reverse TCTCTATGATGCATGTTTGGGC
Forward ATAATTGCAGTCATATGTGAAA

Leg156_HRM 105 70_71delTG
Reverse CCA ATGTAGTACTGTGTTTGGTT
Forward CAACAACCCACCATAATTTACATAAC

Leg245_HRM 102 60C>A
Reverse ACCAGCCTTCCTCAGTTGAA
Forward CTTGCATGATGATGAGATATTGAA

Leg256_HRM 151 84C>T
Reverse AAGCACGAGCTAAATCATTACAAA
Forward ACCTTTGGCTGTCTCTAGGT

Leg318_HRM 150 32G>A
Reverse ACAAATGGAGAGGTTGTTTCCA
Forward GTTCGTTGCTTAGGTATA CTTTC

Leg325_HRM 100 42A>G
Reverse TGCTGCACATACGGTTGAA
Forward AAAGACACAATAGTTAGAATGGCTGTT

Leg425_HRM 100 39G>A
Reverse CTTTCCTTCCCAGGGTCATC

Leg43s Forward TCACTCTCWTCTGAGAAGGCAAG 278 24 C>T: 37 GA: 72 G>A: 109
Reverse  TCTTGCCAGARTGAATTCTGGCTTTTAGCATAGGC G>A; 223 A>C
Forward GGAGGACAGATAAGCTTTGATGTAA

Leg445_HRM 118 59T>G
Reverse TTGAGGGAAAACCTGTGGAG
Forward GTTGGAGCCGATGTTTGATA

Leg713_HRM 86 55A>C
Reverse CAGATGTCGGAGATATTTGGTC
Forward GCTCCATCATGTTTGCGATA

Leg735_HRM 60 30T>C
Reverse ACCGTGGCCATATCAATTTC
Forward TTTCATGGCTCTGAAGTGTTT

Leg736_HRM 116 53C>G
Reverse TCCATCACTGTATTGAAGGACA
Forward ATAACTGATGCAGTTTA CAA

Leg871_HRM 107 51T>A

Reverse CATCTCTGCATCATGAAGATG




Figure 1. Linkage map of the

narrow-leafed lupin genome comprising newly mapped HRM markers.
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Figure 1. Continued.

pairs is available at http://cgi-www.daimi.au.dk/cgi-chili/
GeneticMarkers/table and in Bertioli e# a/ (2009).

Temperature gradient PCR was used for the mapping
population parental lines survey to set up the best an-
nealing temperature for each Leg marker using Promega
GoTaq® Flexi Polymerase and the protocol provided by
the manufacturer. Single PCR products of both parental
lines were sequenced using a BigDye Terminator™ v.3.1
Cycle Sequencing Kit (Applied Biosystems) to confirm
amplicon identity and further sequence polymorphism
detection.

HRM primer pair design and HRM assay. Poly-
morphic markers of a length over 250 bp were re-de-
signed into smaller amplicons not exceeding 160 bp
covering SNP or InDel sites. The only exception was
marker Leg435 kept in its original size of 278 bp as a
test of the ability of HRM method to differentiate longer
fragments. The HRM primers were designed to have a
predicted annealing temperature of around 56-62°C us-
ing Primer3 (Koressaar & Remm, 2007; Untergrasser ez
al., 2012), taking care to exclude any possibility of sec-
ondary structure formation (Oligo Analyzer 3.1, https://
cu.idtdna.com/analyzer/Applications/OligoAnalyzer, In-
tegrated DNA Technologies, Inc).

All PCR-HRM analyses were performed in 96-well
plates using a LightCycler 480 (Roche) and either Light-
Cycler 480 High Resolution Melting Master (Roche) or
a combination of GoTaq® Flexi Polymerase (Promega)
with LightCycler® 480 ResoLight Dye (Roche). All data
were recorded and analyzed using LightCycler® 480
Gene Scanning Software. During the optimization step,
the quality and the specificity of the PCR products were
verified by agarose gel electrophoresis and/or LightCy-
cler® 480 T Calling Software.

LightCycler 480 High Resolution Melting Master.
The HRM reactions were catried out in a final volume
of 10 ul containing 1x LightCycler 480 High Resolution
Melting Master (Roche), 0.2 uM of each primer, 1.5-3.5

mM MgCl, (Roche) and 25 ng of template DNA. After
an initial denaturation step of 10 min at 95°C, 45-65 cy-
cles were carried out with a repeated denaturation step at
95°C for 10 sec, an annealing step at 54-62°C for 15 sec
and an extension step at 72°C for 10 sec. After the am-
plification, samples were heated to 95°C for 1 min and
then cooled to 40°C for 1 min to encourage duplex for-
mation. HRM curve data were obtained by melting over
increasing temperatures from 65 to 95°C at a rate of 25
acquisitions per 1°C. This protocol applies to markers:
Leg33MGm, Leg245, Leg256, Leg318, Leg325, Leg425,
Leg435, Leg445, Leg713, Leg735, Leg736 and Leg871.

Combination of GoTaq® Flexi Polymerase and
LightCycler® 480 ResoLight Dye. Single HRM reac-
tions were conducted in 10 pl containing 1X GoTaq®
Flexi Buffer (Promega), 0.2 mM of each dNTP (Thermo
Scientific), 1.5-3.5 mM MgCl, (Roche), 1 unit of Go-
Taq® Flexi Polymerase (Promega), 0.2 pM of each prim-
er, 0.5 pl LightCycler® 480 ResoLight Dye (Roche) and
25 ng of template DNA. Markers were amplified with
initial denaturation at 95°C for 10 min, then 45 cycles of
repeated denaturation steps at 95°C for 10 sec, annealing
steps at 52-56°C for 15 sec and extension steps at 72°C
extension for 30 sec, followed by a melting cycle as de-
scribed above. This protocol applies to markers: Leg050,
Leg055, Leg074 and Legl56.

Linkage analysis. Integration of the Leg markers
into the newest reference linkage map of narrow-leafed
lupin (Kamphuis e# o/, 2014) was performed using Map-
Manager software version QTXb20 (Manly e 4/, 2001).
In the mapping analysis only the skeleton markers from
Kamphuis e al. (2014) were incorporated. The new
markers were added to the map with a P-value<0.001.
The Kosambi mapping function was applied for conver-
sion of the recombination rate into genetic map distance
(cM). Graphic illustration of linkage groups was per-
formed with the aid of MapChart software (Voortips ef
al., 2002).



Vol. 62

Genotyping of STS markers in narrow-leafed lupin by HRM method

537

RESULTS AND DISCUSSION

Sixteen Leg primer pairs were incorporated in the
evaluation of HRM method effectiveness in markers ge-
notyping for the purpose of their genetic mapping in the
narrow-leafed lupin genome (Table 1). The genetic map
constructed on the basis of skeleton markers from Kam-
phuis ef al. (2014) was longer than originally as a result of
different mapping software application (2290.1 cM versus
2263.9 cM and average spacing between skeleton loci of
2.92 M versus 2.9 cM). Newly mapped Leg markers were
distributed in ten linkage groups (Fig. 1, Table 2) In two
cases map intervals between adjacent markers exceeded
10 cM, whereas all the remaining newly mapped mark-
ers were tightly linked (Table 2). The new linkage map

Table 2. HRM markers map position and linkage details.

length slightly increased and was 2362.6 ¢M with an
average of 2.96 c¢cM between adjacent loci. The linkage
groups varied in length from 74.2 ¢cM (NLL-19) to 173.8
cM (NLL-11) (Fig. 1).

One of the main criterion of our HRM assay was
to keep the amplicon size under 160 bp. Melting of
smaller amplicons results in more significant differ-
ences of melting temperature (T ) among genotypes,
which greatly simplifies sample differentiation (Gun-
dry et al., 2003; Liew et al., 2004). Secondary structures
were avoided at the primer pairs design level since its
formation influence the reaction kinetics, efficiency and
specificity. The optimization of the PCR profile main-
ly involved MgCl, concentration (1.5 to 3.5 mM in 0.5
mM steps), since an optimal Mg?" concentration is es-

Marker name Adjacent markers name? LODP Distance b/t adjacent markers (cM)>  Linkage group
DAWA751.330c 18.0 20

Leg33MGmM_HRM NLL-20
DAWA592.090 9.6 8.8
DAWA196.230c 18.5 20

Leg050_HRM NLL-09
Lup241 16.8 2.1
Leg713_HRM 5.6 153

Leg055_HRM NLL-02
Lup093 15.7 34
DAWAS586.210 223 0.6

Leg074_HRM NLL-16
A060b 18.5 20
IPb-450108 14.9 55

Leg156_HRM NLL-16
DAWA491.110 7.5 11.5
IPb-522772 15.6 39

Leg245_HRM NLL-13
VRN1 15.0 29

Leg256_HRM LaSNP_016 9.3 9.4 NLL-06
LaIND_123 14.1 53

Leg318_HRM NLL-18
DAWA200.250 9.8 7.7
DAWA311.125 19.7 1.8

Leg325_HRM NLL-06
AC123593-13 16.3 22
DAWA267.130 14.8 4.1

Leg425_HRM NLL-05
IPb-198073 223 0.6
DAWA197.190c 20.6 1.2

Leg435 NLL-18
DAWAS82.140 20.9 1.3
DAWA150.125 14.3 4.7

Leg445_HRM NLL-02
UWA216c 16.1 2.8
LaIND_185 10.6 8.3

Leg713_HRM NLL-02
Leg055_HRM 5.6 15.3
IPb-333705 215 1.2

Leg735_HRM NLL-12
Lup247 8.9 9.2
LaSNP_033 17.3 3.1

Leg736_HRM NLL-09
DAWA195.205 16.2 33
Lup289 214 0.0

Leg871_HRM NLL-04
IPb-522413 23.2 0.6

aHRM marker and preceding and succeeding marker in the linkage group.tlinkage with preceding and succeeding marker
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Figure 2. High resolution melting curves of Leg736 (116 bp)
containing a SNP substitution (C>G).

(A) Verification of the PCR amplicon specificity by T Calling analy-
sis. Melting curves profile of the parental genotypes (83A:476 and
P 27255) and the simulated heterozygote (83A:476/P 27255). Sin-
gle peaks for each analyzed genotype indicate a proper specific-
ity of the conducted analysis. (B) Normalized and shifted melting
curves of the parental genotypes (83A:476 and P 27255) and the
simulated heterozygote (83A:476/P 27255) amplicons. Parental
genotypes of Leg736 were indistinguishable due to existing C>G
mutation type causing only a slight T, difference between both
amplicons. To overcome this problem melting profile generated
by a mixed template of both parental DNA (a simulated heterozy-
gote) was analyzed apart from individual parental genotypes. (C)
Normalized and shifted melting curves of Leg736 amplicons after
addition of 83A:476 parental line to each mapping population
progeny sample. Figure presents the results for 88 RILs analyzed
simultaneously on 96-well plate together with the mapping pop-
ulation parental lines as standards). Arrows represent: mapping
population parental line 83A:476 and RILs with same genotype as
well as simulated heterozygote 83A:476/P27255 and correspond-
ing RILs. Application of this approach resulted in successful map-
ping of Leg736 marker in the NLL-09 linkage group.

sential to ensure the best specificity and yield of the
PCR products (Montgomery ¢/ al., 2007). The annealing
temperature for the primer pairs tested mostly oscil-
lated around 56°C.

The analysis of the actual HRM data was always pre-
ceded by the examination of amplification fluorescence
data. The crossing point (C) which corresponds to the
cycle number at which the fluorescence signal of the
PCR product rises above the background should remain
below 30 cycles for each reaction. This indicates an ade-
quate amount of template DNA and a suitable amplifica-
tion efficiency (LightCycler® 480 Real-Time PCR System

£l
Temperature ()

Figure 3. HRM assay of Leg435 in narrow-leafed lupin mapping
population.

(A) Verification of the PCR amplicon specificity by T, Calling
analysis. Arrows represent the mapping population parental lines
83A:476 and P 27255. Single peaks of the analyzed genotypes in-
dicate a proper specificity of the conducted analysis. (B) Normal-
ized and shifted melting curves of the 278-bp Leg435 amplicons.
Parental genotypes contain five SNP substitution (C>T; G>A; G>A;
G>A, A>C). Figure presents the results for 88 RILs analyzed simul-
taneously on 96-well plate together with the mapping popula-
tion parental lines as standards). Arrows represent genotypes of
the mapping population parental lines 83A:476, P 27255 and also
their corresponding RiLs. All of the RILs analyzed have been as-
signed to one of the parental genotypes and Leg435 marker was
successfully mapped in the NLL-18 linkage group.

— Technical Note No. 1 High Resolution Melting: Opti-
mization Strategies). In the case of four analyzed mark-
ers (Leg050, Leg055, Leg074, Legl56) the amplification
carried out with the aid of LightCycler® 480 High Reso-
lution Melting Master (Roche) was not effective enough
and required more than 30 cycles to achieve C, and even
more than 60 cycles to achieve the plateau phase. Ap-
plication of a previously optimized GoTaq® Flexi Poly-
merase (Promega) and LightCycler® 480 ResoLight Dye
(Roche) combination instead of the HRM commercial
reagent kit allowed the required C and amplification ef-
ficiency to be reached.

High resolution melting of the PCR products can de-
tect most homozygous mutations, however, some homo-
zygous SNP have melting curves identical to those of
the wild-type. This might be caused by overlong ampl-
icons that influence the reaction sensitivity. Moreover,
A>T and C>G mutation types result in only a slight T
difference between amplicons (usually less than 0.4°C),
which makes their detection more difficult (Liew ez al,
2004). In this case, addition of DNA of a known gen-
otype to each unknown sample before PCR, results in
heteroduplex formation which enables differentiation of
homozygous and wild-type genotypes (Palais ez al., 2005).
This approach was successfully utilized by Croxford
et al. (2008) to detect SNP markers in Lupinus albus. In
our studies, the parental genotypes of six markers (Leg-
33MGm, Leg074, Legl56, Leg713, Leg736 and Leg871)
were difficult to distinguish, therefore, the comparison of
melting profiles generated by each parent separately and
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also by a mixed template containing DNA from both
parental genotypes (a simulated heterozygote 1:1 mixed
sample) was applied. On the basis of this approach, the
distinction of both genotypes for these markers was fea-
sible (Fig. 2).

Amplicon size has a significant impact on HRM
method resolution. Han e# al. (2012) reported successful
employment of the HRM assay in SNP genotyping of
51-149 bp amplicons in alfalfa; Wu ez a/. (2008) analyzed
68-198 bp amplicons in almond; while De Koeyer ez
al. (2010) were able to detect SNP with amplicon siz-
es between 50-230 bp in potato. As mentioned above,
the size of the HRM markers designed in our studies
was kept under 160 bp, but one marker (Leg435) was
used with its original, longer sequence size of 278 bp
to test the possibility of SNP detection in longer am-
plicons (Fig. 3). According to Reed & Wittwer (2004),
the melting of amplicons longer than 300 bp induces
a depletion of sensitivity and specificity in single SNP
detection. On the other hand, the increased number of
polymorphic sites within the amplicon results in an im-
provement of HRM analysis resolution, thus enabling
larger PCR product utilization (Hofinger ez al, 2009).
Most of the re-designed HRM markers in our studies
covered one polymorphic site, but in the case of three
markers, two (Leg074), three (Leg33MGm) or even five
(Leg435) SNP and/or InDel wete incorporated in the
amplicon sequence. The increased number of polymor-
phic sites of marker Leg435 is probably the explanation
of its successful HRM analysis. Knopkiewicz ef al. (2014)
also used the HRM method to successfully analyze 400
bp and 600 bp amplicons covering both three and seven
SNPs, respectively.

The HRM technique offers a very sensitive and rap-
id method for SNP genotyping that after optimization
does not require DNA restriction or electrophoresis to
detect sequence polymorphisms. In our studies, melting
curve analyses using LightCycler® 480 T, Calling Software
(Roche) proved to be completely sufficient and in some
cases even more sensitive than standard agarose electro-
phoresis. Thus, in comparison with other popular geno-
typing methods, i. e. CAPS/dCAPS, the HRM technique
is less time-consuming and labor-intensive. When the
most appropriate chemistry set is selected, the important
advantage of the HRM method is its flexibility in new
markers examination. New primer set is the only require-
ment for each newly analyzed marker, while the chem-
istry remains unchanged in each analysis. No additional
reagents are needed to detect any existing polymorphic
site. HRM assay is therefore more profitable than other
methods, i.e. CAPS/dCAPS requiting specific restriction
endonucleases. The main obstacle in the HRM technique
application is the requirement of a specialized and expen-
sive equipment to conduct analyses. Fortunately, as qPCR
thermocyclers adapted to HRM assay are becoming more
and more popular, their cost gradually decreases.

The new Leg markers with its associated DNA se-
quence could potentially be used in the synteny analyses
between the genome of Lupinus angustifolins and model
legumes. Synteny between Lupinus angustifolins and Med-
icago truncatula as well as Lotus japonicus were previously
undertaken, showing examples of marker colinearity be-
tween their genomes (Nelson ez @/, 2010; Nelson ez al,
2000; Kroc et al., 2013). The current reference map of
Kamphuis ¢# al. (2014) was not involved in any synteny
analysis and as it incorporated a significant number of
new markers, their positions/order have changed com-
pared to the previous map versions. It is therefore dif-
ficult to assess if the newly mapped Leg markers are

involved and extend any previously reported synteny
blocks.

In the course of our studies the optimized HRM
markers were analyzed in the mapping population of
narrow-leafed lupin. As a result, all of the 16 analyzed
markers were successfully mapped in lupin genome. The
incorporation of new Leg markers into the narrow-leafed
lupin genetic map opens the possibility of synteny analy-
ses with other legume species. Furthermore, the different
approaches we applied in the HRM marker optimization
process, might serve as a good starting point in over-
coming difficulties when implementing HRM assays in
other species. We conclude that the HRM assay proved
to be an effective method for genotyping of STS mark-
ers in narrow-leafed lupin despite optimization problems
encountered. It is therefore a good alternative to other
popular genotyping methods.
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