

Regular paper

Application of the High Resolution Melting analysis for genetic mapping of Sequence Tagged Site markers in narrow-leafed lupin (*Lupinus angustifolius* L.)

Katarzyna A. Kamel[∞], Magdalena Kroc and Wojciech Święcicki

Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland

Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.

Key words: HRM, molecular markers, genotyping, narrow-leafed lupin

Received: 22 January, 2015; revised: 12 May, 2015; accepted: 03 August, 2015; available on-line: 28 August, 2015

INTRODUCTION

Sequence tagged site markers represent single copy sequences in the genome and are commonly used in genetic and physical mapping. Moreover, these markers can be used as skeleton markers that allow comparison between genetic maps among one species or synteny analysis between different species (Croxford et al., 2008; Kroc et al., 2014). In the case of species with unsequenced genomes such an approach is still desirable in comparative studies. The gene-based STS legume anchor markers (Leg markers) used in this study were designed to facilitate the comparative genomics of less known legumes (Fredslund et al., 2006; Hougaard et al., 2008). To date these markers have been successfully applied in the synteny analyses of Phaseolus vulgaris, Lotus japonicas, Medicago truncatula and Arachis (Hougaard et al., 2008; Bertioli et al., 2009). Leg markers were also included within a larger set of markers used in the recent synteny analysis of Lupinus angustfolius and Medicago truncatula (Kroc et al., 2014).

High resolution melting (HRM) is a powerful technique used for genotyping and mutation scanning. This method takes advantage of special saturation dyes properties that fluoresce only in the presence of double stranded DNA. After PCR, amplicons bound to the fluorescent dye are denaturated and the fluorescence fades away. Since various genetic sequences melt at different temperatures, changes in the fluorescence registered during the analysis can be applied to single nucleotide polymorphism (SNP), simple sequence repeat (SSR), small insertion and/or deletion (InDel), as well as length polymorphism detection (Montgomery *et al.*, 2007; Distefano *et al.*, 2012). The HRM assay has been successfully applied in studies of genetic variability and SNP/ SSR marker genotyping of various plants, e.g. legumes, including alfalfa (Han *et al.*, 2012), pea (Knopkiewicz *et al.*, 2014), soybean (Monteros *et al.*, 2010) and white lupin (Croxford *et al.*, 2008).

Various molecular markers, such as amplified fragment length polymorphism (AFLP), microsatellite anchored fragment length polymorphism (MFLP), restriction fragments length polymorphism (RFLP), diversity arrays technology (DArT), InDel and STS have already been applied in various studies focused on the narrowleafed lupin genetic mapping (Nelson et al., 2006; Nelson et al., 2010; Yang et al., 2013; Kroc et al., 2014; Kamphuis et al., 2014). In the case of STS markers, DNA polymorphism has been detected with the aid of restriction enzymes such as either CAPS (cleaved amplified poly-morphic sequence) or dCAPS (derived-CAPS) markers or the SNaPshot assay (Life Technologies Inc.) (Nelson et al., 2010; Kroc et al., 2014). However, these techniques have some limitations. Their protocols are multi-stage, time-consuming and labor-intensive. Moreover, in CAPS and dCAPS systems, SNP must create a restriction site, while polymorphism detection requires gel electrophoresis. On the other hand, the SnaPshot assay needs capillary electrophoresis to detect polymorphisms. In contrast to both these methods, HRM is a simple and fast analysis. Furthermore, it can be performed directly after PCR without additional sample processing (Wu et al., 2008).

The main aim of this study was to evaluate the effectiveness of the HRM method in genotyping STS markers in narrow-leafed lupin (*Lupinus angustifolius* L.) as well as HRM method optimization.

[™]e-mail: kkam@igr.poznan.pl

Abbreviations: \overrightarrow{AFLP} , amplified fragment length polymorphism; CAPS, cleaved amplified polymorphic sequence; cM, centimorgan; C_p, crossing point; DAT, diversity arrays technology; del, deletion; dCAPS, derived-CAPS; HRM, high resolution melting; InDel, insertion and/or deletion; Leg markers, legume anchor markers; LOD, log of odds; MFLP, microsatellite anchored fragment length polymorphism; NLL, narrow-leafed lupin; PCR, polymerase chain reaction; RFLP, restriction fragments length polymorphism; SILs, recombinant inbred lines; SNP, single nucleotide polymorphism; SSR, simple sequence repeat; STS, sequence tagged site; T_m , melting temperature

MATERIALS AND METHODS

Plant material. The mapping population of 96 F8 generation recombinant inbred lines (RILs) used in this study was established by the single seed descent method from a cross between a domesticated breeding line 83A:476 and a wild type P27255 (Boersma *et al.*, 2005) and was provided within the framework of cooperation with Dr. Hua'an Yang (Western Australia Department of Agriculture and Food, Perth, Australia).

Young leaf samples were colleted from plants grown in the field and processed for DNA extraction using a DNeasy Plant Mini Kit (Qiagen) according to the manufacturer's protocol with minor changes. These included: (1) an additional incubation step (30 min at room temperature) after the addition of Buffer AP1 and 3 μ l of RNase A stock solution, (2) increased duration of the cell lysis step (30 min at 65°C) and (3) increased duration of the precipitation step (15 min on ice).

Polymorphic markers detection. Leg markers were designed with the aid of a bioinformatics pipeline on the basis of the coding sequences of model legumes (*Lotus japonicus, Medicago truncatula*) and legume crop species (*Ghycine max, Phaseolus vulgaris*), with *Arabidopsis thaliana* genome sequence data used as a reference genome (Fredslund *et al.*, 2005; 2006). A list of all Leg primer

Table 1. A list of markers selected for HRM analyses and incorporated into the narrow-leafed	lupin genetic map.
--	--------------------

Marker name	e Primer sequences			SNP variations in 83A:476 x P27255 mapping population	
	Forward	TGGGTATTCATTCTGACCCACT	150		
Leg33MGm_HRM	Reverse	GAACATAATGTCCAACTACTCCAGAA	156	43 T>C; 78 G>A; 81 G>T	
	Forward	TTCAAGCCAAATCCAAATGA	00	()()	
Legusu_HRM	Reverse	ATGAGATTATGGCCCCATGC	82	02G>C	
	Forward	CCTGACACAGCAAAGTTATGAGA		2945 C	
Leguss_HRM	Reverse	CCAGAGAGAGAGAATTATTTCCAA	89	20A>G	
	Forward	ACTCAAACTTTGCTGTTCAGGT		00 101dolTTC: 100 T.C	
Legu/4_HRM	Reverse	TCTCTATGATGCATGTTTGGGC	144	99_101de111d; 108 1>C	
	Forward	TTTTATAATTGCAGTCATATGTGAAA		70 71 dolTC	
Leg 150_HKW	Reverse	CCATTTTATGTAGTACTGTGTTTGGTT	105	70_71del1G	
	Forward	CAACAACCCACCATAATTTACATAAC			
Leg245_HKW	Reverse	ACCAGCCTTCCTCAGTTGAA	102	00C>A	
	Forward	CTTGCATGATGATGAGATATTGAA		94C>T	
Leg250_HRM	Reverse	AAGCACGAGCTAAATCATTACAAA	151	040>1	
	Forward	ACCTTTGGCTGTCTCTAGGT		20(> A	
седото_пки	Reverse	ACAAATGGAGAGGTTGTTTCCA	150	32G>A	
	Forward	GTTCGTTGCTTAGGTATATTTTCTTTC		424×C	
седэгэ_пки	Reverse	TGCTGCACATACGGTTGAA	100	42A>G	
	Forward	AAAGACACAATAGTTAGAATGGCTGTT		206> 4	
Leg423_FIKIWI	Reverse	CTTTCCTTCCCAGGGTCATC	100	39G>A	
100425	Forward	TCACTCTCWTCTGAGAAGGCAAG		24 C>T; 37 G>A; 72 G>A; 109	
Leg433	Reverse	TCTTGCCAGARTGAATTCTGGCTTTTAGCATAGGC	270	G>A; 223 A>C	
Log445 HPM	Forward	GGAGGACAGATAAGCTTTGATGTAA	119	50T\C	
Leg445_IINM	Reverse	TTGAGGGAAAACCTGTGGAG		59120	
	Forward	GTTGGAGCCGATGTTTGATA	96	EE A.C.	
Legy 13_FIKIWI	Reverse	CAGATGTCGGAGATATTTGGTC	80	JJA2C	
	Forward	GCTCCATCATGTTTGCGATA		2017	
Leg/35_FINN	Reverse	ACCGTGGCCATATCAATTTC	····· 86 ····· 60	50120	
	Forward	TTTCATGGCTCTGAAGTGTTT	110	520~0	
Leg736_HRM	Reverse	TCCATCACTGTATTGAAGGACA	טוו	22026	
	Forward	ATAACTGATGCAGTTTATTTTCAA	107	Γ1 Τ Σ Λ	
Leg871_HRM	Reverse	CATCTCTGCATCATGAAGATG	107	511>A	

NLL-01	NLL-02	NLL-03	NLL-04	NLL-05	NLL-06
0.0 LaiND_231 LaiND_180 LaiND_177 LaSNP_069 7.5 DAWA772.330c Luj330 13.2 DAWA391.200 DAWA101.235c DAWA391.200 DAWA101.235c DAWA391.200 DAWA101.235c DAWA39.200 DAWA104.238 23.5 DAWA39.250 DAWA39.250 DAWA39.250 DAWA39.250 DAWA39.250 DAWA39.50 DAWA39.50 DAWA486.270 DAWA789.560 DAWA631.170 56.6 DAWA631.170 56.6 DAWA631.170 56.6 DAWA631.170 56.6 DAWA631.210 64.1 DAWA98.240 65.7 DAWA632.240 65.7 DAWA98.240 65.7 DAWA98.310 70.2 DAWA98.310 77.2 DAWA98.310 79.1 THO 100 DAWA52.290 88.8 DAWA91.155 82.7 LaIND_165 9.0 LAIND_054 9.3 DAWA52.290 9.4 CAIND_059 10.1 LAIND_059 10.1 LAIND_059 10.5 DAWA37.350 DAWA37.350 DAWA37.350 DAWA37.360	0,0 LaiND_104 4,6 5,2 LaSNP_005 1,4 LaSNP_001 Lup098 1,4 LaSNP_0091 Lup098 Lup098 LaSNP_009 1,4 LaIND_137 2,8 LaIND_137 LaIND_137 1,4 LAIND_137 1,4 LAIND_008 3,9 LaSNP_011 LaIND_001 4,9,1 LAIND_008 4,0,7 LAIND_001 4,9,1 LAIND_001 4,9,1 LAIND_001 4,9,1 LAIND_001 4,9,1 LAIND_001 4,9,1 LAIND_001 4,9,1 LAIND_001 4,9,1 LAIND_001 4,9,1 LAIND_002 4,0,7 LAIND_001 4,9,1 LAIND_002 4,0,7 LAIND_001 4,9,1 LAIND_002 4,0,7 LAIND_002 4,0,7 LAIND_002 4,0,7 LAIND_001 4,1 LAIND_002 4,1 LAIND_185 LAIND_185 LAIND_148 2,8 LAIND_185	0.0 UWA210a LaSNP_003 LaSNP_003 LaIND_004 LaSNP_0045 12,7 UWA017 LaIND_0047 LaIND_0047 LaSNP_0045 12,7 UWA017 LaSNP_0045 12,7 UWA017 LaSNP_0045 12,7 UWA017 LaSNP_0045 12,7 UWA017 LaSNP_0045 12,7 UWA017 LaSNP_0045 12,7 UWA017 LaSNP_0045 12,7 UWA017 LaSNP_0045 12,7 UWA017 LaSNP_0045 14,7 UWA017 LaSNP_0045 14,7 UWA017 LaSNP_0045 14,7 UWA017 LaSNP_0045 14,7 UWA017 LaSNP_0045 14,7 UWA017 LaSNP_0045 14,7 UWA017 LaSNP_0056 14,1 UWA017 14,5 UWA017 14,7 UWA017 14,0 U	0.0 DAWA790.440 2.2 Lup289 Leg871 1 Lup289 Leg871 2.8 DAWA787.175 DAWA565.160 32.8 DAWA565.160 DAWA542.160 37.3 DAWA542.160 IPD-522414 40.5 DAWA545.298 HL0 41.6 Lup145 TGM 7.7 Mint GEN_00080 DAWA542.160 53.5 DAWA545.298 HD-529009 41.6 Lup145 TGM 7.7 DAWA543.1310c DAWA605.330 55.2 DAWA605.330 Lup204 60.2 DAWA606.225 DAWA606.235 7.0.1 DAWA606.255 Lup204 0.4 DAWA606.255 Lup204 7.9.3 DAWA6067 DAWA60.67 7.8.1 DAWA60.67 DAWA216.480 90.3 IPD-5197652 DAWA216.480 90.3 IPD-4197652 DAWA212.100 93.4 DAWA212.1300 DAWA212.100 97.6 DAWA212.1300	0.0 HRM 1.2 4.4 DAWA509.350c DAWA509.350c DAWA509.350c DAWA509.350c DAWA509.350c DAWA509.350c DAWA705.200 DAWA705.200 DAWA267.130 Leg425 HRM HP-592625 JAWA267.130 Leg425 HRM HP-598073 DAWA267.130 Leg425 HRM HP-598073 DAWA267.130 Leg425 HRM HP-598073 DAWA26.125 DAWA26.125 DAWA26.125 DAWA26.125 DAWA26.125 DAWA26.125 DAWA26.125 DAWA26.125 DAWA26.125 DAWA26.130 Leg425 HRM HP-598073 DAWA26.125 DAWA26.125 DAWA26.125 DAWA26.130 Leg425 HRM HP-598073 DAWA26.135 LujND _ 200 Call - 100 DAWA25.135 LujND _ 100 B3.1 LaSNP_075 LASNP_075 LASNP_075 LASNP_075 LASNP_075 LASNP_075 LASNP_075 LASNP_	0.0 Leg256 HRM 9.4 LaNNP_016 10.7 LaNNP_016 10.7 LaNNP_016 11.7 LANNP_016 12.4.3 DAWA750.450c 29.5 DAWA750.450c 29.5 DAWA750.450c DAWA1050.280 17P-334109 17P-334109 17P-334109 17P-334109 17P-334109 17P-334109 17P-334109 17P-334109 17P-334109 17P-334245 10 JAWA205.425 10 JAWA205.425 10 JAWA205 51.8 DAWA32.5110 10 JAWA205 51.8 DAWA32.055 51.8 DAWA32.055 52.4 LAIND_209 57.3 LAIND_209 57.3 DAWA51.150 10.7 DAWA52.250 10.8 DAWA51.250 10.8 DAWA551.250 10.8 DAWA551.250 10.8 DAWA551.250 10.8 DAWA352.100c 10.4 DAWA36.2455 10.8 DAWA35.1.125 100.2 DAWA35.125 100.2 DAWA35.255 10.2 DAWA
109,0 LaIND_052 109,6 DAWA109.260c 110,9 LaSSR_009	NLL-08	NLL-10	NLL-11	118,7] [LaiND_233 119,1] [LaiND_153	108,9 LaSNP_096 109,2 LaIND_087 109,5 LaSNP_087
114.0 IPb-332206 117.6 Iup214 117.6 Iup214 121.3 IPb-329590 122.7 TaM1 123.3 TaM2 134.0 UWA025a 135.7 UWA250 NLL-07 DAWA70.150c 137.7 UWA250 DAWA75.375c 138.7 DAWA71.165 20.4 IPD-517024 28.4 IPD-532035 33.0 IPD-46257 33.1 IPD-33263 34.1 IPD-33253 35.0 IPD-32262 43.3 IPD-33253 45.2 IPD-33253 45.2 IPD-33253 45.3 IPD-33253 45.4 IPD-33253 45.5 IPD-33253 45.4 </td <td>0.0 LaiND_136 1.7 LaiND_086 1.7 DAWA348.400 1.1 Ipb-329014 1.1,7 Lup282 55,7 DAWA15.390 25,4 DAWA323.150 38,4 DAWA323.150 38,4 DAWA323.150 38,4 DAWA323.150 39,0 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA308.325.100 DAWA308.325 DAWA308.3250.170 LaSSR_002 66,6 DAWA308.198 1.1,3 Leg208 75,3 DAWA250.170 UWA215 DAWA216.190 10,0 DAWA215.100 UWA215 DAWA220.180 LG75 DAWA215.230 10,0 DAWA215.2005 120,7 DAWA202.180 LG75</td> <td>0.0 DAWA502.150 2.0 LaIND_117 Lup166 Lup301 12.3 LaIND_178 LaSNP_061 13.6 LASNP_061 15.1 LASNP_061 16.4 DAWA60.25C 24.4 DAWA60.25C 24.4 DAWA60.25C 29.3 LAIND_154 29.3 LAIND_154 29.3 LAIND_154 29.3 LAIND_154 29.3 LAIND_154 29.3 LAIND_051 31.5 LAIND_051 31.5 LAIND_051 31.5 LAIND_051 31.5 LAIND_051 31.5 LAIND_051 31.5 LAIND_061 31.5 LAIND_044 35.9 LAIND_045 35.9 LAIND_045 35.9 LAIND_045 35.9 LAIND_051 45.2 LAIND_083 47.7 LAIND_080 47.7 LAIND_090 54.4 DAWA79.280 56.6 A130a 56.3 DAWA14.4550c 61.5 LAIND_093 56.6 A130a 56.9 DAWA549.290 54.4 DAWA719.280 56.6 MITL_EST_033 66.0 VBT 90.1 DAWA481.395 Lup130</td> <td>0.0 LaiND 228 0.7 DAWA769.099 1.9 DAWA769.099 1.9 DAWA769.099 29.1 DAWA40.430 29.1 DAWA40.430 1.5 DAWA366.300c 29.1 DAWA257.190 1.8 DAWA257.190 1.8 DAWA257.190 1.8 DAWA257.190 1.8 DAWA257.190 1.8 DAWA257.190 1.8 DAWA257.190 1.9 JAS3026 77,7 LaIND_215 64.5 LaIND_155 83,0 DAWA224.170 78,8 -A666a 92,4 LaIND_155 83,0 DAWA224.170 78,8 -A666a 92,4 LaIND_083 101,7 CAMA67.198 102,9 PRAT 103,6 DAWA131.160 103,6 DAWA131.160 104,2 DAWA121.00 114,6 LAND_076 114,8 DAWA142.100<!--</td--><td>NLL-12 0.0 DAWA543.150 1.0 DP-330365 0.0 DWA147a psat_EST_00183 Leg26 0.8 Lup206 0.8 Lup206 0.8 Lup206 0.8 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup207 0.9 Lup206 0.9 Lup207 0.9 LaNP_0031 1.9 LaSNP_0065 1.9.0 LaSNP_007 1.9.0 LaSNP_0061 1.9.0 DAWA543.13.50c 1.9.0 DAWA545.102 1.9.0 LaSNP_007 1.9.0 LaSNP_008 1.9.1 LaSNP_064 1.9.3 LaSNP_064 1.9.4 LaSNP_077 1.9.8 UPVA222 1.9.8 UPVA223 1.9.8 UPVA223 1.9.9 DAWA545.33305 1.9.9</td><td>111.6. LaiND_025 114.1. LaiND_116 115.2. LaiND_116 117.5. LOWA067b 122.6. DAWA508.440 122.6. DAWA320.560 126.2. Lup076 128.2. Lup076 128.3. DAWA320.560 129.9. Lup076 133.7. DAWA836.140c LaiND_202 Luw076 134.3 Imm.GEN 00355 DAWA467.150 DAWA467.150 NLL-14 DAWA467.150 0.0 LaSNP_095 4.1 LaIND_026 4.3.1 LaIND_026 4.3.1 LaIND_026 4.3.1 LaIND_060 LaSSR_042 LaSSR_042 4.3.1 LaIND_062 LaSNP_018 LaSNP_073 LaSNP_073 LaSNP_073 LaIND_044 LaIND_042 LaIND_048 LaIND_048 57.8 DAWA43.30c 78.3 Ph-333146 LaIND_005 UWA4138 LaIND_005 UWA4538 LaIND_005</td></td>	0.0 LaiND_136 1.7 LaiND_086 1.7 DAWA348.400 1.1 Ipb-329014 1.1,7 Lup282 55,7 DAWA15.390 25,4 DAWA323.150 38,4 DAWA323.150 38,4 DAWA323.150 38,4 DAWA323.150 39,0 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA323.150 DAWA308.325.100 DAWA308.325 DAWA308.3250.170 LaSSR_002 66,6 DAWA308.198 1.1,3 Leg208 75,3 DAWA250.170 UWA215 DAWA216.190 10,0 DAWA215.100 UWA215 DAWA220.180 LG75 DAWA215.230 10,0 DAWA215.2005 120,7 DAWA202.180 LG75	0.0 DAWA502.150 2.0 LaIND_117 Lup166 Lup301 12.3 LaIND_178 LaSNP_061 13.6 LASNP_061 15.1 LASNP_061 16.4 DAWA60.25C 24.4 DAWA60.25C 24.4 DAWA60.25C 29.3 LAIND_154 29.3 LAIND_154 29.3 LAIND_154 29.3 LAIND_154 29.3 LAIND_154 29.3 LAIND_051 31.5 LAIND_051 31.5 LAIND_051 31.5 LAIND_051 31.5 LAIND_051 31.5 LAIND_051 31.5 LAIND_061 31.5 LAIND_044 35.9 LAIND_045 35.9 LAIND_045 35.9 LAIND_045 35.9 LAIND_051 45.2 LAIND_083 47.7 LAIND_080 47.7 LAIND_090 54.4 DAWA79.280 56.6 A130a 56.3 DAWA14.4550c 61.5 LAIND_093 56.6 A130a 56.9 DAWA549.290 54.4 DAWA719.280 56.6 MITL_EST_033 66.0 VBT 90.1 DAWA481.395 Lup130	0.0 LaiND 228 0.7 DAWA769.099 1.9 DAWA769.099 1.9 DAWA769.099 29.1 DAWA40.430 29.1 DAWA40.430 1.5 DAWA366.300c 29.1 DAWA257.190 1.8 DAWA257.190 1.8 DAWA257.190 1.8 DAWA257.190 1.8 DAWA257.190 1.8 DAWA257.190 1.8 DAWA257.190 1.9 JAS3026 77,7 LaIND_215 64.5 LaIND_155 83,0 DAWA224.170 78,8 -A666a 92,4 LaIND_155 83,0 DAWA224.170 78,8 -A666a 92,4 LaIND_083 101,7 CAMA67.198 102,9 PRAT 103,6 DAWA131.160 103,6 DAWA131.160 104,2 DAWA121.00 114,6 LAND_076 114,8 DAWA142.100 </td <td>NLL-12 0.0 DAWA543.150 1.0 DP-330365 0.0 DWA147a psat_EST_00183 Leg26 0.8 Lup206 0.8 Lup206 0.8 Lup206 0.8 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup207 0.9 Lup206 0.9 Lup207 0.9 LaNP_0031 1.9 LaSNP_0065 1.9.0 LaSNP_007 1.9.0 LaSNP_0061 1.9.0 DAWA543.13.50c 1.9.0 DAWA545.102 1.9.0 LaSNP_007 1.9.0 LaSNP_008 1.9.1 LaSNP_064 1.9.3 LaSNP_064 1.9.4 LaSNP_077 1.9.8 UPVA222 1.9.8 UPVA223 1.9.8 UPVA223 1.9.9 DAWA545.33305 1.9.9</td> <td>111.6. LaiND_025 114.1. LaiND_116 115.2. LaiND_116 117.5. LOWA067b 122.6. DAWA508.440 122.6. DAWA320.560 126.2. Lup076 128.2. Lup076 128.3. DAWA320.560 129.9. Lup076 133.7. DAWA836.140c LaiND_202 Luw076 134.3 Imm.GEN 00355 DAWA467.150 DAWA467.150 NLL-14 DAWA467.150 0.0 LaSNP_095 4.1 LaIND_026 4.3.1 LaIND_026 4.3.1 LaIND_026 4.3.1 LaIND_060 LaSSR_042 LaSSR_042 4.3.1 LaIND_062 LaSNP_018 LaSNP_073 LaSNP_073 LaSNP_073 LaIND_044 LaIND_042 LaIND_048 LaIND_048 57.8 DAWA43.30c 78.3 Ph-333146 LaIND_005 UWA4138 LaIND_005 UWA4538 LaIND_005</td>	NLL-12 0.0 DAWA543.150 1.0 DP-330365 0.0 DWA147a psat_EST_00183 Leg26 0.8 Lup206 0.8 Lup206 0.8 Lup206 0.8 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup206 0.9 Lup207 0.9 Lup206 0.9 Lup207 0.9 LaNP_0031 1.9 LaSNP_0065 1.9.0 LaSNP_007 1.9.0 LaSNP_0061 1.9.0 DAWA543.13.50c 1.9.0 DAWA545.102 1.9.0 LaSNP_007 1.9.0 LaSNP_008 1.9.1 LaSNP_064 1.9.3 LaSNP_064 1.9.4 LaSNP_077 1.9.8 UPVA222 1.9.8 UPVA223 1.9.8 UPVA223 1.9.9 DAWA545.33305 1.9.9	111.6. LaiND_025 114.1. LaiND_116 115.2. LaiND_116 117.5. LOWA067b 122.6. DAWA508.440 122.6. DAWA320.560 126.2. Lup076 128.2. Lup076 128.3. DAWA320.560 129.9. Lup076 133.7. DAWA836.140c LaiND_202 Luw076 134.3 Imm.GEN 00355 DAWA467.150 DAWA467.150 NLL-14 DAWA467.150 0.0 LaSNP_095 4.1 LaIND_026 4.3.1 LaIND_026 4.3.1 LaIND_026 4.3.1 LaIND_060 LaSSR_042 LaSSR_042 4.3.1 LaIND_062 LaSNP_018 LaSNP_073 LaSNP_073 LaSNP_073 LaIND_044 LaIND_042 LaIND_048 LaIND_048 57.8 DAWA43.30c 78.3 Ph-333146 LaIND_005 UWA4138 LaIND_005 UWA4538 LaIND_005

Figure 1. Linkage map of the narrow-leafed lupin genome comprising newly mapped HRM markers.

NLL-15	NLL-16	NLL-17	NLL-18	NLL-19	NLL-20
0,0 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	0.0 0.7 1.4 1.4 DAWA793.380c DAWA703.335 0.7 1.4 DAWA703.335 DAWA703.335 DAWA703.355 DAWA463.150 LaSNP_070 LaIND_071 LaIND_037 IPb-531608 1.4 IPb-450108 Leg156 HRM DAWA491.110 53.8 DAWA15.340 IPb-450108 LaSNP_036 56.9 DAWA1030.190 LaSNP_066 1.4 IND_227 1.4 DAWA10.227 1.4 DAWA10.226 DAWA10.226 1.4 IDD_227 1.4 DAWA10.227 1.4 DAWA10.280c 1.4 DAWA10.2	0.0 3.3 Lup019 3.8 LaSNP_059 LaSNP_059 LaSNP_092 20.9 20.9 21.4 LaSNP_092 LaSNP_029 LaSNP_029 23.4 LaSNP_029 23.4 LaSNP_029 23.4 LaSNP_029 23.4 LaSNP_029 23.4 LaSNP_026 26.7 DAWA72.295 20.6 LaIND_120 26.8 LaIND_1024 28.5 LaSNP_019 28.5 LaSNP_019 28.5 LaIND_024 28.7 UWA091b 28.8 DAWA600.250C 58.0 DAWA717.200 58.6 DAWA600.250C 58.0 DAWA600.250C 58.0 DAWA600.250C 58.0 DAWA600.250C 58.0 DAWA717.200 58.5 LaIND_190 68.8 Lup11a 71.1 DAWA602.500 58.5 LaIND_190 68.8 Lup11a 71.1 DAWA62.500 80.2 DAWA62.500 80.2 DAWA62.500 80.2 DAWA62.500 80.2 DAWA62.500 80.2 DAWA62.500 80.2 DAWA62.500 80.2 DAWA62.500 80.2 DAWA62.500 80.2 DAWA62.500 80.2 DAWA60.180 80.4 Lup115 LaSNP_019 LaSNP_019 LaSNP_019 LaSNP_029 LaSNP_029 LaSNP_029 LaSNP_026 LaSNP_026 LaSNP_019 LaSNP_019 LaSNP_019 LaSNP_019 LaSNP_019 LaSNP_019 LaSNP_019 LaSNP_026 LaSNP_026 LaSNP_026 LaSNP_026 LaSNP_026 LaSNP_019 LaSNP_019 LaSNP_019 LaSNP_026 LaSNP_026 LaSNP_026 LaSNP_019 LaSNP_019 LaSNP_019 LaSNP_019 LaSNP_026 LaSNP_026 LaSNP_026 LaSNP_019 LaSNP_019 LaSNP_019 LaSNP_019 LaSNP_026 LaSNP_019 LaSNP_	0,0 4,6 7,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1	0.0 2.4 IPb-197690 1.4.8 DAWA949.150c DAWA959.100c 22.5 DAWA959.100c 22.5 DAWA1009.250c DAWA1009.250c DAWA1009.250c DAWA1009.250c DAWA1009.250c DAWA1009.250c DAWA1009.250c DAWA310.109 LaIND_129 LaIND_1063	0.0 LaiND_220 1.4 LaiND_221 2.7 DAWA359.360 DAWA359.360 DAWA359.360 DAWA359.360 DAWA359.360 DAWA359.360 DAWA360.500 20.1 DAWA366.0500 20.1 DAWA366.0500 20.1 DAWA366.0500 20.1 DAWA366.0500 20.1 DAWA366.0500 20.1 DAWA366.0500 20.1 DAWA366.0500 20.1 DAWA366.0500 20.1 DAWA360.059 20.1 DAWA60527 29.3 LaiND_059 30.7 LAIND_059 30.7 LAIND_059 30.7 LAIND_059 30.7 LAIND_059 30.7 LAIND_059 30.7 LAIND_059 30.7 DAWA628.225 30.9 LAIND_059 43.9 DAWA628.225 43.9 DAWA628.225 43.9 DAWA628.210 43.9 DAWA628.225 44.4 DAWA691.075 45.2 DAWA690.080 46.4 DAWA461.190 45.2 DAWA690.080 46.4 DAWA451.225 46.4 DAWA493.300 27.7 DAWA452.201 48.8 DAWA157.490 52.7 DAWA459.201 48.8 DAWA457.1201 55.3 DAWA479.425 67.2 LAIND_182 67.2 LAIND_038 62.3 LAIND_182 67.2 LAIND_038 62.3 LAIND_182 67.2 LAIND_038 67.2 LAIND_038 69.2 DAWA59.200 1.4 LAIND_038 69.2 DAWA59.200 2.4 LAIND_038 69.2 DAWA59.200 DAWA59.20
					01,0 20110_214

Figure 1. Continued.

pairs is available at http://cgi-www.daimi.au.dk/cgi-chili/ GeneticMarkers/table and in Bertioli *et al.* (2009).

Temperature gradient PCR was used for the mapping population parental lines survey to set up the best annealing temperature for each Leg marker using Promega GoTaq[®] Flexi Polymerase and the protocol provided by the manufacturer. Single PCR products of both parental lines were sequenced using a BigDye Terminator[™] v.3.1 Cycle Sequencing Kit (Applied Biosystems) to confirm amplicon identity and further sequence polymorphism detection.

HRM primer pair design and HRM assay. Polymorphic markers of a length over 250 bp were re-designed into smaller amplicons not exceeding 160 bp covering SNP or InDel sites. The only exception was marker Leg435 kept in its original size of 278 bp as a test of the ability of HRM method to differentiate longer fragments. The HRM primers were designed to have a predicted annealing temperature of around 56–62°C using Primer3 (Koressaar & Remm, 2007; Untergrasser *et al.*, 2012), taking care to exclude any possibility of secondary structure formation (Oligo Analyzer 3.1, https://eu.idtdna.com/analyzer/Applications/OligoAnalyzer, Integrated DNA Technologies, Inc).

All PCR-HRM analyses were performed in 96-well plates using a LightCycler 480 (Roche) and either Light-Cycler 480 High Resolution Melting Master (Roche) or a combination of GoTaq[®] Flexi Polymerase (Promega) with LightCycler[®] 480 ResoLight Dye (Roche). All data were recorded and analyzed using LightCycler[®] 480 Gene Scanning Software. During the optimization step, the quality and the specificity of the PCR products were verified by agarose gel electrophoresis and/or LightCycler[®] 480 T_m Calling Software.

LightCycler 480 High Resolution Melting Master. The HRM reactions were carried out in a final volume of 10 µl containing 1x LightCycler 480 High Resolution Melting Master (Roche), 0.2 µM of each primer, 1.5–3.5 mM MgCl₂ (Roche) and 25 ng of template DNA. After an initial denaturation step of 10 min at 95°C, 45–65 cycles were carried out with a repeated denaturation step at 95°C for 10 sec, an annealing step at 54–62°C for 15 sec and an extension step at 72°C for 10 sec. After the amplification, samples were heated to 95°C for 1 min and then cooled to 40°C for 1 min to encourage duplex formation. HRM curve data were obtained by melting over increasing temperatures from 65 to 95°C at a rate of 25 acquisitions per 1°C. This protocol applies to markers: Leg33MGm, Leg245, Leg256, Leg318, Leg325, Leg425, Leg435, Leg445, Leg713, Leg735, Leg736 and Leg871.

Leg435, Leg445, Leg713, Leg735, Leg736 and Leg871. Combination of GoTaq[®] Flexi Polymerase and LightCycler[®] 480 ResoLight Dye. Single HRM reactions were conducted in 10 µl containing 1× GoTaq[®] Flexi Buffer (Promega), 0.2 mM of each dNTP (Thermo Scientific), 1.5–3.5 mM MgCl₂ (Roche), 1 unit of Go-Taq[®] Flexi Polymerase (Promega), 0.2 µM of each primer, 0.5 µl LightCycler[®] 480 ResoLight Dye (Roche) and 25 ng of template DNA. Markers were amplified with initial denaturation at 95°C for 10 min, then 45 cycles of repeated denaturation steps at 95°C for 10 sec, annealing steps at 52–56°C for 15 sec and extension steps at 72°C extension for 30 sec, followed by a melting cycle as described above. This protocol applies to markers: Leg050, Leg055, Leg074 and Leg156.

Linkage analysis. Integration of the Leg markers into the newest reference linkage map of narrow-leafed lupin (Kamphuis *et al.*, 2014) was performed using Map-Manager software version QTXb20 (Manly *et al.*, 2001). In the mapping analysis only the skeleton markers from Kamphuis *et al.* (2014) were incorporated. The new markers were added to the map with a P-value ≤ 0.001 . The Kosambi mapping function was applied for conversion of the recombination rate into genetic map distance (cM). Graphic illustration of linkage groups was performed with the aid of MapChart software (Voorrips *et al.*, 2002).

RESULTS AND DISCUSSION

Sixteen Leg primer pairs were incorporated in the evaluation of HRM method effectiveness in markers genotyping for the purpose of their genetic mapping in the narrow-leafed lupin genome (Table 1). The genetic map constructed on the basis of skeleton markers from Kamphuis *et al.* (2014) was longer than originally as a result of different mapping software application (2290.1 cM *versus* 2263.9 cM and average spacing between skeleton loci of 2.92 cM *versus* 2.9 cM). Newly mapped Leg markers were distributed in ten linkage groups (Fig. 1, Table 2) In two cases map intervals between adjacent markers exceeded 10 cM, whereas all the remaining newly mapped markers were tightly linked (Table 2). The new linkage map length slightly increased and was 2362.6 cM with an average of 2.96 cM between adjacent loci. The linkage groups varied in length from 74.2 cM (NLL-19) to 173.8 cM (NLL-11) (Fig. 1).

One of the main criterion of our HRM assay was to keep the amplicon size under 160 bp. Melting of smaller amplicons results in more significant differences of melting temperature (T_m) among genotypes, which greatly simplifies sample differentiation (Gundry *et al.*, 2003; Liew *et al.*, 2004). Secondary structures were avoided at the primer pairs design level since its formation influence the reaction kinetics, efficiency and specificity. The optimization of the PCR profile mainly involved MgCl₂ concentration (1.5 to 3.5 mM in 0.5 mM steps), since an optimal Mg²⁺ concentration is es-

Adjacent markers name ^a	LOD ^b	Distance b/t adjacent markers (cM) ^a	Linkage group	
DAWA751.330c	18.0	2.0	NIL 20	
DAWA592.090	9.6	8.8	NLL-20	
DAWA196.230c	18.5	2.0	NLL-09	
Lup241	16.8	2.1		
Leg713_HRM	5.6	15.3	NLL-02	
Lup093	15.7	3.4		
DAWA586.210	22.3	0.6	NI I -16	
A060b	18.5	2.0		
IPb-450108	14.9	5.5	NI L-16	
DAWA491.110	7.5	11.5		
IPb-522772	15.6	3.9	NIL-13	
VRN1	15.0	2.9		
LaSNP_016	9.3	9.4	NLL-06	
LaIND_123	14.1	5.3	NUL 10	
DAWA200.250	9.8	7.7	INLL-10	
DAWA311.125	19.7	1.8	NLL-06	
AC123593-13	16.3	2.2		
DAWA267.130	14.8	4.1		
IPb-198073	22.3	0.6	NLL-05	
DAWA197.190c	20.6	1.2	NLL-18	
DAWA82.140	20.9	1.3		
DAWA150.125	14.3	4.7		
UWA216c	16.1	2.8	NLL-02	
LaIND_185	10.6	8.3	NLL-02	
Leg055_HRM	5.6	15.3		
IPb-333705	21.5	1.2		
Lup247	8.9	9.2	NLL-12	
LaSNP 033	17.3	3.1		
LaSNP_033 DAWA195.205	17.3 16.2	3.1	NLL-09	
LaSNP_033 DAWA195.205	17.3 16.2 21.4	3.1 3.3	· NLL-09	
	Adjacent markers name a DAWA751.330c DAWA592.090 DAWA196.230c Lup241 Leg713_HRM Lup093 DAWA586.210 A060b IPb-450108 DAWA491.110 IPb-522772 VRN1 LaSNP_016 LaIND_123 DAWA200.250 DAWA201.130 IPb-198073 DAWA197.190c DAWA150.125 UWA216c LaIND_185 Leg055_HRM IPb-333705 Lup247	Adjacent markers name a LODb DAWA751.330c 18.0 DAWA592.090 9.6 DAWA196.230c 18.5 Lup241 16.8 Leg713_HRM 5.6 Lup093 15.7 DAWA586.210 22.3 A060b 18.5 IPb-450108 14.9 DAWA491.110 7.5 IPb-522772 15.6 VRN1 15.0 LaSNP_016 9.3 LaIND_123 14.1 DAWA200.250 9.8 DAWA311.125 19.7 AC123593-13 16.3 DAWA267.130 14.8 IPb-198073 22.3 DAWA197.190c 20.6 DAWA311.125 19.7 AC123593-13 16.3 DAWA267.130 14.8 IPb-198073 22.3 DAWA197.190c 20.6 DAWA150.125 14.3 UWA216c 16.1 LaIND_185 10.6 Leg055_HRM	Adjacent markers name * LOD* Distance b/t adjacent markers (cM)* DAWA751.330c 18.0 2.0 DAWA592.090 9.6 8.8 DAWA196.230c 18.5 2.0 Lup241 16.8 2.1 Leg713_HRM 5.6 15.3 Lup093 15.7 3.4 DAWA586.210 22.3 0.6 A060b 18.5 2.0 IPb-450108 14.9 5.5 DAWA491.110 7.5 11.5 IPb-522772 15.6 3.9 VRN1 15.0 2.9 LaSNP_016 9.3 9.4 LaIND_123 14.1 5.3 DAWA200.250 9.8 7.7 DAWA201.125 19.7 1.8 AC123593-13 16.3 2.2 DAWA267.130 14.8 4.1 IPb-198073 22.3 0.6 DAWA197.190c 20.6 1.2 DAWA82.140 20.9 1.3 DAWA150.1	

Table 2. HRM markers map position and linkage details.

^aHRM marker and preceding and succeeding marker in the linkage group.^blinkage with preceding and succeeding marker

(A) Verification of the PCR amplicon specificity by T_m Calling analysis. Melting curves profile of the parental genotypes (83A:476 and P 27255) and the simulated heterozygote (83A:476/P 27255). Single peaks for each analyzed genotype indicate a proper specificity of the conducted analysis. (B) Normalized and shifted melting curves of the parental genotypes (83A:476 and P 27255) and the simulated heterozygote (83A:476/P 27255) and the simulated heterozygote (83A:476/P 27255) and the simulated heterozygote (83A:476/P 27255) amplicons. Parental genotypes of Leg736 were indistinguishable due to existing C>G mutation type causing only a slight T_m difference between both amplicons. To overcome this problem melting profile generated by a mixed template of both parental DNA (a simulated heterozygote) was analyzed apart from individual parental genotypes. (C) Normalized and shifted melting curves of Leg736 amplicons after addition of 83A:476 parental line to each mapping population progeny sample. Figure presents the results for 88 RILs analyzed ulation parental line 83A:476 and RILs with same genotype as well as simulated heterozygote 83A:476/P27255 and corresponding RILs. Application of this approach resulted in successful mapping operation of Leg736 marker in the NLL-09 linkage group.

sential to ensure the best specificity and yield of the PCR products (Montgomery *et al.*, 2007). The annealing temperature for the primer pairs tested mostly oscillated around 56°C.

The analysis of the actual HRM data was always preceded by the examination of amplification fluorescence data. The crossing point (C_p) which corresponds to the cycle number at which the fluorescence signal of the PCR product rises above the background should remain below 30 cycles for each reaction. This indicates an adequate amount of template DNA and a suitable amplification efficiency (LightCycler[®] 480 Real-Time PCR System

Figure 3. HRM assay of Leg435 in narrow-leafed lupin mapping population.

(A) Verification of the PCR amplicon specificity by T_m Calling analysis. Arrows represent the mapping population parental lines 83A:476 and P 27255. Single peaks of the analyzed genotypes indicate a proper specificity of the conducted analysis. (B) Normalized and shifted melting curves of the 278-bp Leg435 amplicons. Parental genotypes contain five SNP substitution (C>T; G>A; G>A; G>A, A>C). Figure presents the results for 88 RILs analyzed simultaneously on 96-well plate together with the mapping population parental lines as standards). Arrows represent genotypes of the arrosponding RILs. All of the RILs analyzed have been assigned to one of the parental genotypes and Leg435 marker was successfully mapped in the NLL-18 linkage group.

– Technical Note No. 1 High Resolution Melting: Optimization Strategies). In the case of four analyzed markers (Leg050, Leg055, Leg074, Leg156) the amplification carried out with the aid of LightCycler[®] 480 High Resolution Melting Master (Roche) was not effective enough and required more than 30 cycles to achieve C_p and even more than 60 cycles to achieve the plateau phase. Application of a previously optimized GoTaq[®] Flexi Polymerase (Promega) and LightCycler[®] 480 ResoLight Dye (Roche) combination instead of the HRM commercial reagent kit allowed the required C_p and amplification efficiency to be reached.

High resolution melting of the PCR products can detect most homozygous mutations, however, some homozygous SNP have melting curves identical to those of the wild-type. This might be caused by overlong amplicons that influence the reaction sensitivity. Moreover, A>T and C>G mutation types result in only a slight T_m difference between amplicons (usually less than 0.4°C), which makes their detection more difficult (Liew et al., 2004). In this case, addition of DNA of a known genotype to each unknown sample before PCR, results in heteroduplex formation which enables differentiation of homozygous and wild-type genotypes (Palais et al., 2005). This approach was successfully utilized by Croxford et al. (2008) to detect SNP markers in Lupinus albus. In our studies, the parental genotypes of six markers (Leg-33MGm, Leg074, Leg156, Leg713, Leg736 and Leg871) were difficult to distinguish, therefore, the comparison of melting profiles generated by each parent separately and

also by a mixed template containing DNA from both parental genotypes (a simulated heterozygote 1:1 mixed sample) was applied. On the basis of this approach, the distinction of both genotypes for these markers was feasible (Fig. 2).

Amplicon size has a significant impact on HRM method resolution. Han et al. (2012) reported successful employment of the HRM assay in SNP genotyping of 51-149 bp amplicons in alfalfa; Wu et al. (2008) analyzed 68-198 bp amplicons in almond; while De Koever et al. (2010) were able to detect SNP with amplicon sizes between 50-230 bp in potato. As mentioned above, the size of the HRM markers designed in our studies was kept under 160 bp, but one marker (Leg435) was used with its original, longer sequence size of 278 bp to test the possibility of SNP detection in longer amplicons (Fig. 3). According to Reed & Wittwer (2004), the melting of amplicons longer than 300 bp induces a depletion of sensitivity and specificity in single SNP detection. On the other hand, the increased number of polymorphic sites within the amplicon results in an improvement of HRM analysis resolution, thus enabling larger PCR product utilization (Hofinger et al., 2009). Most of the re-designed HRM markers in our studies covered one polymorphic site, but in the case of three markers, two (Leg074), three (Leg33MGm) or even five (Leg435) SNP and/or InDel were incorporated in the amplicon sequence. The increased number of polymorphic sites of marker Leg435 is probably the explanation of its successful HRM analysis. Knopkiewicz et al. (2014) also used the HRM method to successfully analyze 400 bp and 600 bp amplicons covering both three and seven SNPs, respectively.

The HRM technique offers a very sensitive and rapid method for SNP genotyping that after optimization does not require DNA restriction or electrophoresis to detect sequence polymorphisms. In our studies, melting curve analyses using LightCycler[®] 480 T_m Calling Software (Roche) proved to be completely sufficient and in some cases even more sensitive than standard agarose electrophoresis. Thus, in comparison with other popular genotyping methods, i. e. CAPS/dCAPS, the HRM technique is less time-consuming and labor-intensive. When the most appropriate chemistry set is selected, the important advantage of the HRM method is its flexibility in new markers examination. New primer set is the only requirement for each newly analyzed marker, while the chemistry remains unchanged in each analysis. No additional reagents are needed to detect any existing polymorphic site. HRM assay is therefore more profitable than other methods, i.e. CAPS/dCAPS requiring specific restriction endonucleases. The main obstacle in the HRM technique application is the requirement of a specialized and expensive equipment to conduct analyses. Fortunately, as qPCR thermocyclers adapted to HRM assay are becoming more and more popular, their cost gradually decreases.

The new Leg markers with its associated DNA sequence could potentially be used in the synteny analyses between the genome of *Lupinus angustifolius* and model legumes. Synteny between *Lupinus angustifolius* and *Medicago truncatula* as well as *Lotus japonicus* were previously undertaken, showing examples of marker colinearity between their genomes (Nelson *et al.*, 2010; Nelson *et al.*, 2006; Kroc *et al.*, 2013). The current reference map of Kamphuis *et al.* (2014) was not involved in any synteny analysis and as it incorporated a significant number of new markers, their positions/order have changed compared to the previous map versions. It is therefore difficult to assess if the newly mapped Leg markers are involved and extend any previously reported synteny blocks.

In the course of our studies the optimized HRM markers were analyzed in the mapping population of narrow-leafed lupin. As a result, all of the 16 analyzed markers were successfully mapped in lupin genome. The incorporation of new Leg markers into the narrow-leafed lupin genetic map opens the possibility of synteny analyses with other legume species. Furthermore, the different approaches we applied in the HRM marker optimization process, might serve as a good starting point in overcoming difficulties when implementing HRM assays in other species. We conclude that the HRM assay proved to be an effective method for genotyping of STS markers in narrow-leafed lupin despite optimization problems encountered. It is therefore a good alternative to other popular genotyping methods.

Acknowledgements

This work was partially supported by the Governmental Multiannual Project – "Improvement of domestic sources of plant protein, their production, economy and feeding technologies" (Resolution of the Council of Ministers, No 149/2011).

REFERENCES

- Bertioli DJ, Moretzsohn MC, Madsen LH, Sandal N, Leal-Bertioli SC, Guimarães PM, Hougaard BK, Fredslund J, Schauser L, Nielsen AM, Sato S, Tabata S, Cannon SB, Stougaard J (2009) An analysis of synteny of *Arachis* with *Lotus* and *Medicago* sheds new light on the structure, stability and evolution of legume genomes. *BMC Genomics* 10: 45–55. doi:10.1186/1471-2164-10-45.
 Boersma JG, Pallotta M, Li C, Buirchell BJ, Sivasithamparam K, Yang
- Boersma JG, Pallotta M, Li C, Buirchell BJ, Sivasithamparam K, Yang H (2005) Construction of a genetic linkage map using MFLP and identification of molecular markers linked to domestication genes in narrow-leafed lupin (*Lupinus angustifolius L.*). Cell Mol Biol Lett 10: 331–344.
- Croxford AE, Rogers T, Caligari PD, Wilkinson MJ (2008) Highresolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (*Lupinus allnus*) map as an exemplar. *New Phytol* 180: 594–607. doi: 10.1111/j.1469-8137.2008.02588.x.
- De Koeyer D, Douglass K, Murphy A, Whitney S, Nolan L, Song Y, De Jong (2010) Application of high-resolution DNA melting for genotyping and variant scanning of diploid and autotetraploid potato. *Mol Breed* 25: 67–90. doi: 10.1007/s11032-009-9309-4.
- Distefano G, Caruso M, La Malfa S, Gentile A, Wu SB (2012) High resolution melting analysis is a more sensitive and effective alternative to gel-based platforms in analysis of SSR – an example in citrus. PLoS One 7: e44202. doi: 10.1371/journal.pone.0044202.
- Fredslund J, Madsen LH, Hougaard BK, Nielsen AM, Bertioli D, Sandal N, Stougaard J, Schauser L. (2006) A general pipeline for the development of anchor markers for comparative genomics in plants. *BMC Genomics* 7: 207–216. doi:10.1186/1471-2164-7-207.
- Fredslund J, Schauser L, Madsen LH, Sandal N, Stougaard J (2005) PriFi: using a multiple alignment of related sequences to find primers for amplification of homologs. *Nucleic Acids Res* 33: 516–520. doi: 10.1093/nar/gki425.
- Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT (2003) Amplicon melting analysis with labeled primers: a closedtube method for differentiating homozygotes and heterozygotes. *Clin Chem* 49: 396–406. doi: 10.1373/49.3.396.
- Han Y, Khu DM, Monteros MJ (2012) High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (*Medicago* sativa L.). Mol Breeding 29: 489–501. doi: 10.1007/s11032-011-9566-x. Hofinger BJ, Jing HC, Hammond-Kosack KE, Kanyuka K (2009)
- Hofinger BJ, Jing HC, Hammond-Kosack KE, Kanyuka K (2009) High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. *Theor Appl Genet* **119**: 851–65. doi: 10.1007/s00122-009-1094-2.
- Hougaard BK, Madsen LH, Sandal N, de Carvalho Moretzsohn M, Fredslund J, Schauser L, Nielsen AM, Rohde T, Sato S, Tabata S, Bertioli DJ, Stougaard J (2008) Legume Anchor Markers Link Syntenic Regions Between *Phaseolus vulgaris*, *Lotus japonicus*, *Medicago truncatula* and Arachis. *Genetics* **179**: 2229–2312. doi: 10.1534/genetics.108.090084.
- Kamphuis LG, Hane JK, Nelson MN, Gao L, Atkins CA, Singh KB (2014) Transcriptome sequencing of different narrow-leafed lupin

tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. Plant Biotechnol J. doi: 10.1111/ pbi.12229

- Knopkiewicz M, Gawłowska M, Święcicki W (2014) The application of high resolution melting in the analysis of simple sequence repeats and single nucleotide polymorphisms markers in a pea (Pisum sati*vum L*, population. *Częch J Genet Plant Breed* **50**: 151–156. Koressaar T, Remm M (2007) Enhancements and modifications of
- primer design program Primer3. Bioinformatics 23: 1289-1291. doi: 10.1093/bioinformatics/btm091.
- Kroc M, Koczyk G, Święcicki W, Kilian A, Nelson MN (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus andoi: 10.1007/s00122-014-2294-y.
- Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of Single-Nucleotide Polymorphisms by High-Resolution Melting of Small Amplicons. Clin Chem 50: 1156-1164. doi: 10.1373/clinchem.2004.032136.
- Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. *Mamm Genome* 12: 0220 doi:10.1007/00225.001401622 930-932. doi: 10.1007/s00335-001-1016-3
- Monteros MJ, Ha BK, Boerma HR (2010) SNP assay to detect the 'Hyuuga' red-brown lesion resistance gene for Asian soybean rust. Theor Appl Genet 121: 1023–1032. doi: 10.1007/s00122-010-1368-8.
- Montgomery J, Wittwer CT, Palais R, Zhou L (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. *Nat Protoc* **2**: 59–66. doi:10.1038/nprot.2007.10. Nelson MN, Phan HT, Ellwood SR, Moolhuijzen PM, Hane J, Wil-
- liams A, O'Lone CE, Fosu-Nyarko J, Scobie M, Cakir M, Jones

MG, Bellgard M, Ksiazkiewicz M, Wolko B, Barker SJ, Oliver RP, Cowling WA. (2006) The first gene-based map of Lupinus angustifolius L.- location of domestication genes and conserved synteny with Medicago truncatula. Theor Appl Genet 113: 225–238. doi: 10.1007/ s00122-006-0288-0.

- Nelson MN, Moolhuijzen PM, Boersma JG, Chudy M, Lesniewska K, Bellgard M, Oliver RP, Swiecicki W, Wolko B, Cowling WA, Ellwood SR. (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Res 17: 73-83. doi: 10.1093/dnares/dsq001
- Palais RA, Liew MA, Wittwer CT (2005) Quantitative heteroduplex analysis for single nucleotide polymorphism genotyping. *Anal Bio-chem* **346**: 167–175. doi:10.1016/j.ab.2005.08.010.
- Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nu-Cleotide polymorphism scanning by high-resolution melting analysis. *Clin Chem* **50**: 1748–1754.doi: 10.1373/clinchem.2003.029751.
- Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M. Rozen SG (2012) Primer3 - new capabilities and interfaces. Nucleic Acids Res 40: e115. doi: 10.1093/nar/gks596.
- Voorrijs R (2002) MapChart: Software for the graphical presenta-tion of linkage maps and QTLs. J Hered 93: 77–78. doi: 10.1093/ ihered/93.1.77
- Wu SB, Wirthensohn MG, Hunt P, Gibson JP, Sedgley M (2008) High resolution melting analysis of almond SNPs derived from ESTs. *Theor Appl Genet* 118: 1–14. doi: 10.1007/s00122-008-0870-8.
- Yang H, Tao Y, Zheng Z, Zhang Q, Zhou G, Sweetingham MW, Howieson JG, Li C (2013) Draft genome sequence, and a sequencedefined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS One 8: 64799. doi: 10.1371/journal.pone.0064799.