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Histone modifications are involved in the DNA damage 
response (DDR). Here, by utilizing an ELISA immunoas-
say we assessed the methylation at H3K9 (H3K9me2 and 
H3K9me3) in two cell lines with differential sensitivity to 
radiation-induced apoptosis, HeLa (sensitive) and MCF-7 
(resistant). We found that DNA damage induction by 
γ-irradiation leads to considerable accumulation (up to 
5-fold) of H3K9me2 and H3K9me3, but not of H4K20me3 
(control modification) in MCF-7 cells (p<0.05). Interest-
ingly, a lower dose (2 Gy) was more effective than 5 
Gy. In HeLa cells a smaller effect (approx. 1.5–1.8-fold) 
was evident only at 5 Gy. In conclusion, our findings re-
veal that DNA damage leads to specific accumulation of 
H3K9me2 and H3K9me3 in a cell-type specific manner.
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INTRODUCTION

Chromatin structure and function are associated with 
post-translational histone modifications (PTHMs) of the 
histone proteins which are detected on lysine as acetyla-
tion, methylation, or ubiquitination, on arginine as meth-
ylation, and on serine/threonine as phosphorylation. The 
detection of new PTHMs is ongoing (Turner, 2012). 
Along with non-coding RNAs, DNA methylation and 
chromatin remodeling, PTHMs are an essential part of 
epigenetic pathways and can directly affect the interac-
tion of DNA and histones, and thus influence the acces-
sibility of chromatin. For example, it is widely accepted 
that extensive acetylation of histone tails neutralizes their 
positive charge and thus reduces their interaction with 
negatively charged DNA (Friedl et al., 2012). The pres-
ence of PTHMs may increase or reduce binding of other 
proteins to histone tails and thus affect chromatin struc-
ture.

Chromatin structure does not only affect transcription, 
but all processes involving access to the DNA, including 
repair. DNA double-strand breaks (DSBs), the most del-
eterious type of DNA damage and other types of DNA 
damage induce a complex and highly coordinated DNA 
damage response (DDR) that is intrinsic to the suppres-
sion of genomic instability (Nagaria et al., 2013). Histone 
modifications play a role in sensing of the initial DNA 
damage and provide support for critical repair proteins 
(For a review see Kumar et al., 2013).

Wide application of the phosphorylation of the his-
tone variant H2AX for visualizing the chromatin regions 

surrounding DSBs as well as for assessment and quanti-
fication of DSBs (Dickey et al., 2009) stimulated interest 
in alterations of other PTHMs in the context of DDR. 
One of the PTHMs involved in DDR is methylation of 
lysine 9 on histone H3 (H3K9me). This modification is 
preferentially found in heterochroma tin and functions 
as a binding site for heterochromatic protein 1 (HP1). 
H3K9me-mediated HP1 binding is important for main-
taining the genome stability in regions of heterochro-
matin (Peng &, Karpen, 2009). Experimental data show 
that the DNA damage-induced displacement of HP1-be-
ta from H3K9me3 is crucial for the activation of ATM 
via Tip60 acetyltransferase activity, the kinase responsible 
for H2AX phosphorylation (Ayoub et al., 2008; Sun et 
al., 2009) asserting the pivotal role of chromatin archi-
tecture in regulating DSB repair (Xu et al., 2012).

Different patterns of PTHMs were detected in cells 
with differential radiation sensitivity (Maroschik et al., 
2014; Djuzenova et al., 2013). In the present study, 
we assessed how H3K9 methylation (H3K9me2 and 
H3K9me3) correlates with radiation sensitivity. Experi-
ments were conducted using two different cell lines with 
different sensitivities to γ-irradiation-induced apoptosis 
including HeLa (sensitive) and MCF-7 cells (resistant) 
(Özgür et al., 2013). Another heterochromatic methyl-
ation, H4K20me3, was used as a control modification 
in the assay due to its stability following DNA damage. 
Our findings show that γ-irradiation leads to a mean-
ingful accumulation of H3K9me2 and H3K9me3, but 
not H4K20me3 in MCF-7 cells. This effect is less pro-
nounced in HeLa cells.

MATERIALS AND METHODS

Cell culture and DNA damage induction. HeLa 
and MCF-7 cells were obtained from the German Re-
source Centre for Biological Material and maintained 
under standard culture conditions (37°C and 5% CO2 
humidity) with DMEM culture medium (Biochrom, 
Berlin, Germany) supplemented with 10% fetal serum 
(Biochrom). Twenty four hours after plating, 4×105 cells 
were irradiated by a total dose of 0, 2, or 5 Gy using a 
Cobalt-60 γ-ray source and kept under standard growth 
conditions for another 24 h, when they were collected 
and analyzed.
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Cell viability assessment. Cell viability was evaluted 
using trypan blue dye 0.4% (Applichem, Düren, Ger-
many). Viable and non-viable cell numbers were counted 
using a hematocytometer and optical microscopy. Viabil-
ity was calculated through the following equation: (%) 
cell viability = total viable cells (unstained)/total cells 
(viable and non-viable cells) × 100. The analysis was per-
formed in duplicate and mean results were considered.

Measurement of TP53 protein content and apop-
totic cell death. We measured TP53 accumulation as 
a response of cells to DNA damage induction and ap-
optotic cell death as a measure of radiation sensitivity. 
Accumulation of TP53 was measured by the pan-p53 
ELISA assay (Roche Diagnostics, Mannheim, Germany). 
The assay was performed according to the manufactur-
er’s instructions using cytoplasmic lysates, and relative 
protein concentrations were determined from the mean 
absorbance values using a calibration plot. To quantify 
apoptotic cell death we used the photometric enzyme 
immunoassay Cell-Death Detection ELISA kit (Roche 
Diagnostics) for in vitro detection and quantitation of 
mono- and oligonucleosomes that are released into the 
cytoplasm from apoptotic cells during the early stages of 
cell death. The measurement was performed according 
to the instructions of the manufacturer using cytoplasmic 
lysates of irradiated and non-irradiated cells in duplicate, 
and relative concentrations of cytoplasmic nucleosomes 
were determined from the mean absorbance values.

Histone extraction from cell nuclei. In order to en-
able study of the histone methylations in the subsequent 
immunoassay, core histones were isolated by acid extrac-
tion. Briefly, cells (1×105) were re-suspended in 250 µl 
of Tris-boric acid-EDTA buffer (90 mM Tris, 90 mM 
boric acid and 2.5 mM EDTA, pH 8.3) and gently shak-
en on ice for 10 min. Following two centrifugation steps 
(3400 × g for 5 min at 4°C followed by centrifugation at 
11 250 × g), the supernatant was removed and the pellet 
was re-suspended in 50 µl of extraction solution (0.5N 
HCl + 10% glycerol). After incubating on ice for 30 
min, it was centrifuged at 13 500 × g for 5 min at 4°C. 
The supernatant was transferred into a fresh tube, 150 
µl acetone was added and incubated overnight at 20°C. 
Next day, it was centrifuged at 13 500 × g for 5 min at 
4°C, the supernatant was discarded, and the pellet was 
dried. The pellet containing histones was re-suspended 
in water and stored at –80°C for subsequent analyses.

Measurement of global histone methylations. All 
three histone methylation markers, H3K9me2, H3K9me3 
and H4K20me3, were measured on extracted histones 
by colorimetric Global Histone Quantification Kits (Epi-
gentek, Farmingdale, NY, USA) according to the instruc-
tions of the manufacturer. We applied 100 ng of histone 
extracts for the assay and the absorbances were meas-
ured at 450 nm. For quantification, a graph of OD versus 
amount of standards was plotted and delta OD/ng was 
determined from the slope. Alterations in histone meth-

Figure 1. Differential radiation sensitivity and global histone methylation levels.
We exposed HeLa and MCF-7 cells to γ-irradiation (0, 2 or 5 Gy) and 24 h later measured total cellular TP53 protein (A) as a response of 
the cells to DNA damage induction. At the same time we assessed cell viability (B) and mono- and oligonucleosomes released into the 
cytoplasm (C) as measures of apoptotic cell death. The histone markers H3K9me2, H3K9me3 and H4K20me3 were quantified by immuno-
assays (D). *indicates statistically significant differences.
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ylation levels in treated cells relative to untreated cells 
were expressed as fold changes.

Statistical analyses. We compared the accumulation 
of p53 protein, cell death rates, and histone methylation 
in two different cell lines exposed to γ-irradiation. Re-
sults of 3 independent experiments were used to calcu-
late the mean values of the above parameters. Statistical 
comparisons were made by the Student’s t-test. Levels of 
p < 0.05 were considered as significant.

RESULTS

We first measured the accumulation of TP53 as a re-
sponse of cells to DNA damage induction 24 h after ir-
radiation. Although the basal levels are different, DNA 
damage induction leads to a similar pattern of TP53 ac-
cumulation in HeLa and MCF-7 cells. As depicted in 
Fig. 1A, TP53 accumulation is induced approx. 3-fold 
by 2 Gy of radiation in both cell lines (p < 0.05) while 
higher doses (5 Gy) did not substantially increase this ef-
fect. In spite of similar TP53 accumulation, we observed 
differential cell viability and apoptotic cell death rates in 
irradiated HeLa and MCF-7 cells. Cell viability decreased 
in HeLa cells with increasing radiation dose while in 
MCF cells only a very small and statistically insignificant 
effect was observed (Fig. 1B). Confirming this conclu-
sion, DNA damage induced significant release of mono- 
and oligonucleosome in HeLa cells in a dose-dependent 
manner whilst no notable levels were detected in MCF-7 
cells (Fig. 1C).

In view of the differential sensitivity to radiation, we 
measured global levels of H3K9me2, H3K9me3, and 
H4K20me3 upon DNA damage induction. As seen in 
Fig. 1D, we detected differences between both cell types. 
In MCF-7 cells, we detected a remarkable accumulation 
of H3K9me2 and H3K9me3 while no changes were 
found for H4K20me3 as compared to control cells. The 
extent of increase was nearly the same for H3K9me2 
and H3K9me3. Interestingly, a low dose of radiation 
(2 Gy) was more effective in inducing H3K9me2 and 
H3K9me3 up to 5-fold (p < 0.05) in these cells. In con-
trast to MCF-7 cells, in HeLa cells the effect of irradia-
tion on these methylation markers was less pronounced 
and only a smaller increase (approx. 1.5–1.8-fold) was 
visible at 5 Gy (Fig. 1D).

DISCUSSION

Detection and repair of radiation-induced DNA dam-
age occurs in the context of chromatin. In recent years 
it became clear that the cellular response to radiation-in-
duced DNA damage involves pathways of histone mod-
ifications (Friedl et al., 2012). Factors affecting the ex-
tent and duration of radiation-induced histone alterations 
are poorly defined and a correlation between DNA re-
pair capacity and alterations in PTHM levels has been 
described (Maroschik et al., 2014). As heterochromatin 
is essential for chromosome organization and stability 
(Peng & Karpen, 2009), and several histone modifica-
tions have been linked to the formation of constitutive 
heterochromatin, including H3K9me3 and H4K20me3 
(Rea et al., 2000; Peters et al., 2001; Schotta et al., 2004) 
we focus here on quantitative alterations of heterochro-
matic modifications in radiation-induced DNA damage. 
As it is known that cells differing in radiosensitivity can 
differ in the patterns of PTHMs (Maroschik et al., 2014; 
Djuzenova et al., 2013) we used two different cell lines 
(HeLa and MCF-7) with differential sensitivities to radi-

ation-induced apoptosis (Özgür et al., 2013; El-Awady et 
al., 2003).

Our findings indicate that γ-irradiation leads to a sig-
nificant accumulation of H3K9me2 and H3K9me3 in 
MCF-7 cells (up to 5-fold). This event was found to be 
site-specific as DNA damage had no effect on cellular 
levels of H4K20me3. In HeLa cells the extent of accu-
mulation was less pronounced (approx. 1.5–1.8-fold) and 
again no changes were detected in H4K20me3 levels, 
confirming the specificity of the effect at H3K9. These 
findings confirm the ascribed function of H3K9me3 in 
DDR (Xu et al., 2012). We observed nearly the same 
pattern of accumulation for H3K9me2 as for H3K9me3, 
suggesting that these two heterochromatic marks could 
have similar roles in DSB repair via Tip60 acetyltrans-
ferase activity (Peng & Karpen, 2009; Ayoub et al., 2008; 
Sun et al., 2009; Xu et al., 2012). In line with this hypoth-
esis, a recent study found accumulation of both mark-
ers after a short interval of decrease in irradiated cells 
(Young et al., 2013).

The obvious difference between the two cell types 
in terms of H3K9 methylation may be related to their 
sensitivity to radiation. In consistence with the literature 
(Jänicke et al., 2001; Essmann et al., 2004), MCF-7 cells 
were resistant to irradiation-induced apoptosis despite 
significant accumulation of TP53 protein. Resistance of 
MCF-7 cells to radiation-induced apoptosis is attributed 
to the caspase-3 deficiency (Essmann et al., 2004). It has 
been shown that radioresistant cell lines display higher 
levels of residual γ-H2AX foci 24 h after irradiation 
(Maroschik et al., 2014) and are endowed with a high-
er DNA repair potential (Luzhna et al., 2013) requiring 
higher levels of H3K9 methylation in DDR in MCF-7 
cells than in HeLa cells. On the other hand, according 
to a study from Chenand coworkers (2010), heterochro-
matin formation has been found to affect the radiosensi-
tivity in cancer stem cells. This leads us to speculate that 
the vulnerability of different genomic regions to DNA 
damage and the pattern of alterations of PTMs may vary.

Different approaches have been used to quantify the 
PTHM patterns in damaged DNA. Antibody-based im-
munofluorescence is applied to monitor γ-H2AX-occu-
pied chromatin regions (Falk et al., 2007; Solovjeva et al., 
2007; Löbrich et al., 2010; Rothkamm et al., 2013). ChIP 
is widely used for the analysis of alterations at specific 
damaged sites (Murr et al., 2006; Stante et al., 2009; Ia-
covoni et al., 2010). Some studies globally investigated 
DSB-associated alterations in PTHMs by Western blot-
ting of nuclear lysates (Tjeertes et al., 2009; Seiler et al., 
2011). ELISA immunoassays are increasingly being uti-
lized to globally measure PTHMs (Dai et al., 2011; Dai et 
al., 2013; Farifteh et al., 2014). To our knowledge this is 
the first study to measure heterochromatic modifications 
by ELISA in damaged cells. One of the advantages of 
using the ELISA-based assay over other techniques such 
as immunofluorescence or western blotting is the quan-
titative nature of measurement and its simple and robust 
processing. Furthermore, this approach may be particu-
larly useful to characterize the accumulation of modifica-
tions enriched at heterochromatic regions.

In conclusion, our findings indicate that the accu-
mulation of heterochromatin-associated methylations 
(H3K9me2 and H3K9me3) is related to sensitivity to the 
DNA damage-induced apoptosis. Further work is need-
ed to unravel the underlying mechanisms of this finding.
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