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The design of drugs with bioinformatics methods to 
identify proteins and peptides with a specific toxic ac-
tion is increasingly recurrent. Here, we identify toxic 
proteins towards the influenza A virus subtype H1N1 
located at the UniProt database. Our quantitative struc-
ture-activity relationship (QSAR) approach is based on 
the analysis of the linear peptide sequence with the so-
called Polarity Index Method that shows an efficiency 
of 90% for proteins from the Uniprot Database. This 
method was exhaustively verified with the APD2, CPP-
site, Uniprot, and AmyPDB databases as well as with the 
set of antibacterial peptides studied by del Rio et al. and 
Oldfield et al.
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INTRODUCTION

Pandemic of the influenza A virus subtype H1N1 
occurred in Mexico in 2009. It refers to the 1918 
flu pandemic outbreak in the USA and is commonly 
known as a Spanish flu. Spanish influenza pandemic 
caused the death of approximately 3.7% of the Earth 
population (between 50 and 100 million people). Most 
deceases took place during the first 25 weeks of the 
outbreak (USCB, 2013). Comparing both the pandem-
ic processes, the Mexican pandemic was not lethal be-
cause the virus was weak and the means of transmis-
sion were bird-human. However, it is only a matter 
of time until the inevitably occurs and a lethal strain 
arises in humans. One particular point is that this 
type of influenza virus (Chowell et al., 2011), which 
can be quickly spread around the world, is a variety 
of an influenza virus with the gene segments common 
to birds, pigs and human flu strains. Considering that 
pigs (Wenjun et al., 2009) are susceptible to share the 
bird and human influenza virus allowing a redistribu-
tion of gene segments, we can assume that this virus 
can rapidly mutate in humans. One of the distinctive 
signs of the influenza A virus subtype H1N1 pandem-
ic is, in particular, that the virus is easily transmissible 
among humans. A future pandemic threat can be com-
bated also by predicting the location of the outbreak 
carrying out a fast count of the people infected using 
the predictor algorithms (Nishiura, 2011) and other 

predictive models or by developing new drugs. Some 
of them are based on proteins and peptides with toxic 
action towards influenza A subtype H1N1 and are de-
tected by the bioinformatics algorithms. In this sense, 
each scientific and technological research should be 
oriented to the field of Proteomics as well as to the 
design of the efficient computational-mathematical al-
gorithms which are able to identify and predict pep-
tides and proteins with toxic action on this particu-
lar type of virus. These techniques may help to avoid 
the impractical but very necessary technique of trial 
and error involved in the chemical synthesis of new 
peptides and proteins. Although nature is recognized 
as a main source of proteins with toxic action against 
the influenza A virus subtype H1N1, recent research 
efforts have been directed to the production of syn-
thetic and hybrid proteins. One of the procedures is 
to generate proteins replacing and/or removing con-
stitutive amino acids from the natural proteins known 
for their anti-influenza A H1N1 action (Barik, 2012; 
Tsai et al., 2012), reducing their size simultaneously 
keeping or increasing their toxicity. Another technique 
is to join two peptides or strains of proteins that in-
dividually do not have this property but combined 
together become highly toxic (Mohamed et al., 2009). 
Altering a peptide to quantify its toxic action in a lab-
oratory through traditional methods of trial and error 
would take a combination of possibilities beyond any 
practicability as the number of peptides built from 7 
amino acid peptide is 207 = 1.28 × 109. Therefore, new 
techniques to build proteins against influenza A sub-
type H1N1 are based on mathematical-computational 
methods simulating peptide alterations as well as eval-
uating and qualifying them to determine if a peptide 
complies with the criteria required. These methods are 
highly complex in their mathematical-computational 
design and execution. They simulate the characteristics 
necessary to evaluate all possible combinatorial. In 
this work we describe the quantitative structure-activi-
ty relationship (QSAR) approach called Polarity Index 
Method by taking a single physicochemical property, 
namely the polarity, to identify efficiently the influ-
enza A proteins subtype H1N1 from the UniProt da-
tabase (Magrane, 2011) accessed on March 19, 2014. 
This method was previously applied to detect bacteria 
and selective cationic amphipathic antibacterial pep-
tides (SCAAP) (Polanco & Samaniego, 2009; Polanco 
et al., 2012), taking the existent 20 proteic amino acid 
*e-mail: polanco@unam.mx

Received: 21 May, 2013; revised: 04 April, 2014; accepted: 12 June, 
2014; available on-line: 07 November, 2014

Vol. 61, No 4/2014
693–698

on-line at: www.actabp.pl



694           2014C. Polanco and others

classification differentiated by the side chain R and di-
vided into four different categories according to their 
polarity profiles (Kawashima & Kanehisa, 2000). The 
Polarity Index Method uses this classification only to 
identify the characteristic template of the influenza A 
protein subtype H1N1 group, which was exhaustively 
tested with 7 databases and was proven to be highly 
efficient. Our work shows the efficiency of a com-
putational mathematical method that identifies with 
a high level of precision influenza A subtype H1N1 
proteins but does not intend to carry out any experi-
mental verification on the peptides.

MATERIAL AND METHODS

The Polarity Index Method has already been pub-
lished to identify efficiently selective antibacterial pep-
tides from the APD2 database (Polanco et al., 2012). For 
this reason, we mention only the necessary modifications 
for the identification of influenza A subtype H1N1 pro-
teins. Later, we present a detailed example to clarify its 
mechanism (Section 2.8).

Polarity Index Method updates

The method essentially measures the polar profile of 
the peptide in a comprehensive manner by taking into 
account 16 polar interactions from the four polarity 
groups P+, P–, N, and NP (Polanco et al., 2012). Its met-
ric considers reading of the linear sequence of the amino 
acids of the peptide or protein. In order to perform a 
comprehensive test, we considered all groups of peptides 
and proteins that have been studied so far. First of all, 
we calibrated with the peptides found in the Uniprot 
database and verified our approach with the following 
databases: the entire set of antimicrobial peptides from 
APD2 database (Wang & Wang, 2009), the set of cells 
penetrating the endocytic pathway of peptides and the 
non-endocytic pathway from the CPPsite database (Gau-
tam et al., 2012), the set of influenza proteins and human 
neuronal proteins from the Uniprot database (Magrane, 
2011), the amyloid peptides from the AmyPDB database 
(Pawlicki et al., 2008), the set of selective antibacterial 
peptides studied by del Rio and coworkers (2001), and 
the set of natively unfolded proteins and natively folded 
proteins, studied by Oldfield et al. (2005).

Modifications

The P[i,j] matrix in the source program (Polanco 
et al., 2012) is substituted with the profile of incidents 
for the corresponding set of influenza A subtype H1N1 
proteins. Its worth noting that in this case it was neces-
sary to obtain nine P[i,j] matrices, because we obtained 
the same number of sub-classifications (Sections APD2 
database preparation – SCAAP Database preparation). 
Once the P[i,j] matrix is concluded for each sub-group, 
it is normalized to unity. In the same way, the Q[i,j] ma-
trix contains the profile of incidents for the sequence in 
study.

The Polarity Index Method selected as influenza A 
subtype H1N1 proteins candidates whose P[i,j] + Q[i,j] 
vector space complied with different rules. The rules 
mentioned (Table 1) are a result of observing that polar 
interactions are more frequent than others, today already 
working in a fully automated version to avoid produc-
ing this step manually. Those peptides that meet 4 or 5 
rules mentioned in the Table 1, the polarity index meth-
od be regarded as peptides associated with influenza A 

type H1N1. E.g. the rule 1, “Polar interaction 8 is not 
present in the 12th position” means that the polar 8 in-
teraction [P-, NP] can occur on any of the 16 possible 
positions, but not in the 12th position. In case of rule 
3 “Polar interaction 12 is present in the 1th position” 
means that the interaction 12 [N, NP] must be present 
in the first position only.

Multiple and unique action

Peptide sets with unique toxic action are those pep-
tides with verified experimental action over one patho-
genic agent, whereas multiple action peptide sets are 
formed with those peptides with toxic action over two 
or more pathogens that are over-represented.

APD2 database preparation

3636 peptides were taken from the antimicrobial pep-
tide database (APD2 database) (Wang & Wang, 2009) 
and classified by their multiple action as follows: 149 
Gram– ONLY, 1711 Gram+/Gram– ONLY, 315 Gram+ 
ONLY, 141 cancer cells, 744 fungi, 21 insects, 244 
mammalian cells, and 47 parasites; and 1059 were classi-
fied by their unique action as follows: 111 Gram– ONLY, 
213 Gram+ ONLY, 518 Gram+/Gram– ONLY, 20 can-
cer cells, 88 fungi, 2 insects, 11 mammalian cells, and 9 
parasites.

CPPsite database data preparation

115 cell-penetrating peptides were classified from the 
CPPsite database (Gautam et al., 2012) by their uptake 
mechanism as follows: 93 non-endocytic pathway, and 
22 endocytic pathway. Those peptides with different 
penetration mechanisms included in the CPPsite data-
base were not considered.

Natively unfolded and folded proteins data preparation

148 proteins, of which 51 natively unfolded proteins 
and 97 natively folded proteins, were selected from the 
Supplementary information from Oldfield et al. (Oldfield 
et al., 2005).

UniProt database preparation

Proteins extracted from the Uniprot database (Ma-
grane, 2011): (i) set of proteins associated with influenza 
A type H1N1 in nine subgroups: 33 HA, 33 M1, 16 M2, 
27 NA, 58 NP, 29 NS1, 24 PA, 49 PB1, and 1 PB2 pro-
teins, and (ii) 3616 proteins which expressed in neurons, 
and located in every living organism studied. In that set 
we found 755 human revised proteins expressed in neu-
rons, and 2879 non-human revised proteins expressed in 
neurons.

AmyPDB database data preparation

We analyzed 15 of 1705 proteins originally classified 
in several amyloid protein families stored in the AmyP-
DB database (Pawlicki et al., 2008) and restricted to: (i) 
Amyloid formed in vivo (the precursor protein, or a spe-
cific sub-segment, forms fibrils in human), and (ii) Amy-
loid formed in vitro (the polypeptide forms fibrils under 
experimental conditions).

SCAAP Database preparation

30 Selective Cationic Amphipathic Antibacterial Pep-
tides (SCAAP) were used in Table 2 and Table 2A from 
del Rio and coworkers (2001).
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Test plan

The discriminative efficiency of the polarity index 
method is measured by calculating three aspects: (i) the 
number of hits in the identification of the specific group; 
(ii) the percentage of errors in the identification of the 
other groups. In this sense, the method must be efficient 
in identifying the group and simultaneously rejecting 
those peptides or proteins which are not a part of this 
group, and (iii) graphing the relative frequency of each 
polar interaction of all subgroups of the proteins (Sec-
tions APD2 database preparation — SCAAP Database 
preparation), associated with influenza A subtype H1N1, 
extracted from Uniprot database (Magrane, 2011).

Example

Although this method has been already published (Po-
lanco et al., 2012), we provide here a detailed description 
of an illustrative example in order to clarify the used algo-
rithm. Our aim is to get to know if the protein MSLLTE-
VET YVLSIIP SGPLKAEIAQRLEDVFA GKNT-
DLEVLM EWLKTRPILSPLTK GILGFVFTLTVPSER-
GLQRRRFV QNALNG NGDPNNMDKAVKLYRKLK 
REITFHGAKEISLSYSAGALASCMGLIYNRM GAVT-
TEVAFGLVCATCEQIADSQHR SHRQMVTTTNP-
LIRHENRMVLAS TTAKAMEQMAGSSEQAA EAME-
VASQ ARQMVQAMRTIGTH PSSSAGLKNDLLEN-
QAYQKRMGVQ MQRFK, is in accordance with the 
polarity index method. To answer this question it is nec-
essary to follow the following five steps:

The above sequence is converted to its numeric equiva-
lent according to the following rule of equivalence: The 
amino acids: H, K, and R are replaced by the number “1”; 
the amino acids: D, and E are replaced by the number 

“2”; the amino acids: C, G, N, Q, S, T, and Y are replaced 
by the number “3”; finally the amino acids: A, F, I, L, M, 
P, V, and W are replaced by the number “4”. Note that 
the four numerical equivalents {1, 2, 3, and 4} correspond 
to the four polar groups: [P+], [P-], [N], and [NP] and 
are listed in the same order. The numeric equivalence of 
the aforementioned sequence is: 434432423344 344433441 
424431 4224443133242444244131 4443443134434 
443434432134311144334433332 4334214414 
311411243413412 43433343444334344331 43443324 
443443433234423311311344 333344411231444433 
34144234433323 442442443341 344344134331433343413
244234343311 434343141.

Read the resulting numerical sequence, from left to 
right, moving one position at a time. Each pair is con-
sidered as an element (i,j), in this case the first pair is 
(i,j) = (4,3), the second pair is (i,j) = (3,4),respectively, 
and same strategy should be applied further, until the 
last pair (i,j) = (4,1). Please note that the pairs (i,j) cor-
respond to a square matrix of order 4 which we named 
forward Q[i,j] matrix and where the element i represents 
the row and j represents the column of Q[i,j] matrix.

Count the occurrences of every (i,j) pair in the Q[i,j] 
matrix. In this way the Q[i,j] matrix represents the oc-
currences of the numerical sequence.

The matrix Q[i,j] is weighted, and added to P[i,j] ma-
trix (Table 1), i.e. Q[i,j] = Q[i,j] + P[i,j]. Finally, the 
Q[i,j] matrix is linearized. As a result, the Q[i,j] matrix 
becomes a vector of 16 elements, i.e. {16, 15, 12, 11, 9, 
8, 4, 13, 14, 3, 10, 1, 7, 2, 5, 6}.

The vector is compared with the rules in Table 2. In this 
example, all the rules are accepted, and therefore, this pro-
tein is considered as an influenza A protein subtype H1N1 
candidate.

Table 1. P[i,j] Polarity matrix

P+ P– N NP

P+ 0.0149871381 0.0158818923 0.0158818923 0.0438429713

P– 0.0152667491 0.0098982221  0.0530142039 0.0267867129

N 0.0515043065 0.0282966103 0.1578123271 0.1626775563

Number of incidences of proteins expressed in terms of their relative frequencies (see example Section 2.10).

Table 2. Polarity Index Method (test)

Linear position X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

P[i,j] + Q[i,j] vector of 
study. Q(1,1) Q(1,2) Q(1,3) Q(1,4) Q(2,1) Q(2,2) Q(2,3) Q(2,4) Q(3,1) Q(3,2) Q(3,3) Q(3,4) Q(4,1) Q(4,2) Q(4,3) Q(4,4)

Rule # 1.
Polar interaction 8 is not 
present in the 12th position

√ √ √ √ √ √ √ √ √ √ √ × √ √ √ √

Rule # 2.
Polar interaction 6 is pre-
sent 16st position

× × × × × × × × × × × × × × × √

Rule # 3.
Polar interaction 12 is pre-
sent in the 1th position

√ × × × × × × × × × × × × × × ×

Rule # 4.
Polar interaction 11 is pre-
sent in the 1st position

√ × × × × × × × × × × × × × × ×

Rule # 5.
Polar interaction 10 is not 
present in the 1th position

× √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Polarity index method identification rule. (√): The polar interaction is present in the position. (×): The polar interaction is not present in the posi-
tion.
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RESULTS

(i) The Polarity Index Method made a discriminat-
ing and positive identification of the nine subgroups of 
proteins associated with influenza A subtype H1N1 ex-
tracted from the UniProt database (90%, double-blind 
test) and shows an almost discriminative score with the 
remaining eight sub-classifications containing APD2, 
AmyPDB, Uniprot (Human and non human proteins), 
and CPPsite database, and the sets from del Rio et al., 
and Oldfield et al. (Table 3).

The smooth graphics (Fig. 1), which correspond to 
the nine subgroups of proteins associated to influenza 
virus subtype A H1N1 (Section APD2 database prepa-
ration – SCAAP Database preparation), have no coinci-
dences in their maximum and minimum points for the 
polar interactions: 3 and 4 ([P+,N], and [P+,NP]), from 
6 to 8 ([P-,P-], [P-,P+], and [P-,N]), 11, and 12 ([N,N], 
and [N,NP]), and 14 ([NP,P-]). The method is sensitive 
to the number of differences, i.e. the greater is the num-
ber of differences, the greater is its efficiency. In this 
case, the number is very high while usually in this kind 
of evaluations the number of differences is two or less.

DISCUSSION

The polarity is a measure of the electromagnetic sta-
bility of matter, while electronegativity (Matsunaga et al., 
2003) is a numeric equivalent, which metric is involved 
in more than 84% (Thakur et al., 2012) of the bioinfor-
matics algorithms related to understand the toxic action 
of proteins. We think this metric is not sufficient if it is 
represented only by a single number. Instead, we have 
shown that the count of the polar incidences, i.e. 16 in 
the case of the Polarity Index Method, is much more 

Table 3. Percentages of polarity matches.

* B+ B- B+/- Fu Pa Ca Ma In Am Sc Ce Cne Un Fo Hu Nh HA NA NP M1 M2 NS1 PA PB1 PB2

HA U 4 1 1 0 0 0 0 0 0 0 0 0 2 2 2 2 91 15 0 0 0 0 0 0 0

HA M 4 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NA U 4 2 3 5 0 0 0 0 0 0 0 2 0 0 1 2 3 93 0 0 0 0 0 0 0

NA M 5 2 4 6 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NP U 2 1 2 0 0 0 0 0 7 3 0 3 0 6 7 8 0 0 100 0 0 0 0 4 0

NP M 2 1 1 1 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M1 U 0 2 0 0 0 0 0 0 7 0 0 1 0 2 4 4 0 0 0 91 0 0 0 0 0

M1 M 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M2 U 10 2 5 1 0 0 18 0 7 0 0 5 2 5 7 6 0 0 0 0 100 14 0 0 0

M2 M 10 1 5 4 4 12 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NS1 U 7 2 5 1 0 0 9 0 0 0 0 8 0 2 3 2 0 0 0 0 0 83 4 0 0

NS1 M 7 1 4 2 2 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PA U 1 1 1 1 0 0 0 0 0 0 0 2 0 1 4 4 0 0 0 0 0 0 96 0 0

PA M 2 1 1 1 0 1 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PB1 U 5 3 1 0 0 0 18 0 13 0 0 2 0 3 6 7 0 0 5 0 0 0 0 94 0

PB1 M 7 5 4 4 2 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PB2 U 1 1 1 0 0 0 0 0 0 0 0 1 0 4 3 1 0 0 0 0 0 0 4 0 100

PB2 M 3 1 2 1 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Percentages (hits/total rounded integer part) found by polarity index method pointed to: nine subgroups of proteins associated to influenza A type H1N1: HA, NA, NP, M1, M2, 
NS1, PA, PB1, y PB2 from Uniprot database (Magrane, 2011). B+: GRAM+ bacteria, B-: GRAM– bacteria, B+/-: GRAM+ and GRAM- bacteria, Fu: Fungi, Pa: Parasites, Ca: Cancer cells, 
Ma: Mammalian cells, and In: Insects from APD2 database (Wang & Wang, 2009). Am: Amyloidosis proteins from AmyPDB database (Pawlicki et al., 2008). Sc: Selective antibacterial 
peptides from del Rio et al. (del Rio et al., 2001). Ce: Cells penetrating peptides endocytic pathway proteins, and Cne: Cells penetrating peptides non-endocytic pathway proteins from CPPsite 
database (Gautam et al., 2012). Un: Natively unfolded proteins, and Fo: Natively folded proteins studied by Oldfield et al. (Oldfield et al., 2005). Hu: Human neuronal proteins, and Nh: 
Non human neuronal proteins from Uniprot database (Magrane, 2011). U: Unique action: Peptides with pathogenic action against only one group. M: Multiple action: Peptides with 
pathogenic action against two or more groups (Section Test plan).

Figure 1. Comparison of the polar profile, from the nine sub-
groups of influenza proteins: HA, NA, NP, M1, M2, NS1, PA, 
PB1, AND PB2. 
The 18 columns on the x-axis correspond to 16 amino acids of 
vector incidences (Section Test plan).
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comprehensive. We believe that this characteristic ex-
plains why this method provides an effective discrimina-
tive measure of the influenza A proteins group subtype 
H1N1, the SCAAP (Polanco et al., 2012; Polanco et al., 
2013). In addition, it is also important to mention that 
the metric considers only one measure. This means that 
the algorithm is not complex, allowing its implementa-
tion for cluster computing under parallel programming, 
i.e. in a collaborative programming that allows to run 
multiple instructions simultaneously. This could help 
analyze peptide spaces in order to better understand the 
selection mechanisms of biological systems concerning 
the amino acids subgroups. The method mentioned here 
has been defined as a QSAR method (González-Díaz & 
Uriarte, 2005), although, due to its polarity matrix, we 
consider this method rather as a Markov model (Rabi-
ner, 1989). It has already been used in a more compre-
hensive version called hidden Markov model (Rabiner, 
1989). However, the main obstacle to consider it as a 
Markov model is that its polarity matrix does not con-
form exactly as a Markov matrix, because it is not sto-
chastic. A stochastic Markov matrix is this one in which 
the lines or columns add up to 1. Nevertheless, we be-
lieve that rendering the stochastic matrix will undoubt-
edly enhance the efficiency of a method. Therefore, by 
using multiple Markov matrix on a Markov model, called 
Hierarchical Hidden Markov Model (HHMM) (Wang et 
al., 2013), the new method will have different profiles 
of the same phenomenon, each of them represented by 
a Markov matrix and interacting together under a hier-
archical weighting. Such Markov model has been used 
extensively on speech recognition (Lee, 2008). Bioinfor-
matics arose thanks to these kind of algorithms (Hagen, 
2000) making it easier to identify similarities in protein 
strains. For that reason, we are developing a new version 
of our model with such Markov structure. The effective-
ness of the polarity index method in double-blind test 
reaches 90%, on eight different databases of proteins as-
sociated to influenza virus subtype A (H1N1). This level 
of success is high enough not to consider it as a lucky 
coincidence, although the reason at the more molecular 
level remains unknown for us so far. We believe that the 
polarity is a fundamental property of matter that char-
acterizes the form of how a protein adopts to the lipid-
aqueous space so that the amino acid sequence (primary 
structure) expresses such conformational structure. Until 
now, we have verified this conjecture in all groups of 
peptides and proteins that we cite in this work. We have 
even used that property for modeling prebiotic scenarios. 
Nevertheless, the closer biochemical reason still remains 
unknown. However, the present lack of biochemical in-
sight stands in contrast to the efficiency of the Polarity 
Index Method in the identification of peptides and/or 
proteins and its usefulness for prospective drug design 
from a more macroscopical settled modeling approach, 
or as a first filter in the bioinformatics identification of 
peptides/proteins.

CONCLUSIONS

The adaptation of the polarity index method to 
identify the nine subgroups of influenza A subtype 
H1N1 proteins, and reject eight groups of peptides 
not associated with influenza, scattered in different 
databases. It has proven to be an efficient algo-
rithm, measuring the polarity of the protein from 
its linear sequence.

Availability

The source program, the txt-files of each sub-
groups of proteins, and xls-files for the smooth 
graphics, are given as “Supplementary Material”.
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