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This work attempts to rationalize the possible prebiotic 
profile of the first dipeptides of about 4 billion years ago 
based on a computational discrete dynamic system that 
uses the final yields of the dipeptides obtained in Rode’s 
experiments of salt-induced peptide formation (Rode 
et al., 1999, Peptides 20: 773–786). The system built a 
prebiotic scenario that allowed us to observe that (i) the 
primordial peptide generation was strongly affected by 
the abundances of the amino acid monomers, (ii) small 
variations in the concentration of the monomers have 
almost no effect on the final distribution pattern of the 
dipeptides and (iii) the most plausible chemical reaction 
of prebiotic peptide bond formation can be linked to 
Rode’s hypothesis of a salt-induced scenario. The results 
of our computational simulations were related to former 
simulations of the Miller, and Fox & Harada experiments 
on amino acid monomer and oligomer generation, re-
spectively, offering additional information to our ap-
proach.
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INTRODUCTION

If we consider the geochemical conditions that sup-
posedly prevailed on earth 4 billion years ago (Vogel, 
1998), it seems that peptides had a greater chance to 
be formed than any other bio-molecules. One plausible 
chemical scenario for their generation is the salt-induced 
peptide formation (SIPF) proposed by Rode and co-
workers (Schwendinger & Rode, 1989, Schwendinger 
& Rode, 1992, Plankensteiner et al., 2005; Reiner et al., 
2006; Fraser et al., 2011) involving high concentrations 
of NaCl subjected to wetting/drying cycles (Saetia et 
al., 1993) and acting as a condensation reagent for the 
peptide bond formation. The SIPF hypothesis is sup-
ported by the estimated oxygen content of the secondary 
primitive earth atmosphere, which allowed the oxidation 
of Cu(I) to Cu(II) (Cloud, 1973; Ochiai, 1978) that is 
considered as a fundamental condition for the charac-
terization of the amino acid side chain electronegativities 
(Schwendinger & Rode, 1992; Rode, 1999). An acidic 
pH and temperatures between 80 and 100°C must have 
prevailed in the cooling process of the earth after the 

formation of the first hydrosphere as well as regular dry-
ing/wetting and day/night cycles, heavy rainfalls, tidal 
fluctuations and various atmospheric processes.

Under such scenario, laboratory experiments indicated 
formation of peptides from binary mixtures of amino ac-
ids. It turned out that some amino acids promote the 
formation of homo-dipeptides and others of hetero-di-
peptides. In this context, Rode carried out a systematic 
study of those amino acids that played a major role in 
the formation of dipeptides and observed their genera-
tion under SIPF conditions. His pioneering work yield-
ed a detailed quantitative description of 81 dipeptides 
formed by the combination of 9 amino acids: Gly, Ala, 
His, Asp, Glu, Lys, Pro, Val, and Leu (Rode, 1999). The 
obtained concentrations of the 81 dipeptides are called 
here the Rode profile Table 1 (Table 6; Rode, 1999). 
Such profile is very useful since it can be considered as a 
quantifiable precedent of the relative composition profile 
of the starting amino acid monomers. Like in the case of 
the amino acid distribution in the Murchison meteorite 
(Wolman et al., 1972), the Rode profile, i.e. the measure 
of the final composition of the dipeptides in Rode’s ex-
periments, can serve as a valuable information enabling 
us to build a mathematical-computational model about 
the assumed prebiotic peptide formation.

The present work focuses on the possible prebiotic 
peptide profile formed 4 billion years ago by using the 
information of the Rode profile through computational 
simulation and by comparing this profile with our for-
mer studies (Polanco et al., 2013; Polanco et al., 2013a) 
on the Miller-type generation of amino acid monomers 
(Miller, 1953) as well as with the experiments by Fox & 
Harada (1960) on the generation of the so-called “pro-
teinoids”. In particular, we simulated in three computa-
tional scenarios the hypothetical peptide building (i) re-
sulting from the Miller experiments on the lightning-in-
duced amino acid generation by using the experimentally 
observed monomer abundances, (ii) considering the ini-
tial conditions of the Fox & Harada experiments as well 
as (iii) reproducing the Rode profile taking into account 
the starting mixtures of the Rode experiments. The latter 
allowed us to perform extrapolations of the future and 
past states of peptide building under those salt-induced 
conditions, i.e. the hypothetical building of longer pep-
tides than dimers and the inverse process, respectively.

Our computational model intends to recreate the 
prebiotic scenario from a discrete dynamics system that 
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satisfies the Markov conjecture. This computational 
scheme allows multiple variables to delimit the model af-
fecting neither the complexity nor the required process-
ing time, due to the assumption of the Markov property 
(Isaacson & Madsen, 1976). A Markov process is a sto-
chastic system in which the occurrence of a future state 
depends on the immediately previous state and only on 
that previous state. Thus the set of random variables 
{Xn} in a process is said to have the Markov proper-
ty if it is verified that P{Xn=jn | Xn-1 =jn-1, Xn-2 =jn-2,..., 
X0 =j0} = P{Xn=jn | Xn-1 =jn-1}. Roughly speaking, the 
Markov property is satisfied if the future location of the 
object in study depends on its present state and not on 
its past state.

From this Markov process three relevant results can 
be identified: (1) The Rode profile enabled us to build 
up a past-future profile of the prebiotic composition 
very accurately and with a minimal number of amino ac-
ids. (2) The profile of the final composition from the 
Miller experiment on amino acid monomer formation 
and those of Fox & Harada, and Rode on the amino 
acid oligomerization converges into a single profile de-
spite significantly different numbers and proportions of 
the involved amino acids as well as the circumstance 
that the Rode approach results in peptide bond forma-
tion and the Fox & Harada does not and (3). The po-
larity bias in the amino acids does not seem to affect 
the composition of the prebiotic peptides constructed 
this way. The comparison of the three experimental ap-
proaches was performed by constructing a polarity ma-
trix for each one of them. The polarity matrix plays a 
fundamental role in the polarity index method that we 
have been using as a versatile fingerprint to identify the 
main pathogenic role of antimicrobial peptides (Polanco 
et al., 2012).

The dipeptide formation was considered in the spir-
it of our former toy model simulations (Polanco et al., 
2013), i.e. without taking into account the thermodynam-
ic details of a particular chemical process.

MATERIAL AND METHODS

This work is essentially a comparative study of the 
abiogenetic experiments by Miller, Fox & Harada, and 
Rode. The first two experimental approaches have al-
ready been computationally modeled by us considering 
the polarity as a bias (Polanco et al., 2013 and 2013a). 
The computational platform was designed to simulate 
the evolutionary process of polymerization based on 

the abundance and concentration of the amino acids 
to project the future trend of the dipeptide formation. 
Subsequently, a polarity matrix was calculated for each 
set of the obtained dipeptides. This polarity matrix 
was then linearized and its geometric representation as 
smooth curves was used to compare the future trend 
of the dipeptides.

To carry out the computational modeling, the same 
polar classification was considered for the amino acids 
in each experiment, i.e. the four polar groups P+, P-, 
N and NP as well as the same proportion and num-
ber of amino acids. In the Miller and Fox & Harada 
experiments particularly, the number of amino acids 
considered was like that prevailing in the prebiotic 4 
billion years ago. To recreate the Rode experiments, 
the experimental final composition of the dipeptides 
(matrix A1; Section Discrete dynamic system) was not 
used. Instead, we estimated the dipeptide formation 
starting from a prebiotic scenario based on the amino 
acid monomer abundances as predicted by the Miller 
and Fox & Harada experiments. To achieve this, each 
of the 81 dipeptide proportions were extrapolated first 
forward (expressed in matrix A6; Section Discrete dy-
namic system) and then, from the construction of 
analytic functions, backwards (expressed in the B0.9997 
matrix; Section Construction of the B6 matrix). These 
functions were verified with the dipeptide proportions 
in the Rode experiments (Section Proximity between 
two matrices). The B0.9997 matrix was verified by meas-
uring its proximity to the Rode matrix A1 (Section Past-
future profile). Then the matrices B0.9997 and A1 were it-
erated to obtain the B6 matrix, representing the distant 
future of the B0.9997, A6, and A1 matrix. Afterwards the 
proximity between the B0.9997 and A1 was verified. In 
this way we built a broader past-future scenario than 
defined by the A1 matrix from Rode’s experiments. Fi-
nally, with the B0.9997 matrix, the abiogenetic laboratory 
experiments were computationally modeled.

Then with the restrictions of abundance, polarity 
and number of amino acids, each of the abiogenetics 
experiments were computationally evolved by enabling 
and disabling the polarity bias and in all six cases the 
polarity matrices were calculated. Finally, the polarity 
matrices, expressed as smooth curves, were compared 
with and without the polarity bias. In both compari-
sons the consolidated set of genes from Delaye et al. 
(2005) of three microorganisms was included, repre-
senting the closest experimental precedent of the evo-
lutionary trend.

Table 1. A1 matrix profile.

↓(i,j)→ Asp Glu Gly Pro Lys His Ala Leu Val

Asp 0.3800 0.1700 0.7300 0.0001 0.4200 0.0001 0.1900 0.1000 0.1500

Glu 0.2300 0.7900 0.3000 0.0001 0.0100 0.0001 0.0100 0.0100 0.0000

Gly 0.2400 0.5100 6.5700 0.5400 0.9400 0.5400 0.9100 2.9400 2.0500

Pro 0.0001 0.0001 0.9600 0.0000 0.0001 0.0001 1.5500 0.8600 0.1200

Lys 1.0600 0.0100 0.3000 0.0001 0.2600 0.0001 0.2800 0.0001 0.0100

His 0.0001 0.0001 0.2500 0.0001 0.0001 0.3300 0.3200 0.1900 1.3300

Ala 0.3700 0.2500 1.2000 0.2500 0.6400 0.8500 1.8600 0.2000 1.1700

Leu 0.1100 0.0000 0.5800 0.0100 0.0001 0.2000 0.2700 0.3000 0.3800

Val 0.0000 0.0100 0.8900 0.0100 0.0100 0.5200 0.2600 0.1600 0.9600

Initial amino acid concentrations allowing dipeptide formation (in mM) (Table 6; Rode, 1999), where (i,j) = i-j linkage yields in the i,j 
amino acids. (na): Linkages not investigated yet, the value is 0.0001 instead of zero, (data supplied by Rode). (nf): Linkages analyzed 
but not found, the value should be 0.0000 dipeptide. (tr): Linkages found with traces but not measurable, we used 0.0100 (data by 
Rode).
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Discrete dynamic system

The typical Rode experiment (Rode, 1999) consisted 
of the 9 amino acids Asp, Glu, Gly, Pro, Lys, His, Ala, 
Leu and Val. The computer simulation of the prebiotic 
scenario considered a discrete dynamic system (Thom, 
1975), which can be written as a matrix equation of the 
form: Ak

 = A1 ,..., A1, k times. The A1 matrix repre-
sented the final abundance of the experimentally formed 
dipeptides. The (i,j) element of the Ak matrix is read as 
the yield of i-j peptide linkage of the i, j amino acids in 
time k. The notation we used in this paper to refer to an 
(i,j) element from the k-th matrix was Ak

(i,j).
Construction of the future. The sequence of the 

Rode system started with the A1 matrix (Table 1) (Ta-
ble 6; Rode, 1999), that multiplied by itself A1A1 pro-
duced the A2 matrix, i.e. A2

 = A1A1. Since the system 
represented the transformation occurring to the A1 

matrix in time k, then the continuous iterations of the 
A1 matrix took us to the future state of the A1 matrix. 
This procedure induced a succession of A1, A2, A3,..., 
Ak, Ak+1,… matrices, in which the left-end element cor-
responded to the past state of the system and the right-
end element to the future state of the system. It is im-
portant to note that the discrete dynamic system from a 
present state intends to build a future state, but a pre-
sent state could not be used to build a past state. The 
matrix representing the future of the A1 matrix was then 
set to 6 iterations and it was called A6 (Table 2).

Construction of the past. In order to know the past 
of the A1 matrix (Table 1) (Rode, 1999) it was necessary 
to know the information of the future trend of it, that is 
A1, A2,..., A6. As each of the 81 elements of these ma-
trices represented the final measure of a dipeptide, then 
to obtain a B matrix that represented the past of the A1 
matrix we designed 81 sixth degree polynomials, to act 
as a predictor function, to be used later to extrapolate 
the values in time to represent the past of A1 matrix. 
Here, there is an example to clarify this procedure. If we 
look for the past of the composition Asp-Asp = (1,1) 
(element located in line 1 column 1 of A matrix), we 
take all values corresponding to element (1,1) of the A1, 
A2,..., A6 matrices i.e. A1

(1,1) = 0.3800 (Table 1), A2
(1,1) 

= 0.8852 (data not shown in Tables) successively until 
A6

(1,1) = 1498.1847 (Table 2). This induces the succes-
sion of points: (xk, y(i,j))k = (1, 0.3800)1,(2, 0.8852)2,...,(6, 
1498.1847)6. With points (xk, y(i,j))k we build the poly-
nomial P(x) = 0.80772x6 – 10.74002x5 + 52.65633x4 – 
108.34695x3 + 58.31035x2 + 76.21210x – 68.51954, us-
ing the least-squares method. Finally we evaluate in this 

polynomial, all values less than (1, 0.3800) to extrapolate 
the succession to the past. Following this example let us 
take the value (1, 0.9999), the polynomial evaluated at 
this point is P(0.9999) = 0.3770, then B0.9999 matrix in its 
element (1,1) has the value 0.3770, i.e. B0.9999

(1,1) = 0.3770. 
With this procedure, points {0.9999, 0.9998 and 0.9997} 
(Table 3) are evaluated generating the B0.9999, B0.9998, B0.9997 

matrices that represent the remote past of A1, with the 
B0.9997 matrix particularly representing the most remote 
past of A1 matrix.

Construction of the B6 matrix

The B6 matrix (Table 4) was built by multiplying the 
B0.9997 matrix for 6 iterations, i.e. B6 = B0.9997B0.9997... B0.9997. 
Just as the A6 matrix represented the future of the A1 
matrix (Table 2), the B6 matrix represented the future of 
the B0.9997 matrix. Note that the B0.9997 matrix was built 
by polynomial extrapolation (Section Discrete dynamic 
system) and not as the result of experimental inspection.

Proximity between two matrices

The distance between two matrices for each of the 
81 elements was calculated through the metric |A(i,j) 
– B(i,j)|/|A(i,j)|, where (|x – y|/|x|) was the abso-
lute value between elements x and y respect to x; (i,j) = 
(1,1),...,(9,9)”.

Proximity of the A6 and B6 matrices

The A6 and B6 matrices represented the most distant 
trend to the future of the peptide linkage composition. 
The first one corresponded to the experimental data and 
the second one was the result of the discrete dynamics 
system. The verification of these matrices was regarding 
the proximity between their respective elements (Ta-
ble 5).

Proximity of the A1 and B0.9997 matrices

The A1 and B0.9997 matrices represented the trend of 
the most distant past of the peptide linkage composition, 
the first one corresponded to Rode’s experiment and the 
second one was the result of polynomial extrapolation 
(Table 6).

The Rode approach

The B0.9997 matrix represented, by polynomial ex-
trapolation, the remote past of the A1 matrix (Section 
Discrete dynamic system), and for us it was a measure 

Table 2. A6 matrix profile.

↓(i,j)→ Asp Glu Gly Pro Lys His Ala Leu Val

Asp 1498.1847 1683.0925 19797.2656 1561.2090 2998.8906 2772.1150 4597.2891 8448.6709 7919.3940

Glu 616.6678 693.5171 8157.6558 643.2009 1235.0631 1140.2960 1891.3710 3482.2202 3259.9736

Gly 12848.5840 14438.4785 169870.0000 13395.6680 25727.8184 23786.9004 39442.5078 72495.7109 67955.4922

Pro 2501.3716 2804.3193 32959.9727 2600.1177 4998.9639 4631.6011 7679.3623 14058.0732 13211.7168

Lys 871.6351 977.9959 11496.3125 906.7371 1742.7059 1611.7126 2673.3232 4904.9390 4601.7808

His 977.5129 1097.0634 12902.7900 1017.7202 1955.7428 1812.7819 3004.0120 5503.9214 5172.0156

Ala 3557.3606 3988.1301 46873.2695 3697.6851 7109.2676 6587.9189 10922.1113 19991.8398 18791.0098

Leu 1291.2758 1450.2263 17058.6523 1345.3429 2584.5276 2391.4329 3964.8489 7278.8799 6828.7632

Val 1948.6941 2189.3479 25757.8184 2031.3108 3901.7222 3610.0811 5984.6724 10991.4307 10309.9434

Future trend of peptide linkage composition (in mM) once the A1 matrix was iterated six times (Section 2.1). (na): Linkages not investigated yet. 
(nf): Linkages analyzed but not found. (tr): Linkages found with traces.
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of the abundance of the 81 different interactions from 
Rode’s experiment forming the dipeptides taking 9 ami-
no acids from that remote past. With a computer pro-
gram already used before to recreate prebiotic scenarios 
(Polanco et al., 2013), we generated a set of 3000 short 
peptides. The model used two factors: abundance and 
polarity. As a bias for the abundance we used the in-
verse relative abundance represented by the B0.9997 matrix 
(Table 7) and for the polarity we used two inverse polar-
ity distributions in which one induced a bias (Table 8-A) 
and one without bias (Table 8-B).

The Miller approach

The hypothetical peptide generation based on Miller’s 
experimental results was computed by considering a 
group of 21 amino acids, where only 11 of them (Gly, 

Ala, Val, Leu, Ile, Pro, Asp, Glu, Ser, Thr and Lys) are 
currently identified as basic amino acids, while the oth-
ers (numbered from 0 to 9): α-Amino-n-Butyric acid (9), 
α-Aminoisobutyric (0), Nva, γ-Aminobutyric acid (7), 
β-Aminoisobutyric acid (6), β-Amino-η-butyric acid (5), 
β-Alanine (4), N-Methylalanine (3), N-Ethylglycine (2), 
and Sar, were classified as prebiotic amino acids. The 21 
amino acids adopted the inverse abundance distribution 
shown in Table 9. We used two inverse polarity distribu-
tions, one that induced a bias (Table 8-A) and one with-
out bias (Table 8-B). With these restrictions 3000 pep-
tides were generated.

The Fox & Harada approach

The initial conditions of the Fox & Harada experi-
ments used for a hypothetical peptide building scenario 

Table 3. Past trend of B matrix profile.

B0.9997 matrix profile

↓(i,j)→ Asp Glu Gly Pro Lys His Ala Leu Val

Asp 0.3711 0.2264 0.1646 -0.0144 1.0552 -0.0056 0.3490 0.1025 -0.0113

Glu 0.1601 0.7860 0.4254 -0.0164 0.0042 -0.0063 0.2266 -0.0085 -0.0028

Gly 0.6139 0.2522 5.5743 0.7668 0.2325 0.1743 0.9253 0.4800 0.7390

Pro -0.0091 -0.0037 0.4615 -0.0154 -0.0052 -0.0058 0.2283 0.0021 -0.0019

Lys 0.4024 0.0027 0.7893 -0.0295 0.2496 -0.0113 0.5983 -0.0151 -0.0129

His -0.0161 -0.0065 0.4006 -0.0273 -0.0093 0.3192 0.8114 0.1859 0.4989

Ala 0.1631 -0.0011 0.6788 1.5051 0.2643 0.3023 1.7959 0.2468 0.2249

Leu 0.0504 -0.0104 2.5150 0.7779 -0.0285 0.1579 0.0827 0.2574 0.0955

Val 0.1036 -0.0191 1.6517 0.0425 -0.0169 1.2999 1.0597 0.3399 0.8994

B0.9998 matrix profile

↓(i,j)→ Asp Glu Gly Pro Lys His Ala Leu Val

Asp 0.3740 0.2276 0.1897 -0.0096 1.0568 -0.0037 0.3560 0.1050 -0.0075

Glu 0.1634 0.7873 0.4536 -0.0109 0.0061 -0.0041 0.2344 -0.0056 0.0014

Gly 0.6526 0.2681 5.9063 0.8312 0.2550 0.1995 1.0169 0.5133 0.7893

Pro -0.0060  -0.0024 0.4876 -0.0103 -0.0034 -0.0038 0.2355 0.0047 0.0020

Lys 0.4083 0.0051 0.8395 -0.0196 0.2530 -0.0075 0.6122 -0.0100 -0.0052

His -0.0107 -0.0043 0.4470 -0.0182 -0.0061 0.3227 0.8242 0.1906 0.5059

Ala 0.1720 0.0026 0.7558 1.5201 0.2695 0.3082 1.8173 0.2545 0.2366

Leu 0.0669 0.0036 2.6567 0.8053 -0.0190 0.1686 0.1218 0.2716 0.1170

Val 0.1191 -0.0127 1.7845 0.0683 -0.0079 1.3099 1.0965 0.3532 0.9196

B0.9999 matrix profile

↓(i,j)→ Asp Glu Gly Pro Lys His Ala Leu Val

Asp 0.3770 0.2288 0.2149 -0.0047 1.0584 -0.0018 0.3630 0.1075 -0.0038

Glu 0.1667 0.7886 0.4818 -0.0054 0.0081 -0.0020 0.2422 -0.0028 0.0057

Gly 0.6913 0.28406 6.2382 0.8956 0.2775 0.2248 1.1085 0.5467 0.83969

Pro -0.0029 -0.0015 0.5138 -0.0051 -0.0017 -0.0019 0.2428 0.0073 0.0060

Lys 0.4142 0.0076 0.8898 -0.0097 0.2565 -0.0037 0.6261 -0.0050 0.0023

His -0.0053 -0.0021 0.4935 -0.0091 -0.0030 0.3264 0.8371 0.1953 0.5130

Ala 0.1810 0.0063 0.8330 1.5350 0.2748 0.3141 1.8386 0.2623 0.2483

Leu 0.0835 0.0032 2.7984 0.8327 -0.0094 0.1793 0.1609 0.2858 0.1385

Val 0.1345 -0.0063 1.9173 0.0942 0.0011 1.3200 1.1333 0.3666 0.9398

The B0.9997, B0.9998, B0.9999 matrices represent the past trend of A1 matrix, where the superscript 0.9999 represents the oldest trend in the past (in 
mM). These matrices were calculated by polynomial extrapolation (Section Composition of the past), in the corresponding value. (na): Linkages 
not investigated yet. (nf): Linkages analyzed but not found. (tr): Linkages found with traces but not measurable.
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were simulated by us before (Polanco et al., 2013a). It 
considered 18 amino acids. The proportions were 10 g 
Asp and 10g Glu as well as 5 g of the remaining 16 
amino acids given in Table 10. We took these propor-
tions and two polarity distributions for the amino acids, 
one of which induced a bias (Table 8-A), and one did 
not (Table 8-B). 3000 peptides were generated. In these 
simulations, Gly was considered in the neutral polar 
group in order to compare it to the Rode’s experiment.

Polarity matrix

The polarity matrix is an array of 16 elements, 4 
rows and 4 columns that correspond to the polar 
groups P+, P-, N, and NP, called for simplicity the 
M matrix. The M matrix was an essential part of the 
mathematical-computational polarity index method 
(Polanco et al., 2012; Polanco et al., 2013; Polanco et 
al., 2014) and it was used to inform in an exhaustive 
way the polar profile of the analyzed peptides. In or-

Table 5. Proximity between the A6 and B6 matrices.

↓(i,j)→ Asp Glu Gly Pro Lys His Ala Leu Val

Asp 0.5680 0.1787 0.3347 0.7303 0.4871 0.2247 0.4416 1.8257 0.7548

Glu 0.8418 0.5681 0.7560 0.9009 0.4544 0.5512 0.7952 0.0369 0.3570

Gly 0.7197 0.2357 0.5681 0.8245 0.0334 0.2038 0.6366 0.8353 0.1394

Pro 0.3080 0.8827 0.0626 0.5681 1.3813 0.9655 0.1031 3.5127 1.8089

Lys 0.8745 0.6581 0.8070 0.9217 0.5680 0.6441 0.8376 0.1804 0.4907

His 0.8477 0.5847 0.7658 0.9051 0.4758 0.5678 0.8030 0.0059 0.3812

Ala 0.6658 0.0897 0.4868 0.7919 0.1489 0.0525 0.5679 1.1779 0.3561

Leu 0.9340 0.8201 0.8984 0.9587 0.7724 0.8124 0.9144 0.5681 0.7317

Val 0.8937 0.7101 0.8363 0.9336 0.6338 0.6984 0.8624 0.3048 0.5681

Difference in mM between |A6
(i,j) – B6

(i,j)| / |B6
(i,j)|, where the A6 matrix is the future matrix of the A1 matrix, i.e. A6 = A1A1,...,A1 (Section 2.1), and B6 ma-

trix is the future matrix of B0.9997 matrix i.e. B6= B1B1,...,B1 (Section Construction of the B6 matrix). (na): Linkages not investigated yet. (nf): Linkages 
analyzed but not found. (tr): Linkages found with traces but not measurable.

Table 6. Proximity between A1 and B0.9997 matrices.

↓(i,j)→ Asp Glu Gly Pro Lys His Ala Leu Val

Asp 0.0240 0.2491 3.4350 1.0069 0.6020 1.0179 0.4556 0.0244 14.2743

Glu 0.4366 0.0051 0.2948 1.0061 1.3810 1.0159 0.9559 2.1765 1.0000

Gly 0.6091 1.0222 0.1786 0.2958 3.0430 2.0981 0.0165 5.1250 1.7740

Pro 1.0110 1.0270 1.0802 1.0000 1.0192 1.0172 5.7893 408.5238 -64.1579

Lys 1.6342 2.7037 0.6199 1.0034 0.0417 1.0088 0.5320 1.0066 1.7752

His 1.0062 1.0154 0.3759 1.0037 1.0108 0.0338 0.6056 0.0221 1.6659

Ala 1.2685 228.2727 0.7678 0.8339 1.4215 1.8118 0.0357 0.1896 4.2023

Leu 1.1825 1.0000 0.7694 0.9871 1.0035 0.2666 2.2648 0.1655 2.9791

Val 1.0000 1.5236 0.4612 0.7647 1.5917 0.6000 0.7546 0.5293 0.0674

Difference in mM between |A1
(i,j) – B0.9997

(i,j)| / |B0.9997
(i,j)|, where A1 matrix is Rode’s matrix (Section Discrete dynamic system), and B0.9997 matrix is cal-

culated by polynomial extrapolation (Section Discrete dynamic system). (na): Linkages not investigated yet. (nf): Linkages analyzed but not found. 
(tr): Linkages found with traces but not measurable.

Table 4. B6 matrix profile.

↓(i,j)→ Asp Glu Gly Pro Lys His Ala Leu Val

Asp 3468.3539 1427.9499 29754.8119 5788.8016 2016.6014 2263.4513 8232.5218 2989.9498 4512.9504

Glu 3896.8746 1605.6718 33436.3624 6493.0943 2263.7709 2540.5702 9233.9082 3358.2850 5070.1504

Gly 45837.3684 18890.3222 393346.7766 76325.0849 26616.2255 29876.5149 108542.2963 39499.9936 59642.7125

Pro 3614.7631 1489.5075 31019.1610 6020.6646 2099.2198 2356.5065 8562.0379 3115.1917 4703.6017

Lys 6943.2927 2860.1526 59577.4586 11573.1421 4033.8101 4528.3688 16458.4902 5984.5106 9034.9666

His 6419.0169 2641.6774 55083.6518 10719.1386 3731.1447 4194.6284 15245.6483 5536.4891 8357.8872

Ala 10644.5081 4381.1817 91336.8505 17771.8123 6187.6481 6952.6196 25275.4589 9179.4633 13856.6804

Leu 19561.4276 8063.2945 167866.5916 32557.2473 11356.4518 12745.3528 46299.0242 16854.8332 25451.0315

Val 8336.9633 7550.8095 157358.1012 30583.9222 10653.7057 11970.3675 43497.0265 15810.2508 23869.7528

Trend to the future of peptide linkage composition (in mM) from B0.9997 matrix (Section Composition of the past). (na): Linkages not investigated 
yet. (nf): Linkages analyzed but not found. (tr): Linkages found with traces but not measurable.
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der to build this matrix from the set of 3000 peptides 
taking into account the experiments of Rode, Miller 
and Fox & Harada with the described hypothetical 
peptide building extrapolations, we took the 3000 se-
quences in terms of their amino acids and translated 
them into the equivalent of their polar groups with the 
following convention: His, Arg and Lys were trans-
lated to the first group; Asp and Glu to the second 
group; Gly, Ser, Thr, Cys and Tyr to the third group 
and α-amino-n-butyric acid (9), α-aminoisobutyric (0), 
Nva, γ-aminobutyric acid (7), β-aminoisobutyric acid 
(6), β-amino-η-butyric acid (5), β-alanine (4), N-meth-
ylalanine (3), N-ethylglycine (2), and Sar, Ala, Leu, 

Pro, Val, Trp, Met, Phe and Ile were translated to the 
fourth group.

In this way, the file of amino acid sequences was 
re-written in terms of an alphabet of 4 numbers {1, 2, 
3, and 4}. After this step the number of polar interac-
tions was counted, reading each sequence from left to 
right by pairs every time. To illustrate this procedure 
in the sequence EEGPKHKDEV the polar equivalent 
is 2234111224. At this stage, the initial polarity matrix 
is equal to zero, i.e. M(i,j) = 0. When we start read-
ing the sequence, from left to right, we find the posi-
tion (2,2), therefore we add 1 in M matrix, i.e. M(2,2) 
= 1, after counting this first interaction we move one 
place to the right, to find the interaction (2,3), and we 

add 1 to this position, i.e. 
M(2,3) = 1, and so forth 
until we find the interac-
tion (4,1) and add 1 inci-
dent i.e. M(4,1) = 1. Note 
that in the following two 
runs the interaction (1,1) 
is repeated, therefore in-
teraction (1,1) is 2, i.e. 
M(1,1) = 2, and so on suc-
cessively until the end, 
then we continue with 
the next sequence.

Polar profile of prebiotic 
peptides

The M polarity matrix 
collected all the peptide 
combinatorial interactions 
built with the prebiotic 
computational model. In 

Figure 1. Linear polar interaction between simulated peptides formed in the Rode, Miller, and 
Fox & Harada approach. 
The 16 columns on the x-axis correspond to 16 polar interactions from the polarity matrix without 
polar bias (Table 11).

Table 7. Rode matrix of pre-established values by abundance.

↓(i,j)→ Asp Glu Gly Pro Lys His Ala Leu Val

Asp 27 44 61 250 9 250 29 98 250

Glu 62 13 24 250 250 250 44 250 250

Gly 16 40 4 13 43 57 11 21 14

Pro 250 250 22 250 250 250 44 250 250

Lys 25 250 13 250 40 250 17 250 250

His 250 250 25 250 250 31 12 54 20

Ala 61 250 15 7 38 33 6 41 44

Leu 198 250 4 13 250 63 121 39 105

Val 97 250 6 235 250 8 9 29 11

Inverse relative abundances in B0.9997 matrix (Section Discrete dynamic system). (na): Linkages not investigated yet. (nf): Linkages analyzed but not 
found. (tr): Linkages found with traces but not measurable.

Table 8. Polarity composition by lateral chain.

A bias B bias

P+ P– N NP P+ P– N NP

P+ 99 21 85 95 P+ 100 100 100 100

P- 21 99 85 95 P– 100 100 100 100

N 60 60 85 95 N 100 100 100 100

NP 60 60 85 95 NP 100 100 100 100

Inverse relative polarities by lateral chain: [P–] polar, [N] neutral, [P+] basic hydrophilic and [NP] non-polar amino acids. A bias: with polar bias, B 
bias: without polar bias.
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order to interpret the M matrix, it was normalized to 
1 and ordered in a column-vector of 16 positions (Table 
11). In this way the column-vector contained the polar 
relative distribution of the sequences generated by the 
model. From this column-vector, a graph was drawn with 
smooth curves for the four scenarios described (Figs. 
1, 2).

Preserved genes

The same number 
of E. coli, M. jannaschii 
and S. cereviasiae used 
by Delaye and cowork-
ers (Delaye et al., 2005) 
was used here, extracted 
from the KEGG data 
base (Kanehisa et al., 
2000) for a previous 
publication (Polanco et 
al., 2013).

Past-future profile

The terms “remote 
past” or “distant future” 
should be understood 
as approximations. The 
past and future pro-
files result from matrix 
multiplications and the 
construction of analyti-
cal functions. It is not 
possible to quantify a 
time-scale and for that 
reason the kinetics of 
dipeptide formation in 
our simulated scenari-
os cannot be defined. 
However, it is possible 
to affirm that these ap-
proximations by analytic 
functions have enabled 
us to build a past-future 
scenario with a time pe-
riod large enough to be 
compared with the set 
of preserved genes (Sec-
tion Preserved genes).

The exponents or 
superscripts used in 
the estimation of the 
remote past (0.9997, 
0.9998, and 0.9999) are 
not arbitrary. Integer 
values would have pro-
duced extremely high 
values in the final con-
centrations. Therefore 
the selection of the ex-
ponents was related to 
the analytic functions. 
In the case of the su-
perscripts used for the 
distant future (1, 2, ..., 
6), they were integer 
numbers, as the multi-
plication of the resulting 
matrices did not induce 
extreme concentration 
values.

RESULTS

The analysis of similarities between the A6 matrix, 
which represents the future state of the dipeptides com-
position from Rode’s experiment and the B6 matrix, ob-
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tained by polynomial extrapolation, shows a small differ-
ence between the 81 elements (Table 5). The same small 
difference is observed between the A1 matrix, represent-
ing the initial dipeptide composition from the Rode’s 
experiment and the B0.9997 matrix built with the discrete 
dynamic system (Table 6).

Interestingly, the bias by polarity did not alter the po-
lar profile of the peptides significantly (Table 9). In all 
cases the percentage difference (+/-) between the two 
distributions with and without bias was not significant.

The curves of all three computational scenarios, either 
with or without the polarity bias (Figs. 1–2), almost pre-
served the same maximum and minimum points, despite 
the fact that the amino acid numbers and participation 
percentages were different.

The Fox & Harada distribution (Fig. 2, column 6) re-
veals a maximum of Glu and Asp as well as the Rode 

distribution (Fig. 2, column 
11). Something similar oc-
curs with Gly.

The preserved protein 
distribution (Section Pre-
served genes) shows an 
almost total coincidence 
when the three scenarios 
without polar bias were 
compared (Fig. 1). It does 
not happen the same way 
for the scenarios with po-
lar bias (columns 2, and 6; 
Fig. 2).

DISCUSSION

According to our simula-
tions of short peptide for-
mation, the polarity matri-

ces of the discrete dynamics system based on the Miller, 
Fox & Harada, and Rode approach, were nearly coinci-
dent and converged into the same profile regardless of 
the bias induced by the polarity, the last profile is also 
consistent with the set of preserved genes (Polanco et al., 
2013). From the mathematical point of view, we consid-
er the starting 9 amino acids used in the Rode experi-
ments as a basis (Poole, 2011), i.e. the minimum number 
of elements in a set capable of generating that set. We 
do not know if 9 amino acids are in fact the minimum 
possible to induce the same profile as in the hypotheti-
cal peptide formation based on the Miller and Fox & 
Harada approach. Nevertheless, they represent 40% of 
those generated in the Miller experiment and 50% of 
those in the starting conditions of the Fox & Harada ex-
periment. In this regard, the Rode experiment in itself 
is important, since it can open the discussion about the 

Figure 2. Same as Fig. 1 taking into account the polar bias during the peptide formation

Table 10. Fox & Harada matrix of pre-established values by abundance.

Arg Cys Ala Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val Glu Asp

Arg 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Cys 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Ala 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Gly 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

His 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Ile 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Leu 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Lys 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Met 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Phe 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Pro 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Ser 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Thr 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Trp 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Tyr 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Val 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 85 85

Glu 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 3 3

Asp 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 3 3

Matrix of pre-established values by abundances used in Fox & Harada’s hypothetical model (Polanco et al., 2013a) (Section The Fox & Harada ap-
proach).
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minimum number of amino acids capable to generate a 
prebiotic profile of the proteins.

Our results indicate that the relative abundance of the 
amino acids is the most influential aspect for the sequen-
tial characteristics of the “first peptides” as it is shown 
by the coincidental distribution of the three scenarios 
that do not seem to be greatly affected by a polarity bias. 
This last observation could lead to the modeling of a 
prebiotic scenario with greater granularity, since it would 
be possible to prioritize the involved biases and use a 
hierarchical hidden Markov model (Fine et al., 1998) where, 
particularly the abundance, would be a non-visible com-
ponent and the amino acid profile would be the visible 
element to be determined. Computer simulations in this 
direction are under progress because the mathematical 
profile of this type of models allows considering several 
biases, without increasing the computational complexity.

SOFTWARE RESOURCES

We calculated the discrete dynamic system with the 
Bluebit.NET Matrix Library platform. NML http://
www.bluebit.gr/matrix-calculator/accessed July 9, 2013; 
and the matrices: B0.9997, B0.9998, B0.9999 with: GNU Oc-
tave http://www.gnu.org/software/octave/accessed July 
16, 2013. The formation of short prebiotic peptides 
from mathematical-computational program (Polanco et 
al., 2013) was written in FORTRAN 77 and executed 
on a Fedora 14 Unix-type platform (GNU). We run the 
program from 1 up to 50 generations in an HP Work-
station Z210 — CMT — 4 x Intel Xeon E3-1270/3.4 
GHz (Quad-Core ) — RAM 8 GB — SSD 1 x 160 GB 
— DVD SuperMulti — Quadro 2000 — Gigabit LAN, 
Linux Fedora 14, 64-bits. Cache Memory 8 MB. Cache 
Per Processor 8 MB. RAM 8 GB.

CONCLUSIONS

Using the discrete dynamic system based on the per-
centage composition of peptide linkages from Rode’s ex-
periment on salt-induced peptide formation, we observed 
that, instead of the polarity bias, the abundance bias on 
the amino acids plays a major role in the sequential char-
acteristics of the dipeptides. Our simulations based on 
the Miller, and Fox & Harada experiments converge 
with the simulation based on the Rode experiment, into 
a unique profile, being the latter, coincident with the ex-
perimental preserved genes.
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Table 11. Polar profile comparative

Miller approach Fox & Harada approach Rode approach

# Polar interac-
tion With bias Without bias +/- With bias Without bias +/- With bias Without bias +/-

1 P+ – P+ 0.0000 0.0000 0.00 0.0038 0.0039 0.00 0.0054 0.0352 0.03

2 P+ – P – 0.0000 0.0000 0.00 0.0375 0.0086 0.03 0.1024 0.0096 0.09

3 P+ – N 0.0000 0.0000 0.00 0.0103 0.0104 0.00 0.0154 0.0248 0.01

4 P+ – NP 0.0001 0.0001 0.00 0.0210 0.0213 0.00 0.0115 0.0257 0.01

5 P - – P+ 0.0000 0.0000 0.00 0.0367 0.0083 0.03 0.1056 0.0100 0.10

6 P - – P - 0.0000 0.0000 0.00 0.5437 0.5018 0.04 0.0305 0.1309 0.10

7 P - – N 0.0143 0.0085 0.01 0.0229 0.0253 0.00 0.0214 0.0215 0.00

8 P - – NP 0.0289 0.0191 0.01 0.0481 0.0491 0.00 0.0052 0.0342 0.03

9 N – P+ 0.0000 0.0000 0.00 0.0107 0.0107 0.00 0.0044 0.0160 0.01

10 N – P – 0.0158 0.0099 0.01 0.0221 0.0241 0.00 0.0207 0.0301 0.01

11 N – N 0.1092 0.0971 0.01 0.0187 0.0264 0.01 0.5723 0.0575 0.51

12 N – NP 0.2049 0.2034 0.00 0.0391 0.0578 0.02 0.0335 0.1416 0.11

13 NP – P+ 0.0001 0.0001 0.00 0.0217 0.0215 0.00 0.0191 0.0342 0.02

14 NP – P - 0.0274 0.0176 0.01 0.0469 0.0483 0.00 0.0094 0.0260 0.02

15 NP – N 0.2064 0.2050 0.00 0.0390 0.0576 0.02 0.0217 0.1409 0.12

16 NP – NP 0.3927 0.4391 0.05 0.0777 0.1248 0.00 0.0214 0.0352 0.24
Comparison of  the computed relative sequence distributions. (+/-): Percentage difference in the computational model for both biases: |model with 
bias – model without bias|, where || represents the absolute value.
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