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Oxygen is one of the most important molecules on Earth 
mainly because of the biochemical symmetry of oxygen-
ic photosynthesis and aerobic respiration that can main-
tain homeostasis within our planet’s biosphere. Oxygen 
can also produce toxic molecules, reactive oxygen spe-
cies (ROS). ROS play a dual role in biological systems, 
since they can be either harmful or beneficial to living 
systems. They can be considered a double-edged sword 
because at moderate concentrations, nitric oxide (NO•), 
superoxide anion, and related reactive oxygen species 
play an important role as regulatory mediators in sig-
nalling processes. Many of the ROS-mediated responses 
actually protect the cells against oxidative stress and re-
establish “redox homeostasis”. On the other hand, over-
production of ROS has the potential to cause damage. In 
the recent decades, ROS has become a focus of interest 
in most biomedical disciplines and many types of clinical 
research. Increasing evidence from research on several 
diseases shows that oxidative stress is associated with 
the pathogenesis of diabetes mellitus, obesity, cancer, 
cardiovascular diseases, inflammation, ischaemia/reper-
fusion injury, obstructive sleep apnea, neurodegenera-
tive disorders, hypertension and ageing.
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INTRODUCTION

This is a good time for a broad overview that sum-
marizes the main principles of redox regulation. We 
are now living in a particularly exciting time of oxida-
tive stress research where information from different 
fields and independent approaches is falling into place 
and beginning to reveal an important portrait. In text-
book style, this review describes the current knowledge 
and paradigms but does not discuss future research di-
rections, historical controversies, or experimental models. 
Moreover, it was not within the scope of this review to 
deal with all the details. Even the more than 200 refer-
ences cited here do not cover all relevant publications in 
the field.

Historic Background

The world of free radicals in biological systems was 
explored in 1956 by D. Harman who proposed the con-
cept of free radicals playing a role in ageing (Harman, 
1956). In 1977, Mittal and Murad provided evidence that 
the hydroxyl radical (•OH) stimulates activation of gua-

nylate cyclase and formation of the “second messenger” 
cyclic guanosine monophosphate (cGMP). Since then, a 
large body of evidence has accumulated that living sys-
tems have not only adapted to a coexistence with free 
radicals but have developed various mechanisms for the 
advantageous use of free radicals in various physiologi-
cal functions. There are several definitions of the term 
“free radical”, as well as debates about whether the term 
“free” is unnecessary. “Radical” and “free radical” are 
frequently used interchangeably. Any reactive molecule 
with an unpaired electron is traditionally represented 
by the application of a superscript dot (•). Originally, 
“free” was used by chemists to distinguish between R• 
and R•-X•, R• being free “radical” and R• in R•-X• being 
a bound “radical”. We accept a simple definition that a 
free radical is any atom (e.g., oxygen, nitrogen) or group 
of atoms or molecular species capable of independent 
existence that contains at least one or more unpaired 
electrons in the outermost shell configuration (Halliwell 
& Gutteridge, 1989). Free radicals are also known as 
reactive oxygen species (ROS) or reactive nitrogen spe-
cies (RNS) (Halliwell & Gutteridge, 2000). This unpaired 
electron usually gives a considerable degree of reactivity 
to the free radical.

MAJOR TYPES OF FREE RADICALS

Reactive Oxygen Species (ROS)

The causes of the poisonous properties of oxygen 
were obscure prior to the publication of Gershman’s 
free radical theory of oxygen toxicity in 1954, which 
states that the toxicity of oxygen is due to partially re-
duced forms of oxygen (Gershman et al., 1954). Oxy-
gen-centred free radicals are those in which an unpaired 
electron is on an oxygen atom and contain two unpaired 
electrons in the outer shell. When free radicals “steal” 
an electron from a surrounding compound or molecule a 
new free radical is formed in its place. In turn, the newly 
formed radical then looks to return to its ground state 
by stealing electrons with antiparallel spins from cellular 
structures or molecules. Thus the chain reaction contin-
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ues and can be “thousands of events long” (Valko et al., 
2006).

Radicals derived from oxygen represent the most im-
portant class of radical species generated by organisms 
(Miller & Aust, 1988). Any free radical involving oxygen 
can be referred to as reactive oxygen species (ROS). A 
major consequence of oxidative stress is damage to nu-
cleic acid bases, lipids, and proteins, which can severely 
compromise cell functioning and viability or induce a 
variety of cellular responses through generation of sec-
ondary reactive species, ultimately leading to cell death 
by necrosis or apoptosis (Halliwell, 2001; Klaunig & Ka-
mendulis, 2004; Stocker & Keaney, 2004). However, de-
finitive evidence for this association has often been lack-
ing because of recognised shortcomings with biomarkers 
and/or methods available to assess oxidative stress status 
in humans. Emphasis is now being placed on biomarkers 
of oxidative stress, which are objectively measured and 
evaluated as indicators of normal biological and patho-
genic processes or pharmacologic responses to therapeu-
tic intervention. ”Redox” or oxidation-reduction reac-
tions are those reactions that involve exchange of elec-
trons between molecular species.

One of the most common and important oxygen free 
radicals is the superoxide anion (O2

•–), which can be 
dismutated to form hydrogen peroxide (H2O2) and the 
highly reactive hydroxyl radical (•OH) in the presence of 
Fe2+ and trace metals (Valko et al., 2005). At high con-
centrations, ROS can be important mediators of dam-
age to cell structures, nucleic acids, lipids and proteins 
(Valko et al., 2006). Excessive generation of ROS may 
lead to stimulation of inflammatory process, secretion of 
chemotactic factors, growth factors, proteolytic enzymes, 
lipoxygenases, and cyclooxygenases, inactivation of an-
tiproteolytic enzymes and activation of oncogenes and 
transcription factors (Kehrer, 1993; Jamieson, 1989). It 
is well established that oxygen free radicals and their me-
tabolites can induce direct cell injury, which may activate 
a cascade of radical reactions promoting the disease. Per-
manent modification of genetic material resulting from 
these oxidative damage incidents represents the first 
step involved in mutagenesis, carcinogenesis and ageing 
(Dalle-Donne et al., 2006; Jenner 2003; Sayre et al., 2001; 
Santos et al., 2005; Wang et al., 1996). In the study of 
age-related increases in concentrations of oxidised bio-
molecules, disparities have been observed between in-
tracellular and extracellular proteins. The concentrations 
of oxidative markers were found to increase with age in 
extracellular proteins more than in intracellular proteins 
(Linton et al., 2001). This disparity might be explained by 
a difference in turnover between extracellular (hours to 
days) and intracellular proteins (minutes to hours). The 
difference in homeostatic control between extra- and in-
tracellular proteins might also play a role. ROS-derived 
radicals operate at low but measurable concentrations in 
the cells. Their “steady-state” concentrations are deter-
mined by the balance between their rates of production 
and removal by various antioxidants.

The various roles of enzymatic antioxidants (SOD, 
catalase, glutathione peroxidase) and non-enzymatic an-
tioxidants (vitamins C and E, carotenoids, lipoic acid 
and others) in the protection against oxidative stress can 
be found in numerous papers (Catani et al., 2001; Hi-
rota et al., 1999; Miller et al., 2005; Sharoni et al., 2004). 
Oxidative stress-induced peroxidation of membrane 
lipids can be very damaging because it leads to altera-
tions in the biological properties of the membrane, such 
as the degree of fluidity, and can lead to inactivation of 
membrane-bound receptors or enzymes, which in turn 

may impair normal cellular function and increase tissue 
permeability (Bailey et al., 2003). Products of lipid per-
oxidation such as malondialdehyde (MDA), 4-hydroxy-
2-nonenal (HNE), 2-propenal (acrolein) and isoprostanes 
are commonly used as biomarkers of oxidative damage 
(Cracowski et al., 2002; Montuschi et al., 2004). Proteins 
are major targets for ROS because of their high overall 
abundance in biological systems. Since proteins are pri-
marily responsible for most of cell activities, their per-
oxidative damage by ROS is of particular importance. It 
has been estimated that proteins can scavenge the ma-
jority (50%–75%) of reactive species generated (Davies 
et al., 1999). Exposure of proteins to ROS may alter 
every level of protein structure from primary to qua-
ternary (if multimeric proteins), causing major physical 
changes in protein structure. Oxidative damage to pro-
teins is induced either directly by ROS or indirectly by 
reaction of secondary by-products of oxidative stress and 
can occur via different mechanisms leading to peptide 
backbone cleavage, cross-linking and/or modification of 
the side chain of virtually any amino acid (Dean et al., 
1997; Stadtman & Berlett, 1997). Several mechanism in 
vivo produce ROS. O2

•– results from mitochondrial elec-
tron transport chain leakage, ischaemia-reperfusion, auto-
oxidation reactions, respiratory burst involving phagocitic 
cells, and continuous production of O2

•– by the vascular 
endothelium to neutralise nitric oxide (NO•) (Young & 
Woodside, 2001).

The primary mechanism of O2
•– production during 

exercise appears to be from mitochondria. H2O2 is pro-
duced by a variety of intracellular reactions, although the 
predominant pathway is by dismutation of O2

•– by the 
enzyme superoxide dismutase (SOD) (McCord & Fri-
dovich, 1988; Halliwell, 1999). By far the most widely 
known mechanism of formation in vivo of the extremely 
pernicious •OH is the transition metal-catalysed (Fenton 
chemistry) decomposition of O2

•– and H2O2. Within vas-
cular endothelial cells the primary site of ROS genera-
tion is the electron transport chain of mitochondria. Al-
though most of molecular oxygen is reduced at complex 
IV to water, 1–4% of the oxygen is incompletely re-
duced to O2

•–, which can yield other ROS via numerous 
enzymatic or non-enzymatic reactions (Zhang & Gutter-
man, 2007).

Superoxide anion (O2
•–)

Molecular oxygen has a unique electronic configu-
ration and is itself a di-radical with two such unpaired 
electrons (Miller et al., 1990). If a single electron is added 
to the ground-state O2 molecule, it must enter one of the 
π antibonding orbitals. The product is called superoxide 
anion (O2

•–) and the production of O2
•– occurs mostly 

within the mitochondria (electron transport chain) of 
a cell (Halliwell & Gutteridge, 1989; Cadenas & Sies, 
1998). Physiological concentrations of O2

•– approach 
10 μM (Cuzzocrea et al., 2001) and, compared with other 
free radicals, O2

•– has a relatively long half-life (Benton et 
al., 1976) that enables diffusion within the cell thereby 
increasing the number of potential targets. Beside O2

•–, 
other biologically relevant free radicals derived from oxy-
gen are the perhydroxyl radical (protonated superoxide, 
HO2

•–), the hydroxyl radical (•OH), and free radical nitric 
oxide (NO•). With only one unpaired electron, superox-
ide is less of a radical than is O2 itself, despite its “super” 
name. O2

•–, arising either through metabolic processes 
or following oxygen activation by physical irradiation, 
is considered the primary ROS and can further interact 
with other molecules to generate secondary ROS such 
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as lipid radicals, either directly or prevalently through en-
zyme or metal-catalysed processes (Valko et al., 2005). As 
a redox-active species, O2

•– can reduce some biological 
materials (e.g., cytochrome c) and oxidise others such as 
ascorbate. During energy transduction, a small number 
of electrons “leak” to oxygen prematurely, forming the 
oxygen free radical O2

•– (Valko et al., 2004; Kovacic et 
al., 2005). Complex I can produce O2

•– as well as hy-
drogen peroxide (H2O2) through at least two different 
pathways. During forward electron transfer and during 
reverse electron transfer only very small amounts of O2

•– 
are produced, less than 0.1% of the overall electron flow 
(Murphy, 2009; Hansford et al., 1997). Complex I might 
be the most important site of O2

•– production within mi-
tochondria, with up to 5% of electrons being diverted to 
superoxide formation (Muller et al., 2008). Measurements 
on submitochondrial particles suggest an upper limit of 
1–3% of all electrons in the transport chain “leaking” to 
generate O2

•– instead of contributing to the reduction of 
oxygen to water (Boh et al., 1982). O2

•– is produced from 
both complexes I and III of the electron transport chain 
and once in its anionic form it is too strongly charged to 
readily cross the inner mitochondrial membrane. These 
two complexes are the main sites of mitochondrial O2

•– 
production (Barja, 1999; Muller et al., 2004).

Recently it has been demonstrated that complex I-
dependent O2

•– is exclusively released into the matrix 
and no detectable levels escape from intact mitochon-
dria (Muller et al., 2004). This finding fits well with the 
proposed site of the electron leak at complex I, namely 
the iron-sulphur clusters of the hydrophilic arm. In addi-
tion, experiments on complex III show direct extramito-
chondrial release of O2

•– but measurements of hydrogen 
peroxide (H2O2) production have revealed that this could 
only account for less than 50% of the total electron leak 
even in mitochondria lacking CuZn–SOD. It has been 
proposed that the remaining 50% of the electron leak 
must be due to superoxide released to the matrix (Valko 
et al., 2007). O2

•– , in comparison with •OH, is far less 
reactive with non-radical species in aqueous solution. It 
does react quickly, however, with some other radicals, 
such as NO• or phenoxyl radicals formed by abstract-
ing hydrogen from the –OH group of the amino acid 
tyrosine (k = 1.5 × 109 M–1s–1) (Nagy et al., 2009). The 
reactivity of O2

•– with non-radicals varies depending on 
whether studies are carried out in organic solvents or in 
aqueous solution and pH is also an important determi-
nant (Buettner & Jurkiewicz, 1993).

One of the most popular theories to explain O2 toxic-
ity has been the Gerschman’s free radical theory of oxy-
gen toxicity named the Superoxide Theory of O2 Toxic-
ity (Gershman et al., 1954), which states that the toxicity 
of oxygen is due to partially reduced forms of oxygen 
and due to over-production of O2

•– by components such 
as enzymes, auto-oxidation, haem proteins, mitochondri-
al electron transport, endoplasmic reticulum or bacteria 
(e.g., Escherichia coli).

O2
•– in aqueous solution can act as a reducing agent, 

i.e. a donor of electrons, for example, it reduces the 
haem protein cytochrome c (Harel et al., 1988);
cyt c (Fe3+ + O2

•– → O2 + cyt c (Fe2+)      (1)

O2
•– can also act as an oxidising agent, e.g., it can 

oxidise ascorbate (Nishikimi, 1975; Fesseden & Verma, 
1978);
AH2 + O2

•– → A•– + H2O2 k = 2.7 × 105 M–1s–1 at 25oC 
pH = 7.4                  (2)

O2
•– does not oxidise NAPH or NADH at measur-

able rates. However, it can interact with NADH bound 
to the active site of the enzyme lactate dehydrogenase to 
form an NAD• radical (Petrat et al., 2005);
enzyme–NADH + O2

•– + H+ → enzyme–NAD• + H2O2  (3)

In summary, the tissue toxicity of O2
•– generated 

extracellularly seems to be based on its direct reactiv-
ity with numerous types of biological molecules (lipid, 
DNA, RNA, catecholamines, steroids, etc.) and from its 
dismutation to form H2O2 and the concomitant reduc-
tion of ferric ion (Fe3+) to ferrous ion (Fe2+); reaction 
of these two products yields the highly toxic hydroxyl 
radical that may cleave covalent bonds in proteins and 
carbohydrates, cause lipid peroxidation, and destroy cell 
membranes. There are three strategies available to “de-
toxify” or to prevent formation of locally produced oxy-
gen radicals:
— to deliver SOD (superoxide dismutase) or an SODm 
(superoxide dismutase mimetic) to the area
— to deliver catalase or a related peroxide scavenger or
— to chelate the trace iron that catalyses the reaction.

Hydroxyl radical (•OH)
•OH is the neutral form of the hydroxide ion. It is 

short-lived (~10-9s) (Pryor, 1966; Pastor et al., 2000) but 
reacts very rapidly with almost every type of molecule 
found in living cells: sugars, amino acids, phospholipids, 
DNA, and organic acids. Indeed, •OH is the most reac-
tive oxygen radical known, with a highly positive reduc-
tion potential of +2310 mV (Koppenol & Butler, 1985; 
Buettner & Jurkiewicz, 1993; Frelon et al., 2003; Jezows-
ka-Bojczuk et al., 2002; Vergely et al., 2003). •OH can be 
generated in biologically relevant systems by multiple re-
actions including:

Fenton chemistry (the interaction of copper or iron)

Fe2+ + H2O2 Fe3+ + •OH + HO–

Haber-Weiss reaction (free radical formed from O2
•– and H2O2)

O2
•–+H2O2 •OH + O2 + HO–

The Haber–Weiss reaction (Haber & Weiss, 1932) 
might provide a means to generate more toxic radicals. 
Although the basic reaction has a second order rate 
constant of zero in aqueous solution and thus it cannot 
take place under physiological conditions, the ability of 
iron salts to serve as catalysts was discussed by those au-
thors. Because transition metal ions, particularly iron, are 
present at low levels in biological systems, this pathway 
(commonly referred to as The Iron-Catalysed Haber–
Weiss Reaction) has been widely postulated to account 
for the in vivo generation of the highly reactive •OH. If 
•OH radicals meet each other, they can form dimers, 
thus yielding hydrogen peroxide (Bielski et al., 1984):
•OH + •OH→ H2O2 k = 5 × 109 M–1s–1        (4)

Although this reaction has a high rate constant very 
near the diffusion limit (diffusion-controlled), it is un-
likely to occur in vivo because the steady-state concentra-
tion of •OH is effectively zero (Hynes et al., 1988). Thus, 
when produced in vivo •OH reacts close to its site of 
formation within two molecular diameters (Pryor, 1966). 
The redox state of the cell is largely linked to the transi-
tion metals (iron and copper) and is maintained within 
strict physiological limits. Preventing metal ions from re-
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dox cycling is an alternative mechanism to inhibit •OH 
formation. Reactions of •OH can be classified into three 
main types:
— hydrogen abstraction
— addition
— electron transfer.

The reaction of •OH with aromatic compounds often 
proceeds by addition. For example, •OH adds to the pu-
rine base guanine in DNA to form an 8-hydroxyguanine 
(8-OHdG) radical (Tokiwa et al., 1999). Similarly, •OH 
can join across a double bond in the pyrimidine base 
thymine. The thymine radical then undergoes a series of 
further reactions, e.g. with O2, to give a thymine peroxyl 
radical (Cadet et al., 2002).

Peroxyl (RO2
•) and alkoxyl (RO•) radicals

RO2
• and RO• are good oxidising agents, since they 

have a tendency to accept electrons thereby undergo 
reduction themselves having highly positive E°´ values 
(~1000–1600 mV) (Buettner, 1993; Buettner & Jurkie-
wicz, 1996a), although RO• formed in biological systems 
often undergoes rapid molecular rearrangement to other 
radical species. Indeed, HO2

• which is the protonated 
form (conjugate acid, pKa ~ 4.8) of O2

•– and is usually 
termed either hydroperoxyl radical or perhydroxyl radical 
can be regarded as the simplest RO2

•. For example, RO2
• 

radicals oxidise ascorbate and NADH, the latter leading 
to O2

•– formation in the presence of O2:
RO2

• + NADH → RO2H + NAD•         (5)

NAD• + O2 → NAD+ + O2
•– k ≈ 10 9 M–1s–1      (6)

Aromatic alkoxyl and peroxyl radicals tend to be less 
reactive (Casimir, 2006), since electrons can be delocal-
ized into the benzene ring. It has been demonstrated 
that RO2

• initiates fatty acid peroxidation by two parallel 
pathways: fatty acid hydroperoxide (LOOH)-independent 
and LOOH-dependent (Aikens & Dix, 1991). These re-
actions account for much of the stimulation of lipid per-
oxidation by transition-metal ions in biological systems. 
The carbon-centred radicals are capable of reacting di-
rectly with certain biological molecules including DNA 
and albumin -SH-groups. RO2

• derived from azo-initia-
tors can induce peroxidation of lipids (Bailey et al., 2004) 
and can damage proteins, e.g. they inactivate the enzyme 
lysozyme. The ability of various antioxidants to prevent 
azo-initiator-induced lipid peroxidation or protein dam-
age is frequently used to assess antioxidant activity, e.g., 
in the TRAP (Telomere Repeat Amplification Protocol) 
assay (Falchetti et al., 1998).

Lipid peroxidation (LPO)

Lipid peroxidation (LPO) has been broadly defined by 
A. L. Tappel as “oxidative deterioration of polyunsatu-
rated fatty acids (PUFAs) “, i.e. fatty acids that contain 
more than two carbon-carbon double bonds which are 
the target of ROS (Tappel & Dillard, 1981). Polyunsatu-
rated fatty acids are abundant in cellular membranes and 
in low-density lipoproteins (LDL). The PUFAs allow for 
fluidity of cellular membranes. The membranes that sur-
round cells and cell organelles contain large amounts of 
PUFA side-chains (Dietschy, 1998; Chu & Liu, 2004). 
Membrane lipids are generally amphipathic molecules, 
i.e. they contain hydrocarbon regions that tend to cluster 
together away from water, together with polar parts that 
like to interact with water. In animal cell membranes the 
dominant lipids are phospholipids, esters based on the 
alcohol glycerol (Bartz et al., 2007). Some membranes, 

particularly plasma membranes, contain significant pro-
portions of sphingolipids and of the hydrophobic mole-
cule cholesterol. The commonest phospholipid in animal 
cell membranes is lecithin (phosphatidylcholine) (Cherry 
et al., 2007). Free-radical processes are particularly prone 
to proceed via efficient chain reactions in which the initi-
ating active radical is generated only in very low concen-
trations (Gutteridge, 1995; Hwang & Kim, 2007; Niki et 
al., 2005).

A typical example of oxidation is the well-known au-
toxidation reaction which can occur, for example, in li-
pids when O2 concentration is relatively high. The im-
portant point is that, when this type of process occurs, 
numerous product molecules can be formed for each 
initiating molecule (Sengpiel et al., 1998; Im et al., 2006; 
Triggaiani et al., 2006). Thus, what might have been a 
minor generation of radicals becomes an event of real 
significance. When a chain-breaking antioxidant such as 
vitamin C is added to the solution, it scavenges LO• and 
LO•

2 radicals and suppresses oxidation. The higher the 
ascorbic acid concentration, the longer the induction pe-
riod and the smaller the rate of oxidation during the in-
duction period. The length of induction period is directly 
proportional to the concentration of vitamin C (Niki, 
1991).

Scheme of lipid peroxidation:

Initiation of LPO is caused by an attack upon a li-
pid of any species that has sufficient reactivity to ab-
stract a hydrogen atom from a methylene (–CH2–) group 
(Aruoma et al., 1989). Fatty acids with one or no double 
bonds are more resistant to such attack than are the PU-
FAs. An adjacent double bond weakens the energy of 
attachment of the hydrogen atoms present on the next 
carbon atom, especially if there is a double bond on 
both sides of the –CH2–, yielding bis-allylic hydrogens. 
The reduction potential of a PUFA•/PUFA couple at pH 
7 has been estimated at about E°´≈ +600 mV (Buettner, 
1993; Koppenol, 1990). Hence •OH, perhydroxyl radical-
HO2

•, RO•(E°´≈ +1600 mV) and RO2
•(E°´≈ +1000 mV) 

radicals are thermodynamically capable of oxidising PU-
FAs and initiating peroxidation (Buettner, 1993).

By contrast, O2
•– is insufficiently reactive to abstract 

H from lipids; in any case, its charge should preclude it 
from entering the hydrophobic interior membrane. The 
most likely fate of carbon radicals under aerobic condi-
tions is to combine with O2, especially as O2 is a hy-
drophobic molecule that concentrates within the interior 
membranes. The double bond on the carbon atom weak-
ens the carbon-hydrogen bond allowing for easy disso-
ciation of the hydrogen by a free radical. A free radical 
will steal the single electron from the hydrogen associ-
ated with the carbon at the double bond. This in turn 
leaves the carbon with an unpaired electron and hence 
it becomes a free radical. In an effort to stabilise the 
carbon-centred free radical a molecular rearrangement 
occurs. The newly-arranged molecule is called a conju-
gated diene (CD). The CD then very easily reacts with 

(7)
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oxygen to form a RO2
• (Poirier et al., 2001). Formation 

of peroxyl radicals has been demonstrated during peroxi-
dation of many membrane systems, using spin-trapping 
methods (Chamulitrat & Mason, 1989). RO2

• are capable 
of abstracting H from another lipid molecule, i.e. an ad-
jacent fatty-acid side-chain:
ROO• + CH → -ROOH + C•          (8)

This is the propagation stage of lipid peroxidation 
(Svingen et al., 1979). The carbon radical formed can 
react with O2 to form another RO2

• and so the chain 
reaction of LPO can continue. The RO2

• combines with 
the hydrogen atom that it abstracted to give a lipid hy-
droperoxide (LOOH) (Girotti, 1998). This is sometimes 
shortened to lipid peroxide, although the latter term 
includes cyclic peroxides as well as LOOH species. A 
single initiation event can lead to formation of multiple 
molecules of peroxide as a result of the chain reaction. 
Another complexity is that the initial H abstraction from 
PUFA can occur at different points on the carbon chain. 
Thus peroxidation of linoleic acid gives two hydroper-
oxides, while that of linolenic acid gives four. Peroxida-
tion of arachidonic acid gives six lipid hydroperoxides, 
while that of docosahexaenoic acid gives ten (Tallman et 
al., 2001).

Decomposition of lipid peroxides by heating at high 
temperatures or by exposure to iron or copper ions gen-
erates a hugely complex mixture of products, including 
epoxides, saturated and unsaturated aldehydes, ketones 
and hydrocarbons. Thermal homolysis of the O–O bond 
yields radicals, which can attack other hydroperoxides 
and PUFAs (Halliwell, 2006):
ROOH → RO• + •OH             (9)

Generation within membranes and lipoproteins of 
RO2

• and RO•, aldehydes and other products of LPO can 
cause severe damage to the proteins present, e.g., peroxi-
dation of hepatocyte or erythrocyte membranes causes 
formation of high-molecular-mass protein aggregates 
within the membrane (Goebel & Schneider, 1981). The 
surface receptor molecules that allow cells to respond to 
hormones and cytokines can be inactivated during LPO, 
as are enzymes such as glucose-6-phosphatase, glycerol-
3-phosphate acyl transferase (Thomas & Poznansky, 
1990) involved in maintenance of correct balance within 
cells. Potassium channels can also be damaged as a con-
sequence of lipid peroxidation (Han et al., 2002).

In general, the overall effects of LPO are to decrease 
membrane fluidity, make it easier for phospholipids to 
exchange between the two monolayers, increase the leak-
iness of the membrane bilayer to substances that do not 
normally cross it other than through specific channels, 
and inactivate membrane-bound enzymes. Cross-linking 
of membrane proteins decreases their lateral and rota-
tional mobility. Continued oxidation of fatty-acid side-
chains and their fragmentation to produce aldehydes 
and hydrocarbons such as pentane will eventually lead to 
loss of membrane integrity. Peroxidation of erythrocyte 
membranes causes them to lose their ability to change 
shape and squeeze through the smallest capillaries (Goe-
bel & Schneider, 1981; Thomas & Poznansky, 1990).

Oral administration of large doses of peroxidised fat-
ty acids or lipids to animals leads to disease processes 
(Armstrong et al., 1984), e.g., heart damage, fatty liver or 
damage to lymphoid tissues. Not only enzymes but also 
receptors and transport proteins can be important early 
targets of oxidative damage. Damage can occur to pro-
teins involved in maintenance of essential ion gradients 
between cells and extracellular fluids, such as the Ca(II)-

ATPase and Ca(II)/Na(I) exchange systems that keep 
intracellular Ca(II) levels much lower than extracellular 
levels. The Na(I), K(I)-ATPase system in the plasma 
membranes keeps intracellular K(I) high and Na(I) low 
when compared with levels in extracellular fluids.

In summary, LPO is a free radical-related process that 
in biological systems may occur under enzymatic control, 
e.g., for the generation of lipid-derived inflammatory me-
diators, or non-enzymatically. This latter form is associ-
ated mostly with cellular damage as a result of oxidative 
stress, which also involves cellular antioxidants. It is an 
important process in oxygen toxicity. Free radicals are 
generated in a number of metabolic reactions, and lipids 
containing polyunsaturated fatty acids in cell membranes 
and lipoproteins are targets of free radical-mediated oxi-
dation (Halliwell & Gutteridge, 2000). This process of 
LPO consists of three components: initiation in which 
free radicals are formed, propagation of the radical chain 
reactions, and termination (Miller & Aust, 1988; Porter, 
1984; Buettner, 1993). Iron or other catalytic metals usu-
ally are required to initiate LPO and the free radicals 
generated, such as a lipid-derived carbon-centered radi-
cal, lipid peroxyl radical (LOO•), and lipid alkoxyl radi-
cal (LO•), propagate the chain reactions. Termination of 
LPO occurs when the free radicals in the chain propa-
gation step react with other free radicals or antioxidants 
to form nonradical short-chain hydrocarbon compounds 
(Scheme 1). Free radicals inflict damage by attacking 
polyunsaturated fatty acids, thus setting off a deleterious 
chain reaction that ultimately results in their disintegra-
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Scheme 1. Potential sites of nitric oxide reaction during 15-LOX 
oxidation of lipid (adapted from O’Donnell et al., 1999). 
Three sites of potential NO• reaction are shown. (i) During per-
oxide (LOOH) activation of LOX, 2 mol of NO• are consumed via 
reaction with an electron (e–) released from the ferrous enzyme 
(Ered) to form nitroxyl anion (NO–). Secondary reactions of NO– will 
consume further NO• molecules, for example, reaction of NO– with 
O2 or with further NO• molecules, as shown. (ii) During dioxygen-
ase turnover, NO• is consumed through reaction with EredLOO• to 
form reduced inactive enzyme (Ered) and an organic peroxynitrite 
(LONOO). This hydrolyses to the hydroperoxide (LOOH) and nitrite 
(NO2

–). (iii) At higher NO• concentrations a ferrous nitrosyl complex 
is formed, which slowly decomposes, yielding active enzyme. NO 
is consumed by enzymatic turnover of LOX.
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tion into malondialdehye, 4 hydroxy-2-nonenal and other 
harmful by-products. Polyunsaturated fatty acids (PUFA) 
are believed to be one of the keys for understanding the 
damage that can be done to cells by free radicals.

Oxidative stress enhances LPO, implicated in the pro-
motion and progression stages of carcinogenesis and 
development of atherosclerosis, in particular under con-
ditions of chronic inflammation and infections, and in 
worsening the initial tissue injury caused by ischaemic 
or traumatic brain damage. Common pathways involve 
biologically relevant ROS and RNS, which can be gener-
ated by biochemical redox reactions, phagocytes, and up-
regulation of stress-response enzymes like cyclooxyge-
nase-2, lipoxygenases and inducible nitric oxide synthase 
(Bartsch & Nair, 2006). The resulting oxidative stress is 
currently implicated in over 100 human and animal dis-
eases, including cancer, inflammatory, infectious, cardio-
vascular and neurological diseases. Exocyclic etheno- and 
propano-DNA adducts, which are formed by LPO end-
products such as 4-hydroxy-2-nonenal and malondial-
dehyde, are strong pro-mutagenic DNA lesions causing 
point mutations (Barbati et al., 2010; Valko et al., 2005).

Ascorbate radical (A•–)

Human and animal tissues contains many antioxi-
dants, water-soluble compounds such as ascorbic acid 
and glutathione and lipid-soluble antioxidants such as 
α-tocopherol and ubiquinones. Ascorbic acid or vitamin 
C is especially significant. The most important reaction 
in the inhibition of oxidation by ascorbic acid must be 
scavenging of oxygen radicals such as hydroxyl, hydrop-
eroxyl, lipid peroxyl and lipid alkoxyl radicals. It is re-
ported that ascorbic acid reacts with •OH at a rate con-
stant of 7.2 × 109–1.3 × 1010 M–1s–1 depending on the pH 
(Bielski, 1982; Cabelli & Bielski, 1983), which shows that 
the reaction is very fast and diffusion-controlled. How-
ever, this does not mean that vitamin C is a specific 
•OH scavenger, because •OH is so reactive that it can 
react with many other compounds at about similar rate. 
Vitamin C reacts with O2

•– at a rate constant of 104–105 
M–1s–1 (Bielski et al., 1975) and scavenges O2

•– at a rate 
constant of 1.6 × 104 M–1s–1 (Cabelli & Bielski, 1983). 
Singlet oxygen reacts with vitamin C at a rate constant 
of 8.30 × 106 M–1s–1 (Chou & Khan, 1983).

Oxidative damage to biomolecules is inhibited by an-
tioxidants. Frei and co-workers (Frei et al., 1988; 1989, 
Frei & Gazianot, 1993) have shown that vitamin C is a 
powerful antioxidant preventing LPO in plasma exposed 
to various types of oxidative stress. It is known that 
ascorbate can switch from anti- to pro-oxidant activity in 
vitro, depending on its concentration and the presence of 
redox-active metal ions, and thus contribute to the for-
mation of •OH, which in turn may cause lipid, DNA, 
or protein oxidation (Samuni et al., 1983; Bendich et al., 
1986). No pro-oxidant effect of ascorbate was observed 
up to a concentration of 5 mM. This confirms that in 
blood plasma transition metal ions are bound tightly 
and are not available for free radical reactions. In hu-
man plasma ascorbate is the main water-soluble antioxi-
dant (Frei et al., 1989). Compared to average concentra-
tions of ascorbate in human blood plasma (27–51 µM) 
(Lentner, 1984), its levels in human tissues are generally 
far higher. Its concentration is particularly high in the 
cornea, lens, and aqueous humor of the eye (up to 1.5 
mM) and in adrenal and pituitary glands (up to 2.5 mM). 
Brain, heart, liver, spleen, kidneys and pancreas also con-
tain high concentrations of ascorbate (up to 0.8 mM) 
(Lentner, 1984).

Vitamin C effectively scavenges superoxide and other 
ROS (Bendich et al., 1986) and plays an important role 
in the regulation of intracellular redox state through its 
interaction with glutathione (Meister, 1994; Winkler et al., 
1994). Ascorbate is an antioxidant because of the shared 
ability of the hydroxyl groups on carbons-2 and -3 to 
donate a hydrogen atom (both an electron and a proton) 
to a variety of oxidants, including oxygen- and nitrogen-
based free radicals, peroxides and superoxide (Buettner, 
1993). Ascorbate oxidation is reversible, which allows for 
recycling from its oxidised forms. Ascorbate can be one-
electron oxidised by radicals and oxidants in two suc-
cessive steps. The first one yields A•–, which owing to 
electron delocalisation over a conjugated tri-carbonyl sys-
tem is surprisingly stable and can be detected at 10 nM 
concentrations in biological fluids by EPR (Buettner & 
Jurkiewicz, 1993; Coassin et al., 1991; Mehlhorn, 1991), 
avoiding the detection of artefactual signals arising from 
freeze/thaw processes (Pietri et al., 1990), and can sub-
sequently be oxidised to dehydroascorbic acid (DHA), 
unstable and degraded to potentially toxic compounds. 
In order to prevent the accumulation of toxic ascorbate 
metabolites, cells are equipped with efficient regenerat-
ing systems. One way to achieve this is by transporting 
extracellular DHA to the cell interior after which it can 
be reduced to ascorbate. Due to the low reduction po-
tential of the A•–/AH– (E˚′ = +282 mV), AHˉ is able to 
give up one single electron to any free radical that can 
arise in biological systems or to regenerate oxidised bio-
logical radical scavengers such as vitamin E (Sharma & 
Buettner, 1993; Pietri et al., 1990; Vergely et al., 1998). 
Instead of undergoing further oxidation, two molecules 
of A•– are thought to react and dismutate to form ascor-
bate and dehydroascorbate (Bielski et al., 1975). DHA 
is unstable at physiologic pH, with a half-life of about 
6 minutes (Drake et al., 1942; Winkler, 1987). With hy-
drolysis of the lactone ring it is irreversibly converted 
to 2,3-diketo-1-gulonic acid (Bode et al., 1990; Chatter-
jee, 1970). Ascorbate loss due to ring-opening of DHA 
is wasteful of the vitamin, and cells have developed re-
dundant mechanisms to recycle DHA back to ascorbate 
(Scheme 2). A•– can be generated by an equilibrium reac-
tion of ascorbate with dehydroascorbic acid, by transi-
tion metal-dependent (Me) oxidation of ascorbate or by 
autoxidation of the ascorbate di-anion (Eqn 10).
Ascorbate– + Dehydroascorbate ↔2A•- + H+

Ascorbate + Men+→ A•- + Me(n–1)+

Ascorbate2– + O2 → A•- + O2
•–         (10)

Scheme 2. Ascorbate oxidation and recycling
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The ascorbate anion (AHˉ) can be considered the 
major endogenous water-soluble antioxidant in biologi-
cal systems. Hence measurement of A•– has been used 
as a non-invasive biomarker of oxidative stress in hu-
mans, e.g., in body fluids and reperfused organs. A•– that 
is generated by donation of a single electron to a radi-
cal species is reduced back to ascorbate by NADH-de-
pendent reductases present in microsomal membranes 
(Lumper et al., 1967; Schulze et al., 1970), as well as by 
cytosolic thioredoxin reductase (May et al., 1998). A•– re-
duction occurs with high affinity, with apparent Km val-
ues for A•– of 2 μM or less. Since ascorbate is primar-
ily a one-electron donor, these processes likely account 
for the bulk of ascorbate recycling in the cell. If there is 
A•– generated in excess of what the enzyme systems can 
handle, A•– dismutation both regenerates ascorbate and 
forms DHA. The latter is reduced by redundant high 
capacity but low affinity systems in all mammalian cells. 
For example, endothelial cells and macrophages possess 
both GSH and NADPH-dependent mechanisms for re-
cycling ascorbate (May et al., 2001, 2003), although GSH-
dependent ascorbate recycling has not been observed in 
HL-60 leukemic cells (Guaiquil et al., 1997) or human 
skin keratinocytes (Savini et al., 2000). GSH and other 
cellular thiols can also directly reduce DHA to ascorbate 
(Winkler et al., 1994), although this process is not as ef-
ficient as enzyme-mediated reduction. Since no vascular 
cells can synthesise ascorbate directly, their intracellular 
ascorbate concentrations are determined by the com-
bined actions of ascorbate transport into the cell and re-
cycling within the cell.

Singlet oxygen (1O2)

Singlet oxygen (1O2) was first observed in 1924 and 
then defined as a more reactive form of oxygen (Hal-
liwell & Gutteridge, 2000). It is the most important in 
biological systems with ample higher energy state mo-
lecular oxygen species but is not a radical since it con-
tains no unpaired electrons. Although not a free radial, 
it can be formed in some radical reactions and also can 
lead to others since it is one of the most active inter-
mediates involved in chemical and biochemical reactions. 
We need to remember that its lifetime strongly depends 
on which solvent it is generated in, e.g. in water it is 
about 3.8 μs, in hexane is 31 μs and in C6F6 (hexafluor-
obenzene) is about 3900 μs. (Foote et al., 1995). It has 
been demonstrated that 1O2 can react with many kinds 
of biological molecules such as DNA, proteins and lipids 
(Briviba et al., 1997). Since oxygen is ubiquitous and effi-
ciently quenches electronically excited states, 1O2 is likely 
to be formed following irradiation in countless situations 
and involved in various chemical and biological process 
as well as in several disease processes which can lead to 
excessive singlet oxygen formation, especially many dif-
ferent porphyrias (these diseases are caused by defects in 
the biosynthesis of haem).

Both physical and chemical methods can generate sin-
glet oxygen. Singlet oxygen is most often generated in 
the laboratory by so called photosensitization reactions 
(a certain molecule is illuminated with light, absorbs it 
and the energy raises the molecule into an excited state). 
Popular sensitizers include the dyes rose Bengal and to-
luidine blue, but also many biological compounds such 
as riboflavin, bilirubin or retinal. One well-established re-
action used in the laboratory to generate singlet oxygen 
is the reaction of H2O2 and the hypochlorite ion OCl–, 
the ionized form of hypochlorous acid (Kanofsky, 1989);
OCl–+ H2O2 → Cl–+ H2O + 1O2 (singlet)

Singlet oxygen can react with other molecules either 
chemically or can transfer upon them its excitation en-
ergy, returning to the ground state, while the other mol-
ecule (the reaction partner) enters the excited state. The 
latter phenomenon is known as quenching of singlet ox-
ygen. In the laboratory practice, several compounds are 
used as singlet oxygen scavengers. They include; azide, 
histidine, DABCO and 2-phenylisobenzofuran (Foote 
et al., 1995). It is important to note that tocopherols 
quench and react with singlet oxygen and might protect 
membranes against this species (Traber, 1994). 1O2 can 
react directly with carbon-carbon double bonds to give 
hydroperoxides and cause rapid peroxidation, however, 
the overall contribution of 1O2 to lipid peroxidation is 
still uncertain.

Singlet oxygen is difficult to detect unambiguously but 
it can be detected by three different approaches:
— by scavengers: scavengers can inhibit reactions de-
pendent on 1O2; for example, azide, carotene, ascorbate, 
DABCO, thiols and histindine (Wilkinson & Brummer, 
1981; Foote et al., 1995);
— D2O (deuterium oxide): D2O can be used to detect 
1O2 since the lifetime of singlet oxygen is 10-fold longer 
in D2O than in H2O (Parker & Stanbro, 1984). So, if 
a reaction in aqueous solution is dependent on singlet 
oxygen, it becomes greatly potentiated when it occurs in 
D2O instead of in H2O.
— luminescence: as 1O2 decays back to the ground state, 
some of the energy is emitted as light in the infrared re-
gion at 1268 nm (Krinsky, 1979).

Other detection methods include ESR, calorimetry, 
photo ionization and mass spectroscopy.

Ozone (O3)

Ozone is a form of elemental oxygen and is an irritat-
ing, acrid-smelling, colourless gas. It is not a free radical 
but a triatomic oxygen molecule and is much more un-
stable than O2. It is also a much more powerful oxidiz-
ing agent than ground-state oxygen. It is a very reactive 
gas and even at low concentrations is irritating and toxic. 
Ozone can be formed when a mixture of O2 and NO2 
is exposed to bright light. The concentration of NO2 in 
air is usually very low, because N2 and O2 do not react 
at normal temperatures. However, in the hot mixture of 
gases inside the cylinders of internal combustion engines, 
nitrogen and oxygen can react:
N2 + O2 → 2NO

NO formed inside car engines reacts spontaneously 
with O2 in air to form NO2:
2NO + O2 → 2NO2

Nitrogen dioxide is a red-brown gas that dissociates 
when irradiated with bright light:
NO2 NO + → O

The oxygen atom formed in this process is extremely 
reactive and readily attaches to a molecule of O2, form-
ing ozone.
(O2 + O → O3) (Wellburn, 1994).

Ozone levels as low as 0.5 p.p.m can cause lung dam-
age in a few hours and also induce inflammation, activat-
ing pulmonary macrophages and recruiting neutrophils 
to the lung. Damage to macrophages can also decrease 
resistance to infections. Ozone irritates the eyes and can 
oxidize proteins and lipids (Schmut et al., 1994; Berlett 
et al., 1996). Most of the inhaled O3 probably reacts in 

Temp

light
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the human body with ascorbate, GSH or urate. These 
compounds seem especially effective as O3 scavengers. 
Unlike NO2

•, O3 does not appear to directly induce li-
pid peroxidation, although free radical products resulting 
from its reactions with PUFAs might be able to do so 
(Halliwell & Gutteridge, 2000).

Hydrogen peroxide (H2O2)

Hydrogen peroxide is liquid and is toxic to most cells 
in the 10–100 μM range but is not a free radical, al-
though it can be formed from two •OH radicals:
•OH+•OH→ H2O2 k = 5 × 109 M–1s–1 (Bielski et al., 1984)

Although this reaction has a high rate constant, it is 
unlikely to occur in vivo since the steady-state concen-
tration of •OH is effectively zero. Several enzymes can 
generate H2O2 in vivo e.g., xanthine, urate, and D-amino 
acid oxidases. In addition, any biological system that 
generates O2

•– will also produce H2O2 by O2
•– dismuta-

tion. However, H2O2 is only a weak oxidizing and reduc-
ing agent and is generally poorly reactive at physiological 
levels (Brodie & Reed, 1987) but is capable of inactivat-
ing several enzymes and oxidize keto-acids such as pyru-
vate and 2-oxoglutarate. It can react with iron and pos-
sibly copper to form much more damaging species such 
as •OH. It is important to know that H2O2 can degrade 
haem proteins including myoglobin, haemoglobin and 
cytochrome c (Gutteridge, 1986).

H2O2 has also been reported to stimulate synthesis 
of the chemokine MIP-1α by macrophages (Shi et al., 
1996). It can affect the proliferation of cells and facili-
tate phagocyte adherence to endothelium by up-regulat-
ing expression of such adhesion molecules as E-selectin, 
ICAM-1 and VCAM-1 (Lo et al., 1993). It also leads to 
oxidative DNA damage by oxo-copper complexes (Za-
stawny et al., 1995).

H2O2 production rates by cells and organelles are of-
ten in the range of a few nmoles per minute. Therefore, 
methods for measuring H2O2 in the biological material 
should be sufficiently sensitive. These methods include 
reaction with dichlorofluorescin diacetate, polarographic 
detection (O2 electrode) and histochemical staining meth-
ods.

REACTIVE NITROGEN SPECIES (RNS)

Nitric oxide (NO•)

Nitric oxide (NO•) contains an unpaired electron in a 
π*2p antibonding orbital, thus it is a paramagnetic mol-
ecule and a free radical. NO• is generated by specific ni-
tric oxide synthases (NOSs), which metabolise arginine 
to citrulline with the formation of NO• via a five elec-
tron oxidative reaction (Ghafourifar & Cadenas, 2005) 
(Scheme 3). It is moderately soluble in water (7.4 ml/dl 
at 0°C) and is more soluble in organic solvents, therefore 
it can readily diffuse through the cytoplasm and plasma 
membranes (Chiueth, 1999). In human tissue NO• has 
a half-life of only a few seconds (~3–5 s) (Czapski & 
Goldstein, 1995; Ignarro et al., 1993), because it binds 
avidly with haemoglobin (Hb). It has a greater stability 
in an environment with a lower oxygen concentration 
(half-life ~ 15s). NO• reacts with molecular oxygen to 
produce nitrite (NO2

–) (Ignarro et al., 1993; Czapski & 
Goldstein, 1995). The kinetics of this reaction was stud-
ied by several research groups (Lewis & Deen, 1994; 
Kharitonov et al., 1994) and has been found to follow 

second order kinetics with respect to NO• and first or-
der with respect to O2. Inactivation of NO• in aerobic 
solutions is therefore governed by a third-order law with 
an overall rate constant in the range of 6.3 to 11.5 × 106 
M–1s–1 (Kharitonov et al., 1994; Czapski & Goldstein, 
1995). Consequently, NO• is relatively stable at concen-
trations in the nanomolar range (half-life of ~80 min at 
100 nM) but is rapidly inactivated at higher concentra-
tions (half-life of ~50 s at 10 µM). Therefore, when NO• 
is generated by a donor compound the autoxidation re-
action will be negligible in the initial phase but will be-
come progressively faster with increasing NO• concentra-
tion. The maximum rate constant of NO• disappearance 
was found k = 2 × 105 M–1s–1 due to its binding with Hb 
(Hakim et al., 1996). The 4:1 binding ratio between NO 
and Hb may be used as a tool to quantitate NO• release 
in some biological assays. If the unpaired electron is re-
moved by one-electron oxidation, nitrosonium cation 
(NO+) is produced. One-electron reduction would give 
nitroxyl anion (NO–). There are three isoforms of NOS:
neuronal NOS (nNOS) — Type I

inducible NOS (iNOS) — Type II

endothelial NOS (eNOS) — Type III

NO• possesses other unique and important chemical 
properties that are also critical with respect to its biol-
ogy. NO• is almost exclusively a monomeric radical spe-
cies at room temperature and pressure, so its reactions 
with other radicals, such as O2

•– or alkyl radicals, are ex-
tremely facile. The inherent radical nature of NO• and 
its reactions with other free radicals present in biological 
systems are important to some of its possible biological 
actions. For example, it has been proposed that NO• can 
be toxic through reaction with superoxide (O2

•–) to gen-
erate peroxynitrite (ONOO–), an oxidising agent capable 
of modifying a variety of biological molecules (Pryor et 
al., 1994). The reaction of NO• with O2 generates spe-
cies such as nitrogen dioxide (NO2) and dinitrogen tri-
oxide (N2O3) that may have biological significance. Dini-
trogen trioxide is a potent nitrosating agent that can alter 
protein function via nitrosation of critical nucleophilic 
residues (Eqn 11) (Kissner et al., 1997).

(11)

Scheme 3. Oxidation of L-arginine to L-citrulline plus NO• 
(adapted from Ghafourifar & Cadenas, 2005)
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NO2
 is also a free radical species that, unlike NO•, 

is a fairly potent oxidant, E°´ for the NO2/NO2
– cou-

ple = 1040 mV. There are a variety of potential reac-
tion pathways by which NO2

 can cause oxidation of bio-
logical molecules: hydrogen atom abstraction, addition 
to unsaturated bonds, and electron transfer reactions 
(Huie, 1994). However, it has been postulated that the 
lipophilicity of NO• and O2 allows their concentration 
to be high enough for this reaction to occur within cell 
membranes (Liu et al., 1998). The chemistry of reactions 
of NO• and derived species with thiols appears to be an 
important aspect of NO• biology (Stamler, 1995). Modi-
fication of biological molecules by NO• may occur via 
reaction with a thiol function; for example, nitrosothiols 
(RSNO) can be formed by reaction with NO• or, more 
likely, NO•-derived species. RSNO formation can be ac-
complished by the mechanism shown in Eqn 13 with a 
nucleophilic thiol. Also, RSNO formation has been pos-
tulated to occur via direct reaction of NO• with a thiol 
followed by reaction of the thiol–NO• intermediate with 
O2 (Eqns 12, 13) (Gow et al., 1997).
NO• + RSH → RSN•-OH           (12)
RSN•–OH + O2 → RSNO + O2

•– + H+      (13)

Finally, RSNO formation can occur via metal-medi-
ated processes whereby the metal binds NO• and acts 
as an electron acceptor when reacted with a thiol (Way-
land & Olson, 1974; Liu et al., 1998; Wade & Castro, 
1990; Ford 2004). This chemistry can be accomplished 
by, for example, ferric haem proteins, ultimately result-
ing in the generation of a ferrous nitrosyl adduct (Mn= 
Fe3+-haem, Mn-1=Fe2+-haem) in a process referred to as 
“reductive nitrosylation.” As indicated above, NO• can 
react with O2

•– to generate potentially deleterious oxi-
dants such as peroxynitrite (ONOO–) and NO2 (Hsiai et 
al., 2007; Patcher et al., 2007). Indeed, it has been hy-
pothesised that much of the toxicity associated with high 
levels of NO• is a result of formation of these oxidants. 
However, the ability of NO• to react with radicals also 
predicts that it can have antioxidant properties. That is, 
NO• can combine with another radical leading to ter-
mination of radical chain reactions. Probably the best 
example of the antioxidant properties of NO• is the ef-
fect it can have on lipid peroxidation (Wink et al., 1993; 
Hogg et al., 1993; Rubbo et al., 1994, 1995; Struck et al., 
1995). Free radical chain processes occur in membranes 
because the membrane PUFA are susceptible to radical 
initiation processes and undergo the well-known PUFA 
radical chain autoxidaton (Pryor, 1966, 1976). Lipid 
alkoxyl (LO•) and peroxyl (LOO•) radicals are important 
intermediates in these lipid autoxidation processes. Nitric 
oxide can behave as an antioxidant or as a pro-oxidant 
in lipid autoxidations, depending on the experimental 
conditions (O’Donnell et al., 1997; 1999; O’Donnell & 
Freeman, 2001; Hiramoto et al., 2003). The antioxidant 
action of NO• occurs by chain-breaking termination re-
actions of NO• with LO• and LOO• radicals, as in Eqns 
14,15.
LO• + NO• → LONO            (14)
LOO• + NO• → LOONO           (15)

The reaction of nitric oxide with LOO• results in the 
formation of an alkyl peroxynitrite (LOONO) which can 
homolyse to generate a geminate radical pair, NO2 and 
an alkoxyl radical (LO•). Both of these radicals can initi-
ate further radical reactions (Goldstein et al., 2004; Zhao 
et al., 2004). About 86% of these radical pairs from 
LOONO rapidly recombine to give unreactive alkyl ni-
trates (LONO2) (Goldstein et al., 2004), indicating that 

NO• can be an effective antioxidant. However, the re-
maining 14% of the radical pairs formed in the homoly-
sis of LOONO become free NO2 and LO• radicals (Eqs 
16, 17) (Abuja et al., 1997).
LOONO → LO• + NO2

 (14% yield)        (16)
LOONO → LONO2 (86% yield)         (17)

Thus, 14% of the NO• and LOO• radicals that react 
to form LOONO get effectively converted into NO2 
and LO•, a much more reactive pair. For instance, in 
abstracting a hydrogen atom from a doubly allylic posi-
tion, the rate constants for LOO• and LO• are 31 M–1 s–1 
and ~ 107 M–1 s–1, respectively (Abuja et al., 1997), and 
although NO• cannot abstract a hydrogen atom from a 
doubly allylic position in a PUFA, the rate constant for 
the reaction of NO2 with linoleic acid is 2 × 105 M–1 s–1 
(Prutz et al., 1985). In summary, through the sum of re-
actions 15–17, 86% of the LOO• and NO• radicals go 
on to form the stable product LONO2, and 14% form 
the more reactive radicals LO• and NO2.

Although NO2 is a more reactive and a more power-
ful oxidant than is NO•, reactions of NO2 with closed-
shell molecules are relatively slow compared with those 
of •OH. However, NO2 reacts rapidly with other radi-
cals. This is one reason nitrotyrosine is formed from the 
reaction of NO2 with protein tyrosyl radicals (Squadrito 
& Pryor, 2002).
NO2 + O2

•– → O2NOO–           (18)

Just as the rate of reaction of NO• with O2
•– (Eqn 

18) to form ONOO– is fast and close to the diffusion 
limit (k = 3.8–6.7 × 109 M–1s–1) (Huie & Padmaja, 1993; 
Goldstein et al., 1995; Kobayashi et al., 1995), so is the 
reaction of NO2 with O2

•– to form peroxynitrate fast 
(k = 4.5 × 109 M–1s–1) (Løgager & Sehested, 1993). This 
rate is approximately three times greater than that of 
the superoxide dismutase-catalysed dismutation of O2

•–. 
Therefore NO• is capable of outcompeting SOD for 
O2

•– in conditions such as atherosclerosis, I-R, increased 
shear stress and exercise, in which production of NO• 
and O2

•– is concomitantly increased. This implies that 
when both O2

•– and NO2 are present in the same en-
vironment, they will most likely react to form peroxyni-
trate. Because of the higher reactivity of NO2 relative to 
NO•, the formation of peroxynitrate might be somewhat 
less likely than the formation of ONOO–. Nevertheless, 
ONOO– appears to be formed under a variety of experi-
mental conditions. Goldstein and collaborators (Gold-
stein et al., 1998; Hodges & Ingold, 1999; Alvarez & 
Radi, 2001; Kirsch et al., 2001), Uppu and collaborators 
(Uppu et al., 2000) and others have implicated peroxyni-
trate during the in vitro decomposition of ONOO– in the 
presence of certain substrates that lead to the formation 
of O2

•– and NO2. Since O2
•– is ubiquitous in aerobic or-

ganisms and NO2
• can be formed endogenously by sev-

eral pathways, the formation of peroxynitrate could be 
more widespread than presently recognised, and possible 
roles for ONOO– in oxidative biology should be studied 
further. The biochemistry of peroxynitrate is very dif-
ferent from that of ONOO–. For example, in contrast 
to ONOO–, for peroxynitrate it is the conjugate base 
(O2NOO–) that is kinetically unstable. Biological oxida-
tions by peroxynitrate would then result from reactive 
intermediates that are formed during its decomposition 
and/or from direct oxidations by peroxynitrate. For ex-
ample, theoretical and experimental data suggest that sin-
glet oxygen (Eqn 19) may be produced during the un-
assisted decomposition of peroxynitrate (Goldstein et al., 
1998; Khan et al., 2000; Martinez et al., 2000; Merenyi 
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et al., 2000; Olson et al., 2003). Peroxynitrate (O2NOO–) 
is a more powerful two-electron oxidant than peroxyni-
trite; their reduction potentials are E°′(pH 7) = 1.59 V vs 
E°´(pH 7) = 1.37 V, respectively (Goldstein et al., 1998). 
Knowledge of the reaction kinetics of peroxynitrate with 
biological molecules is very limited. The kinetics of the 
reaction of peroxynitrate with methionine were studied 
recently, affording k = 34 M–1s–1 at pH 7.4 and 25°C 
(Squadrito & Pryor, 2002), which compares with 181 
M–1s–1 for the reaction of methionine with ONOO– un-
der similar conditions (Pryor et al., 1994). We are only 
beginning to understand the delicate interplay of the 
radical reactions and the generation of secondary reac-
tive species downstream from the formation of NO• and 
how these reactions can integrate with biochemical pro-
cesses.
O2NOO-→ 1O2 (singlet) + NO2

–         (19)

NO• is an abundant reactive radical that acts as an im-
portant oxidative biological signalling molecule in physi-
ological processes including neurotransmission, blood 
pressure regulation, defence mechanisms, smooth muscle 
relaxation or immune regulation (Bergendi et al., 1999). 
Interest in NO• arose because of the discovery of its 
multiple important physiological roles (Gow et al., 2000; 
Stratford et al., 1997). NO• normally functions not only 
to reduce platelet aggregation and leukocyte adhesion to 
the endothelium, but to promote vascular smooth mus-
cle relaxation and reduce endothelial cell cytokine pro-
duction. NO• concentrates in lipophilic cellular regions 
with a partition coefficient of 8:1, and can inhibit LPO 
e.g., by 15-lipoxygenase (15-LOX), a thousand times 
more potently than α-tocopherol (O’Donnell et al., 
1999). NO• has effects on neuronal transmission as well 
as on synaptic plasticity in the central nervous system. 
In the extracellular milieu nitric oxide reacts with oxy-
gen and water to form nitrate (NO3

–) and nitrite (NO2
–) 

anions (Bryan, 2006). Since NO• relaxes smooth muscle 
in blood vessel walls resulting in lower blood pressure, 
O2

•– can be a vasoconstrictor by removing NO•. Thus, 
excessive vascular O2

•– production could contribute to 
hypertension and vasospasm (Darsley-Usmar et al., 1995; 
Bailey et al., 2010).

A role for NO• has also been demonstrated in such 
human diseases as malaria where NO• appears to 
be partly involved in resistance to malarial infection 
(Riley et al., 2006), in cardiovascular disease (Levy et 
al., 2009; Strijdom et al., 2009; Rudolph & Freeman, 
2009), acute inflammation (Tilg & Moschen, 2008), 
cancer (Nanni et al., 2009; Parkins et al., 1995), neu-
rodegenerative diseases (Knott & Bossy-Wetzel, 2009; 
Zhu et al., 2007), and diabetes (Szabo, 2009; Dawson 
et al., 2009; Sobrevia & Mann, 1997). In inflammatory 
conditions, such as occurs in reperfusion, inducible 
nitric oxide synthetase can increase nitric oxide con-
centration to thousands of times normal levels. Dur-
ing reperfusion, abnormally high amounts of O2

•– con-
vert almost all available NO• to ONOO– regarded as 
the agent causing most of the damage to brain capil-
lary endothelial cells (Schaller & Graf, 2004). Damage 
to the endothelium not only increases oedema (tissue 
swelling due to “leakiness”), but causes endothelial 
protrusions “blebbs” which can block capillaries (Ono 
et al., 1993). Moreover, NO• has been implicated in 
adult respiratory distress syndrome, septic shock, hy-
pertension, thrombosis, renal failure, AIDS encepha-
lopathy, bronchospasm, stroke and male impotence 
(Bailey et al., 2009; Canning et al., 2001; Adamson et 
al., 1996; Maree et al., 1994). Nitric oxide readily binds 

certain transition metal ions, and many of its physi-
ological effects are exerted as a result of its initial 
binding to Fe2+ haem groups in the enzyme guanylate 
cyclase (Archer et al., 1993). For example, NO• syn-
thesised by the vascular endothelial cells that line the 
interior of blood vessels presumably diffuses in all 
directions, but some of it will reach the underlying 
smooth muscle, bind to guanylate cyclase and active 
it. As a result more cyclic GMP is made, which lowers 
intracellular free Ca2+ and relaxes the muscle, dilating 
the vessel and lowering blood pressure (Torfgard & 
Adler, 1994).

TRANSITION METAL IONS

All metals in the first row of the d-block in the pe-
riodic table, except zinc, contain unpaired electrons 
and can thus qualify as free radicals. The ability of 
transition metal ions to undergo facile one-electron 
oxidation or reduction makes them obvious potential 
chemical partners for reactions involving biological 
free radicals with advantageous or deleterious biologi-
cal effects. Iron is by far the most abundant transi-
tion metal in the human body where it plays a role in 
oxygen binding (haemoglobin) and electron transport. 
It is therefore a potential mediator of •OH generation 
under normal physiological conditions in the iron/
copper-catalysed Haber–Weiss reaction. Because of 
the central and essential roles of iron in the metabo-
lism of all aerobic organisms, humans have evolved 
some peculiar ways of dealing with it. These peculiari-
ties provide opportunities to cause diseases related to 
iron absorption, transport, and metabolism, as well as 
for the exacerbation of general mechanisms of disease 
involving free radical injury. Iron-catalysed generation 
of ROS has been implicated in the pathogenesis of 
many disorders including atherosclerosis (Salonen et 
al., 1992) cancer (Loeb et al., 1988), ischaemia reper-
fusion injury (White et al., 1985; Katoh et al., 1992) 
and conditions of iron overload (Burkitt & Mason, 
1991), such as haemochromatosis, which is one of the 
most prevalent genetic disorders in Western countries. 
The excess iron induces cellular injury and functional 
abnormalities in hepatocytes by lipid peroxidation in 
lysosomal, mitochondrial and microsomal membranes 
(Britton et al., 1987). Lipid peroxidation is a likely out-
come of oxidative stress in biological systems, and its 
measurement is often used as a method of assessing 
the degree of oxidative damage.

The Fenton chemistry

Fenton chemistry is a prime example of damaging free 
radical reactions catalysed by transition metals. A mix-
ture of H2O2 with a Fe2+ salt oxidises many different or-
ganic molecules and can provoke a whole series of radi-
cal reaction. In vivo, •OH are most likely generated from 
superoxide anions via an iron-catalysed Fenton reaction 
(Halliwell, 1982).

EPR (electron paramagnetic resonance spectroscopy) 
studies demonstrated the ability of iron bound to trans-
ferrin to catalyse •OH formation in the presence of O2

•– 

(Bannister et al., 1982). However, these results have sub-
sequently been questioned (Baldwin et al., 1984). Another 
source of iron is the intracellular pool, where iron is 
principally bound to ferritin. It has been recently shown 
in vitro that O2

•– is capable of releasing iron from fer-
ritin, thereby allowing the formation of •OH (Thomas 
et al., 1985). Alternatively, the presence of low molecu-
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lar weight iron chelates has been hypothesised (Jacobs, 
1977).

The mechanism of Fe2+-initiated Fenton reaction is as 
follows:
          rate constant (M–1s–1) at pH = 5
       (Walling, 1975; Kwan & Voelker, 2002)
a. Fe2+ + H2O2 → Fe3+ + •OH + OH– k = 5.7 × 102 M–1s–1

b. Fe3+ + H2O2 → Fe2+ + HO2/O2
– + H+ k = 2.6 × 10-3M–1s–1

c. H2O2 + •OH → HO2/O2
– + H2O k = 3.3 × 107M–1s–1

d. Fe3+ + HO2/O2
– → Fe2+ + O2 + H+ k = 3.1 × 105M–1s–1

e. Fe2+ + •OH → Fe3+ + OH‾ k = 3.2 × 108M–1s–1

f. Fe2+ + HO2/O2
‾ → Fe3+ + H2O2 k = 6.6 × 106M–1s–1

g. HO2/O2
– + HO2/O2

‾ → H2O2 k = 2.3 × 106M–1s–1

h. •OH + HO2/O2
‾ → H2O + O2 k = 8.9 × 109M–1s–1

i. •OH + •OH → H2O2 k = 5.2 × 109M–1s–1      (20)

The generally accepted mechanism for the Fenton 
process identifies •OH as the active oxidising intermedi-
ate in the system (Haber & Weiss, 1932, 1934; Barb et 
al., 1951; Walling, 1975). According to this mechanism 
(Eqn 20), the combination of ferrous iron and hydrogen 
peroxide induces a series of chain reactions initiated by 
the degradation of peroxide to •OH and the hydroxide 
ion (reaction 20a). The hydroxyl radical serves as a chain 
carrier that may react with Fe2+, H2O2, or any organic 
species present. These reactions may either propagate the 
chain cycle through the production of additional radicals 
(superoxide and its conjugate acid, reaction 20c) that can 
reduce Fe3+ back to Fe2+ (reaction 20d), or terminate the 
chain by oxidising Fe2+ (reactions 20e, f). When reaction 
20b is taken into account, Fe3+ may also be considered 
a chain carrier, producing Fe2+ and superoxide, although 
this cycling occurs at a much slower rate (k2 « k3, k4). 
Additional chain termination reactions include the minor 
radical-radical recombination pathways (reactions 20f, g, 
h). Depending on the type of organic species present, re-
actions with •OH may either propagate the chain by pro-
ducing HO2

•/O2
•– or organic radicals capable of reducing 

Fe3+ directly, or terminate the cycle by scavenging •OH 
(Walling, 1975). Extrapolated to biological systems, this 
information suggests that tissues exposed to an increased 
concentration of iron and/or copper (e.g., liberated from 
internal stores) may be prone to oxidative damage re-
lated to the metal ion-O2-mediated free radical produc-
tion. This might indeed be so, because transition met-
als, when liberated from intracellular stores, are probably 
present in reduced forms (Keyer & Imlay, 1996; Qian 
& Buettner, 1999). If it is taken for granted that an in-
creased pool of low molecular mass iron and copper is 
present in ischaemic tissues (Nayni et al., 1985; Gower et 
al., 1989; Voogd et al., 1992), it becomes apparent that 
reperfusion, which induces tissue injury in a mechanism 
involving •OH (Bolli, 1991), creates particularly favour-
able conditions for the metal ion-O2 reaction to occur. 
This is because:
— this reaction is fast enough to account for the reper-
fusion-induced production of free radicals;
— O2, catalytic metals, and their reductants (including 
enzymatically produced O2

•–) are abundant;
— intracellular pH rapidly increases (Bauza et al., 1995) 
in the reperfused tissue (Harris & Aisen, 1973) and fa-
cilitates metal ion-O2 chemistry.

Oxygen-derived active species, including free radicals, 
have been implicated in tissue injury following ischae-
mia and reperfusion of the heart (McCord, 1985; Gar-
lick et al., 1987; Arroyo et al., 1987; Zweier et al., 1987) 
and brain (Krause et al., 1988; Cao et al., 1988; Watson & 
Ginsberg, 1989) as well as in various other pathologies 
(Halliwell & Gutteridge, 1984). Their production from 

relatively low-reactive species has been proposed to be 
mediated by redox-active metal ions (Aust et al., 1985; 
Chevion, 1988). Indeed, circumstantial evidence has 
been presented to support the causative role of newly 
mobilised redox-active iron in tissue injury (Nayini et al., 
1985; Holt et al., 1986). Iron chelation provides protec-
tion against tissue injury following ischaemia (Myers et 
al., 1985, 1986), whereas the addition of Fe3+ and Fe2+ to 
the perfusate increased the rate of injury in hearts sub-
jected to ischaemia and reperfusion (Bernier et al., 1986; 
Karwatowska-Prokopczuk et al., 1992). The recovery of 
myocardial high-energy phosphate metabolism and left 
ventricular contractility after a period of global ischaemia 
suggest that iron-catalysed •OH formation plays a key 
role in the pathogenesis of reperfusion injury. Despite 
these theoretical considerations, relatively little is known 
about the role of iron in the pathogenesis of postischae-
mic damage.

CONCLUSIONS

The radicals NO (NO•) and superoxide anion (O2
•–) 

play an important role in biological regulation. Super-
oxide gives rise to other forms of ROS that serve as 
mediators in many regulatory processes. Most redox-
responsive regulatory mechanisms in bacteria and mam-
malian cells serve to protect the cells against oxidative 
stress and to reestablish redox homeostasis. The oxida-
tive induction of protective enzymes by proteins or the 
inhibition of NOS by NO are prominent examples. Re-
dox regulation of other physiological responses in higher 
organisms is embedded in these basic mechanisms of 
redox homeostasis. The relatively large number of iso-
forms of NAD(P)H oxidase and NOS indicates that na-
ture has “learned” to use free radicals to her advantage 
in processes not directly related to protection against ox-
idative stress. The production of superoxide and NO, re-
spectively, by these enzymes is strictly regulated by hor-
mones, cytokines, or other inducing mechanisms. The 
resulting oxidative species, in turn, act as secondary mes-
sengers to control a variety of physiological responses. 
The regulation of vascular smooth muscle relaxation, the 
monitoring of the oxygen concentration in the regulation 
of respiratory ventilation and erythropoietin production, 
and the enhancement of signaling cascades from various 
membrane receptors are prominent examples. The en-
hancement of signal transduction from a given receptor 
by stimulation of ROS production through this or other 
receptors may serve two physiological purposes.

First, it provides a basis for cooperativity, and second, 
the membrane receptor may function simultaneously as a 
sensor for the extracellular ligand and as a sensor for the 
inner metabolic state of the individual cell. The coopera-
tivity between angiotensin II receptor and EGF receptor 
is a well-studied example, but other examples will likely 
be found. Because hydrogen peroxide has a relatively 
long half-life and crosses membranes, the cooperativity 
principle may even extend to other cells in the vicinity. 
By enhancing the intracellular signaling pathways of lym-
phocytes, ROS from activated macrophages and neutro-
phils may contribute decisively to the activation of the 
antigen-specific immune response and may allow the im-
mune system to respond to minute amounts of invad-
ing pathogens. Signaling pathways involving JNK, p38 
MAPK, and the transcription factors AP-1 and NF-κB 
are particularly responsive to redox regulation. The ca-
pacity of ROS to damage proteins and to hasten their 
proteolytic degradation has been employed as a regula-
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tory mechanism in several cases, e.g., in the degrada-
tion of the transcription factor subunit HIF-1α and the 
NF-κB inhibitor IκB. The inhibition of protein tyrosine 
phosphatases is well-defined on a molecular basis and 
provides an example of redox regulation by loss of func-
tion. In other cases, NO or ROS induce a gain of func-
tion in a signaling protein. This mechanism is involved 
in the regulation of vascular tone and the functional ac-
tivation of bacterial proteins. The oxidative enhancement 
of membrane receptor signaling and the corresponding 
downstream signaling pathways are not well-character-
ized at the molecular level but are likely to involve a si-
multaneous induction of several different redox-sensitive 
signaling proteins. This redundancy does not preclude 
selective effects. The in vivo relevance of redox-sensitive 
signaling cascades is strongly suggested by the mere ex-
istence of the many NAD(P)H oxidase isoforms and by 
the apparent dysregulation of physiological responses in 
various disease-related oxidative stress conditions. How-
ever, the relative contributions of individual redox-sen-
sitive signaling proteins to redox-regulated processes in 
vivo are presently obscure.
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