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Cadmium is a toxic heavy metal which can cause numer-
ous alterations in cell functioning. Exposure to cadmium 
leads to generation of reactive oxygen species, disorders 
in membrane structure and functioning, inhibition of 
respiration, disturbances in ion homeostasis, perturba-
tions in cell division, and initiation of apoptosis and ne-
crosis. This heavy metal is considered a carcinogen by 
the Agency for Toxic Substances and Disease Registry. 
At least some of the described toxic effects could result 
from the ability of cadmium to mimic other divalent 
ions and alert signal transduction networks. This review 
describes the role of cadmium mimicry in its uptake, re-
active oxygen species generation, alterations in calmo-
dulin, Wnt/β-catenin and estrogen signaling pathways, 
and modulation of neurotransmission. The last section is 
dedicated to the single known case of a favorable func-
tion performed by cadmium mimicry: marine diatoms, 
which live in zinc deficient conditions, utilize cadmium 
as a cofactor in carbonic anhydrase — so far the only de-
scribed cadmium enzyme. 
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InTRoDuCTIon

Cadmium causes deleterious effects in all organisms. 
Exposure to this heavy metal leads to oxidative stress, 
lipid peroxidation, alterations in ion homeostasis, DNA 
damage, and initiation of apoptotic and necrotic process-
es (Belyaeva et al., 2008; Gonçalves et al., 2009; Kippler 
et al., 2010; Lehotai et al., 2011; Matović et al., 2011; Py-
tharopoulou et al., 2011; Wang et al., 2011 Arasimowicz-
Jelonek et al., 2012; Filipič, 2012; Liu et al., 2012). It has 
also been shown to exhibit carcinogenic and, depending 
on the concentration and analyzed species, pro- or anti-
inflammatory effects in mammalian cells (Joseph, 2009; 
Olszowski et al., 2012). In the case of plants cadmium 
toxicity manifests also in chlorophyll degradation, inhibi-
tion of photosynthesis and direction of the metabolism 
to the synthesis of protective compounds such as lignin 
or flavonoids (Küpper et al., 2007; Rascio et al., 2008; 
Pawlak-Sprada et al., 2011a; Pawlak-Sprada et al., 2011b; 
Sun et al., 2012). At least some of the toxic symptoms 
caused by cadmium stress could result from its ability to 
mimic essential ions. 

Two types of mimicry can be distinguished at the cel-
lular level: ionic and molecular. Ionic mimicry is the abil-
ity of unbound ions to mimic other ions or elements. 
An example of such a process is the entry of cadmium 
into the cell through transporters predestined for essen-

tial elements. Molecular mimicry, in turn, consists in re-
placing other metals in biological molecules (Bridges & 
Zalups, 2005). The cadmium molecular mimicry can alert 
signal transduction pathways and contribute to the Cd 
cytotoxicity in several ways. The substitution of essential 
ions by Cd2+ can lead to: 

— release of the essential metals
The release of essential metals leads to an increase in 

their cellular concentrations. This phenomenon can have 
various consequences. Elevated levels of redox-active 
metals, such as iron and copper, can contribute to the 
generation of reactive oxygen species through Fenton 
and Haber-Weiss reactions. Release of calcium ions, in 
turn, can disrupt the cytoskeleton organization and Ca2+-
mediated signaling. 

— alterations in target molecule structure 
Examples of alterations in the target molecule struc-

ture resulting from cadmium mimicry include disruption 
of β-catenin/cadherin complexes leading to the release 
of β-catenin and activation of Wnt/β-catenin signaling, 
and replacement of Mg2+ in chlorophyll causing altera-
tions in the structure and activity of photosystems. 

— imitation of the action of the essential ion and ac-
tivation of the target molecule

The binding of cadmium ions by a target protein can 
also mimic the action of other elements or molecules. 
Indeed, cadmium has been shown to imitate the func-
tion of Ca2+ in calmodulin and of estrogen in estrogen 
receptors.

The above examples of cadmium ionic and molecular 
mimicry and their influence on cellular signaling path-
ways are described in detail in the present review. The 
last section is dedicated to the so far unique example of 
a biological advantage of cadmium mimicry – the sub-
stitution for zinc ions in carbonic anhydrase in marine 
diatoms. 

CADmIum upTAKE

Cadmium ions behave as “opportunistic hitch-hikers” 
— they enter cells through transporters and channels 
dedicated to essential divalent ions, such as Ca2+, Fe2+ 
and Zn2+. One of the candidates for Cd uptake are cal-
cium channels. Treatment of plant or animal cells with 
calcium channel blockers, lanthanum and verapamil, 
caused augmentation in cadmium uptake (Braeckman et 
al., 1999; Kurtyka et al., 2011; Liu et al., 2012). Accord-
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ingly, Madin-Darby canine kidney cells subjected to the 
action of a calcium channel activator, maitotoxin, accu-
mulated more cadmium than the untreated cells (Olivi & 
Bessler, 2000). Another putative route of cadmium cel-
lular influx are transporters belonging to the ZIP fam-
ily. A correlation between induced expression of ZIP10 
and increased cadmium accumulation was observed in 
zebrafish (Chachene et al., 2011). An enhanced cadmi-
um uptake has also been shown in mouse fetal fibro-
blast over-expressing ZIP8 and ZIP14 (Dalton et al., 
2004; Girijashanker et al., 2008). There is evidence that 
the protective role of glutathione against cadmium stress 
depends on the down-regulation of ZIP8 gene expres-
sion (Aiba et al., 2008). In plants the IRT1, ZNT1 and 
ZNT2 transporters belonging to the ZIP family have 
been shown to play a role in cadmium uptake (Connolly 
et al., 2002; Mizuno et al., 2005; Lee & An, 2009). The 
divalent cation transporters involved in cadmium up-
take also include Nramp2 (alternative names: DCT1 or 
DMT1). Xenopus oocytes expressing human Nramp2 ac-
cumulated more cadmium than the control ones (Okubo 
et al., 2003). Cadmium mimicry of essential ions could 
not only facilitate the uptake of this heavy metal but also 
its translocation and intracellular trafficking. Experiments 
performed with the use of six lines of Arabidopsis thali-
ana mutants showed that transporters belonging to heavy 
metal P1B-ATPases (HMA proteins), namely HMA2 and 
HMA4, were involved in Cd root-to-shoot transloca-
tion (Wong & Cobett, 2003). Expression of AtHMA3 
in a Cd-sensitive yeast strain, in turn, resulted in acqui-
sition of tolerance to this heavy metal most probably 
through increased vacuolar sequestration (Gravot et al., 
2004). Also Nramp proteins are involved in Cd accumu-
lation and vacuolar compartmentalization in plants. The 
Nramp3 and Nramp4 transporters have been shown to 
reside in the vacuole membrane in two cadmium hyper-
accumulators, Arabidopsis halleri and Thlaspi caerulescens. 
Moreover, a double nramp3nramp4 mutant of Arabidopsis 
thaliana was hypersensitive to Cd despite an unchanged 
intracellular Cd content (Oomen et al., 2009; Takahashi 
et al., 2011). These data show that mimicking divalent 
essential elements enables Cd2+ passing into animal and 
plant cells and its intracellular and long-distance translo-
cation. In a cadmium-rich environment, Cd2+ can com-
pete with other divalent elements for the transporters’ 
binding sites. Therefore, the described ionic mimicry can 
lead to alterations in mineral homeostasis and distribu-
tion. Indeed, disorders in zinc, magnesium, calcium and 
potassium cellular balance have been reported in various 
organisms exposed to cadmium (Gonçalves et al., 2009; 
Kippler et al., 2010; Matović et al., 2011; Liu et al., 2012). 

GEnERATIon of REACTIvE oxyGEn SpECIES

One of the most common responses of organisms 
to cadmium exposure is generation of reactive oxygen 
species (Lehotai et al., 2011; Pytharopoulou et al., 2011; 
Vestena et al., 2011; Wang et al., 2011). Over-accumu-
lation of ROS leads to oxidative stress which, in turn, 
causes lesions in various biological molecules such as 
peroxidation of lipids and oxidative damage of proteins 
and DNA. These lesions lead to membrane leakage, dis-
turbed ion homeostasis, inactivation of enzymes, and in-
creased rate of mutations (Scandalios, 2002). The reactive 
oxygen species generated in response to cadmium are 
also engaged in various signaling events (Chmielowska-
Bąk & Deckert, 2012). The Cd-dependent over-produc-
tion of ROS can result from disturbances in antioxidant 

systems, increased activity of NADPH oxidase, and al-
terations of mitochondria (Garnier et al., 2006; Romero-
Puertas et al., 2007; Gzyl et al., 2009; Ognjanović et al., 
2010; Chen et al., 2011; Chou et al., 2012). An important 
source of ROS are Fenton and Haber Weiss reactions 
catalyzed by redox-active metals, such as iron and cop-
per (Kehrer, 2000). Cadmium has no reduction-oxida-
tion activity, but it can replace the redox-active metals 
in biological molecules and, as a consequence, increase 
the metals’ intracellular levels. This hypothesis was con-
firmed by experiments performed on living cells and ar-
tificial lipid bilayers — liposomes. In those experiments 
cadmium caused peroxidation of lipid membranes in 
living cells, but not in liposomes, implying that cadmi-
um alone is unable to cause an oxidative stress. It was 
therefore suggested that the peroxidation of membranes 
observed in living cells resulted from a Cd-dependent re-
lease of Fe2+ from biological molecules. That hypothesis 
was confirmed by two facts. Firstly, application of Cd2+ 
caused release of iron from ferritin and rat liver micro-
somes. Secondly, exogenous application of Fe2+ induced 
peroxidation of lipids in liposomes (Casalino et al., 1997). 
The ability of cadmium to substitute for iron has also 
been demonstrated in ferrodoxin (Bonomi et al., 1994). 
Therefore, it is possible that Cd contributes to oxidative 
stress through the release of redox-active metals result-
ing from their substitution in biological molecules. 

ACTIvATIon of WnT/β-CATEnIn SIGnAlInG

In cells β-catenin can be found in membranes, cyto-
plasm and nucleus. In membranes this multifunctional 
protein forms complexes with E-cadherin and is engaged 
in cell-to-cell adhesion. The fate of cytoplasmic β-catenin 
strongly depends on the Wingless family (Wnt) ligands. 
As long as the Wnt signaling is switched off, cytoplas-
mic β-catenin is phosphorylated and directed for deg-
radation. However, binding of the Wnt ligands to their 
receptors leads to the disruption of the complexes ad-
dressing β-catenin destruction. As a consequence, cyto-
plasmic β-catenin is translocated to the nucleus where it 
interacts with T-cell specific factors/lymphoid enhancer 
binding factor (TCF/LEF-1). This, in turn, leads to 
the activation of Wnt signaling target genes which are 
involved in regulation of numerous developmental pro-
cesses (Berthon et al., 2012). Exposure to cadmium can 
lead to abnormal activation of Wnt/β-catenin signaling. 
It has been shown that cadmium alters the distribution 
of N-cadherin, E-cadherin and β-catenin distribution in 
rat proximal tubule epithelium (Prozialeck et al., 2003). 
A breakdown of adherens junctions and redistribution of 
β-catenin in cells has also been observed in chicken em-
bryos (Thompson et al., 2008). As E-cadherin has sev-
eral Ca2+-binding sites, it has been suggested that Cd2+ 
displaces the Ca2+ in E-cadherins, which in turn leads 
to deformation of the E-cadherin/β-catenin complexes 
and release of β-catenin to the cytoplasm and nucleus. 
This was confirmed by an experiment performed on 
rat proximal tubule cell cultures showing that the Cd-
dependent increase in cytoplasmic and nuclear β-catenin 
levels was independent of transcription and translation 
(Chakraborty et al., 2010). The increase of the β-catenin 
level in the nucleus in response to Cd administration 
leads to the activation of TCF4 transcription factor 
and induction of Wnt target genes, c-Myc, cyclin D1 and 
ABCB1. The elevated expression of these genes can lead 
to enhanced cell proliferation and initiation of carcino-
genesis (Chakraborty et al., 2010). 
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SIGnAlInG mEDIATED by CAlmoDulIn

Calmodulin is the main mediator of Ca2+ signaling. 
Binding of calcium ions to calmodulin causes changes in 
its conformation and exposure of hydrophobic residues 
in the central helix. The exposed residues are responsible 
for recognition and activation of various target proteins 
including kinases, ion channels, G-proteins, cytoskeleton 
elements, and transcription factors (Snedden & Fromm, 
1998; Clapham, 2007). Calmodulin is highly conserved 
and regulates numerous processes in all eukaryotic cells. 
Perhaps the most spectacular example of calmodulin’s 
role are the beak shapes in Darwin’s finches shown to 
be partially determined by the level of calmodulin ex-
pression (Abzhanov et al., 2006). Interestingly, calmodu-
lin has also been shown to participate in the plant re-
sponse to cadmium stress. Experiments on tobacco cell 
suspension culture show that activation of calmodulin is 
necessary for the Cd-dependent stimulation of NADPH 
oxidase and generation of H2O2 (Olmos et al., 2003; 
Garnier et al., 2006). There is evidence that calcium can 
be replaced in calmodulin by other divalent ions with an 
affinity dependent on the ionic radius (Ouyang & Vogel, 
1998). Cadmium should be very efficient in substituting 
for calcium ions as the ionic radii of these elements are 
very similar (0.97 and 0.99Å respectively). Indeed, the 
ability of Cd2+ to bind to calmodulin has been shown by 
nuclear magnetic resonance (NMR), electrospray ioniza-
tion mass spectrometry (ESI-MS), equilibrium gel filtra-
tion, flow microcalorimetry, and fluorescence techniques 
(Milos et al., 1989; Ouyang & Vogel, 1998; Schirran & 
Barran, 2009). Importantly, it has been shown that cad-
mium ions binds to calmodulin in its C-terminal sites III 
and IV, which also show the highest affinity for Ca2+ 

(Milos et al., 1989; Ouyang & Vogel, 1998). The Cd2+-
calmodulin complexes formed were able to activate a 
calmodulin target protein — myosin light chain kinase 
(MLCK) (Ouyang & Vogel, 1998). Moreover, cadmium 
stimulated calcium-dependent phosphorylation of sev-
eral substrates in the cytosolic fraction of rainbow trout 
gonadal cells (RTG-2) (Behra & Gall, 1991). Interest-
ingly, substitution of Ca2+ by Cd2+ leads to the inhibi-
tion of calmodulin activity in plants (Rivetta et al., 1997). 
The signaling functions of calmodulin strongly depend 
on the concentration of cytosolic Ca2+, which is strictly 
regulated by a complex machinery comprising of calcium 
channels, pumps and chelators (Clapham, 2007). The 
concentration of non-essential ions such as cadmium is 
not subjected to such a strict control, therefore the abil-
ity of Cd2+ to mimic Ca2+ functions in calmodulin can 
profoundly alter its signaling. 

mImICRy of ESTRoGEn pAThWAy

Recent research shows that Cd can modulate func-
tioning of estrogen receptors (ERs) (Deegan et al., 2011). 
The ERs are located in the nucleus and are involved in 
regulation of gene expression in response to female sex 
steroid hormones, estrogens, such as 17β-estradiol (E2) 
(Brzozowski et al., 1997). Estrogen receptors contain 
conserved structural and functional domains for ligand 
binding (LBD), DNA binding (BD), and transcriptional 
activation (Matthews & Gustafson, 2003). Several stud-
ies have demonstrated that cadmium is capable of mim-
icking the E2 action at the ligand binding domain of 
the ER (Garcia-Morales et al., 1994, Stoica et al., 2000; 
Martinez-Campa, 2008; Rider et al., 2009; Deegan et al., 
2011). Estrogen-like effects of cadmium have been re-

ported both in cell culture and in experimental animals. 
In mammalian cell culture, cadmium causes activation of 
intracellular signaling similar to estrogen, induction of 
the expression of estrogen target genes, stimulation of 
estrogen-specific proteins, and proliferation of estrogen-
dependent cells (Garcia-Morales et al., 1994; Stoica et al., 
2000; Wilson et al., 2004; Brama et al., 2007; Martinez-
Campa, 2008; Siewit et al., 2010; Deegan et al., 2011). In 
vivo studies in animal models, especially rats, have also 
provided strong evidence that Cd can mimic estrogen, 
specifically in organs and tissues known to be estrogen 
responsive. Exposure to cadmium increased uterine wet 
weight, promoted growth and development of the mam-
mary glands and induced estrogen-regulated genes in 
ovariectomized animals (Johnson et al., 2003; Alonso-
González et al., 2007; Höfer et al., 2009; Liu et al., 2010; 
Penttinen-Damdimopoulou et al., 2010). The inhibition 
of those effects after the addition of antiestrogens fur-
ther strengthens the conclusion that Cd2+ mimics estro-
gen signaling (Garcia-Morales et al., 1994; Johnson et al., 
2003). Inappropriate stimulation of ERs activity by cad-
mium is believed to be an important factor contribut-
ing to the increasing incidence of cancer in industrial-
ized countries. Recent epidemiological findings suggest 
an increased risk of hormone-dependent diseases, such 
as breast cancer, endometrial cancer, and endometriosis, 
after exposure to cadmium (Akesson et al., 2003; Thom-
son & Bannigan, 2008; Strumylaite et al., 2010). 

CADmIum AnD nEuRoTRAnSmISSIon

Exposure to cadmium is associated with various neu-
rotoxic symptoms. This heavy metal causes damage of 
rat and rabbit cerebellar cortices, affects functioning of 
voltage activated calcium and sodium channels in neu-
rons, inhibits adenylate cyclase activity in the cerebrum, 
cerebellum and brain stems, modulates the release of in-
hibitory and excitatory neurotransmitters and inhibits the 
NO generating enzyme nitric oxide synthase (Sadiq et 
al., 2012). The involvement of cadmium in the modula-
tion of nervous system functioning is recently becoming 
a subject of intense study. The neuromodulatory action 
of Cd2+ is based on its ability to replace Zn2+. Zinc is 
directly and indirectly involved in neurotransmission: it 
functions as neurotransmitter in a specific type of neu-
rons called zinergic neurons, as well as a regulator of 
gamma-aminobutyric acid (GABA) release in GABAer-
gic neurons (Colvin et al., 2003; Takeda, 2012). Zinc also 
modulates the activity of P2X receptors which function 
as ATP-dependent cationic channels in various cell types 
including brain and peripheral nerves (Lorca et al., 2011). 
Experiments performed on Xenopus oocytes with inject-
ed P2X4 receptors showed that, out of eight metals as-
sayed, only cadmium was able to mimic the action of 
zinc on the P2X4 receptors (Coddou et al., 2005). It is 
possible that cadmium mimics also other zinc functions 
in the nervous system. This hypothesis could be further 
strengthened by the fact that both Zn2+ and Cd2+ inhibit 
the release of GABA (Sadiq et al., 2012). 

CADmIum AS ESSEnTIAl mETAl: CARbonIC 
AnhyDRASE

Vertical profiles of Cd distribution in the ocean show 
that this metal, believed to be universally deleterious to 
organisms, has in fact a nutrient-like profile. Its concen-
tration is extremely low in surface waters and increases 
in deep waters, similar to other biologically important 
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nutrients, such as phosphate. This profile reflects the 
uptake of elements by phytoplankton at the surface and 
regeneration in the depths by remineralization of sinking 
organic matter (Park et al., 2007; Xu et al., 2008). The 
high fractionation of cadmium in organic matter clearly 
indicates that there must be an active Cd uptake sys-
tem in marine organisms (Morel & Price, 2003). Labo-
ratory studies have established that Cd can be used as 
a co-factor in carbonic anhydrase (CA), particularly in 
the Cd-carbonic anhydrase found in the coastal diatom 
Thalassiosira weissflogii (CDCA1) (Lane et al., 2005) and 
categorized in a new zeta (ζ)-CA class (Lane & Morel, 
2000; McGinn & Morel, 2008; Alterio et al., 2012). Car-
bonic anhydrase (EC 4.2.1.1) is a (primarily) zinc metal-
loenzyme that catalyses with an extremely high efficiency 
the reversible hydration of carbon dioxide, an essential 
reaction for many physiological processes such as res-
piration, ion transport, bone resorption, and photosyn-
thesis (Ivanov et al., 2007; Supuran, 2010; Zhang et al., 
2010). Diatoms, which are one of the most common 
types of phytoplankton and are responsible for 40% of 
the net marine primary production, use carbonic anhy-
drases (CAs) for acquisition of inorganic carbon (Park et 
al., 2007; McGinn & Morel, 2008). In the ocean, where 
zinc is nearly absent, these diatoms use Cd as the cata-
lytic metal atom in CDCA1 (Lane & Morel, 2000; Park 
et al., 2007; Xu et al., 2008; Alteiro et al., 2012). This pe-
culiar carbonic anhydrase is the first and hitherto the 
only known cadmium metalloenzyme and is responsible 
for the only known biologically beneficial cadmium-de-
pendent reaction (Lane & Morel, 2000; Xu et al., 2008). 
Although CDCA1 was initially isolated as a Cd enzyme, 
it is actually a cambialistic carbonic anhydrase that can use 
either Zn (II) or Cd (II) for catalysis and spontaneously 
exchange the two metals at its active centre. Indeed, a 
kinetic analysis has demonstrated that both single CA re-
peats and the full length enzyme exhibit high CA activity 
with either Cd or Zn as the catalytic metal, with only a 
slightly higher catalytic efficiency for the zinc forms. The 
Cd form of CDCA1 can therefore satisfy a substantial 
fraction of the needs of the fast growing diatoms (Xu 
et al., 2008; Alteiro et al. 2012). Thus CDCA1 is an ex-
cellent example of adaptation to life in an environment 
containing a vanishingly small concentration of an essen-
tial metal. Furthermore, it has been suggested that the 
ability to use cadmium, an element known for its toxic-
ity, probably gave a significant competitive advantage to 
diatoms in the ocean, which is poor in metals, and could 
have contributed to the evolutionary differentiation of 
diatoms during the Cenozoic Era and to the parallel de-
crease in atmospheric CO2 (Xu et al., 2008).
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