

Regular paper

A computational approach to structural properties of glycoside hydrolase family 4 from bacteria

Dana Craciun¹, Beatrice Vlad-Oros^{2,3,4}, Nicoleta Filimon^{2,3}, Vasile Ostafe^{2,3} and Adriana Isvoran^{2,3}

¹West University of Timisoara, Teacher Training Department, Timisoara, Romania; ²West University of Timisoara, Department of Biology and Chemistry, Timisoara, Romania; ³Laboratory of Advanced Researches in Environmental Protection, Timisoara, Romania; ⁴University "Al. I. Cuza" from Lasi, Lasi, Romania (temporally affiliated)

Structural bioinformatics approaches applied to the alpha- and beta-glycosidases from the GH4 enzyme family reveal that, despite low sequence identity, these enzymes possess quite similar global structural characteristics reflecting a common reaction mechanism. Locally, there are a few distinctive structural characteristics of GH4 alpha- and beta-glycosidases, namely, surface cavities with different geometric characteristics and two regions with highly dissimilar structural organizations and distinct physicochemical properties in the alpha- and beta-glucosidases from Thermotoga maritima. We suggest that these structurally dissimilar regions may be involved in specific protein-protein interactions and this hypothesis is sustained by the predicted distinct functional partners of the investigated proteins. Also, we predict that alpha- and beta-glycosidases from the GH4 enzyme family interact with difenoconazole, a fungicide, but there are different features of these interactions especially concerning the identified structurally distinct regions of the investigated proteins.

Key words: glycosidases, structural properties, specific interactions

Received: 27 January, 2013; 02 October, 2013; accepted: 06 December, 2013; available on-line: 16 December, 2013

INTRODUCTION

Glycoside hydrolases (GH), also called glycosidases, are enzymes that catalyze the hydrolysis of the glycosidic bonds releasing smaller sugars. They play important roles both in nature-and in industrial processes that involve biological conversion of the biomass to fuels, allowing fuel production with reduced costs (Yang et al., 2011). There are two types of glycosidases: alpha-glycosidase that acts on 1-4 linked alpha-glucose residues and beta-glycosidase acting upon beta 1-4 bonds linking two glucose or glucose-substituted molecules (McCarter and Withers, 1994). The CAZy (Carbohydrate-Active enZYmes) database (Cantarel et al., 2009) contains a sequence-based classification for at least 130 families of glycoside hydrolases. Glycoside hydrolase family 4 (GH4) enzymes are called glucosidases. They represent a special group of glycosidases, which includes both alpha- and betaglucosidases, and displays a reaction mechanism involving NAD⁺ and divalent metal ion cofactors (Lodge et al., 2003). The group comprises alpha-glucosidases, alpha-galactosidases, alpha-glucuronidases, 6-phospho-alpha-glucosidases, and 6-phospho-beta-glucosidases. The majority of GH4 enzymes are of bacterial origin, the 6-phosphobeta-glucosidase from *Thermotoga maritima* (Yip & Withers, 2006) and 6-phospho-alpha-glucosidase from *Bacillus subtilis* (Yip *et al.*, 2007) being the most studied enzymes of this family.

The genome of thermophilic bacteria, such as *Thermotoga maritima* and *Geobacillus stearothermophilus*, encodes a number of glycosidic enzymes that are involved in sugar and polymer catabolism by anaerobic fermentation. The by-products are carbon dioxide and hydrogen gas, the latter being used as a fuel (Chhabra *et al.*, 2002, Ugwuanyi, 2008). These bacteria grow in hot waters of 35–90°C and their carbohydrate active enzymes are thermostable, which explains their numerous biotechnological applications (Conners *et al.*, 2006). It also explains extensive studies concerning biochemical and structural features of thermophilic bacteria carbohydrate active enzymes.

Recent studies have proven that fungal and bacterial beta-glucosidases show favorable properties to be used in biotechnological applications (Del Pozo *et al.*, 2012; Pei *et al.*, 2012).

Crystallographic data are available for some of bacteria GH4 enzymes. The Protein Data Bank (Berman *et al.*, 2000) contains 9 entries for structures of glycosidic enzymes and their complexes from: *Thermotoga maritima* (5, but 3 of them refer to the same protein in different complexes), *Thermotoga neapolitana (1), Bacillus subtillis* (2) and *Geobacillus stearopthermophilus* (1). Accordingly, we consider only 7 structural files in our study, as explained in the "Material and methods" section.

It is well known that enzymatic activity is influenced by structural features of both the enzyme and the substrate. This is also true for the enzymes hydrolyzing the glycosidic bonds, but due to the complexity of these enzymes and carbohydrate polymers, the mechanisms involved in glycosidic bond hydrolysis are still not fully understood. For example, the comparison of 6-phosphobeta-glucosidase of *Thermotoga maritima* with 6-phosphoalpha-glucosidase from *Bacillus subtilis* reveals a high degree of structural similarity between the two enzymes reflecting a possible common reaction mechanism for

[™]e-mail: adriana.isvoran@cbg.uvt.ro

Abbreviations: GH, glycoside hydrolases; GH4, glycoside hydrolases family 4; AgITm, alpha-glucosidase from *Thermotoga maritima*; AgrTm, alpha-glucoronidase from *Thermotoga maritima*; pAgITn, putative alpha-glucosidase from *Thermotoga mapolitana*; AgIBs, 6-phospho-alpha-glucosidase A from *Bacillus subtilis*; pAgIBs, putative alpha-glucosidase from *Bacillus subtilis*; BgITm, 6-phospho-beta-glucosidase from *Thermotoga maritima*; BgIGs, 6-phospho-beta-glucosidase from *Geobacillus stearothermophilus*

20	1	2
20		-

No.	Structural file description	SwissProt code entry	Amino acids in sequence	PDB code entry	EC number	Observations
1	alpha-glucosidase from <i>Ther- motoga maritima</i> in complex with maltose and NAD ⁺	O33830	480	1OBB	EC 3.2.1.20	the 3D structure is com- plete
2	alpha-glucoronidase from Thermotoga maritima in com- plex with NAD ⁺	Q9WZL1	471	1VJT	EC 3.2.1.139	residues 470-471 are not located in the 3D structure
3	putative alpha-glucosidase from <i>Thermotoga neapolitana</i>	В9КАМЗ	469	3U95	Not available	residues 469-477 are not located in the 3D structure of chain A
4	6-phospho-alpha-glucosidase A from <i>Bacillus subtilis</i> in com- plex with manganese, NAD ⁺ and glucose-6-phosphate	P54716	449	1U8X	EC 3.2.1.122	residues 235-241 and 446- 449 are not located in the 3D structure
5	putative alpha-glucosidase (alpha-galacturonidase) from <i>Bacillus subtilis</i>	P39130	454	3FEF	EC 3.2.1.67	residues 1-6 and 441-454 are not located in the 3D structure
6	6-phospho-beta-glucosidase from <i>Thermotoga maritima</i> in complex with manganese, NAD ⁺ and glucose-6-pho- sphate	Q9X108	415	1UP4, 1UP6, 1UP7	EC 3.2.1.86	residues 219-221 are not located in the 3D structure
7	6-phospho-beta-glucosidase from Geobacillus stearother- mophilus	P84135	450	1S6Y	EC 3.2.1.86	residues 228-239, 303-313 and 446-450 are not loca- ted in the 3D structure

Table 1. PDB and UniProt entry codes and EC numbers for GH4 enzymes with known structures.

the two glucosidases with the specificity assured by small structural differences (Varrot et al., 2005).

Difenoconazole (DFC; 1-({2-[2-Chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl}methyl)-1H-1,2,4-triazole) is a broad-spectrum fungicide used on a variety of fruit and vegetables crops (Thom et al., 1997). When it is used, it remains in soil for a considerable period of time. The European Food Safety Authority (EFSA) assessed the toxicity of this substance as low on soil macro-organisms but no long-term data are available, and no studies regarding the toxicity on soil microbiota were made to evaluate the potential effect on soil microbial communities (EFSA report, 2011). Difenoconazole degradation by soil microbial community is important in pollution prevention because the fungicide may be washed from soil, reach the groundwater and pollute the aquatic environment. It is known that DFC is very toxic to aquatic organisms and may cause long term adverse effects in the aquatic environments (EFSA report, 2011). For these reasons it is important to obtain new and valuable information about the interactions of soil microbial communities with DFC in order to prevent the pollution of the aquatic environment and to avoid soil degradation.

The goal of this study is a comparative analysis of the structural and molecular properties of the bacterial alpha- and beta–glucosidases belonging to the GH4 family to obtain a more detailed knowledge and to improve our understanding of their specific interactions. Also, the possible interactions of the GH4 family of alpha- and beta-glucosidases with difenoconazole are investigated.

MATERIAL AND METHODS

Within this paper several bioinformatics tools are used in order to reveal sequence and structure similarities or dissimilarities of bacterial alpha- and beta-glucosidases belonging to the GH4 family. Our analysis is based on the sequences and three dimensional structures available for the considered proteins. The Protein Data Bank (PDB) entry codes of the structural files for the GH4 enzyme family from bacteria as well as the entry codes for sequences of these enzymes in the UniProt database (Leinonen *et al.*, 2006) and their Enzyme Commission numbers (EC number) are presented in Table 1.

Sequence similarity between the GH4 enzymes is analyzed by multiple sequence alignment using the ClustalW software (Larkin *et al.*, 2007); global and local physicochemical properties of the protein chains are retrieved using the PotParam tool (Gaisteiger *et al.*, 2005). We consider in our calculation the following properties computed using ProtParam: theoretical isoelectric point (pI), net charge, the aliphatic index and the grand average of hydropathicity (GRAVY).

The degree of dissimilarity of two three-dimensional protein structures is measured using the root-meansquare distance (RMSD) between equivalent atom pairs (Carugo & Eisenhaber, 1997). A zero value for the RMSD means identical structures and it increases for dissimilar structures. Structural similarity of the considered enzymes is compared using the structure matching tool in the Chimera software (Pettersen *et al.*, 2004) and the surface and volume of each protein are also computed.

In the case of 6-phospho-beta-glucosidase from *Ther-motoga maritime* (*BgITm*), there are three structural files: 1UP4 (Varrot *et al.*, 2005) for the protein octamer in the monoclinic form, 1UP6 (Yip *et al.*, 2004) for the protein octamer in the tetragonal form in complex with manganese, NAD and glucose-6-phosphate and 1UP7 (Varrot *et al.*, 2005) for the protein octamer in the tetragonal form in complex with NAD and glucose-6-phosphate. The superimposition of the three determined crystallographic structures of *BgITm* shows RMSD values of 0.246 Å for 1UP6 compared to 1UP4, 0.252 Å for 1UP6 compared to 1UP7 and 0.275 Å for 1UP7 compared to 1UP4. As all the RMSD values are small, we consider that these three structures are highly similar and we take

into account in our further analysis the 1UP6 structural file of chain A because it corresponds to the complex of the enzyme with both the cofactors (NAD and manganese ions) and the product (glucose-6-phosphate).

As the crystallographic structure of alpha-glucosidase from *Thermotoga maritima* (*AgITm*) represents a dimer and the overall root mean square deviation between the two monomers is 2.18 Å (Lodge *et al.*, 2003), we have considered both monomers in our analysis. The biggest difference for the structures of monomers A and B is observed for region 316–355 that includes helix L (333– 346) that is rotated in monomer B by 51.70° in comparison to the same helix in monomer A (Lodge *et al.*, 2003).

The structural file of the putative alpha-galactosidase from *Bacillus subtilis* (pAg/Bs), PDB entry code 3FEF, represents a homotetramer. Structure superimposition for the monomers shows RMSDs for 434 aligned C α atom pairs between 0.197 Å and 0.312 Å. As these values are small, we consider only chain A in our further analysis. Similarly, the structural file of the putative alpha-galactosidase from *Thermotoga neapolitana* (pAg/Tn) represents a homohexamer (3U95, Leisch *et al.*, 2012) but the RSMD values for 462 aligned C α atom pairs are small (between 0.191 Å and 0.274 Å) and we have considered only chain A in our studies.

Analysis and comparison of protein surface shapes and physicochemical properties, especially electrostatics and hydrophobicity, have provided a valuable contribution to the elucidation of protein function and molecular interactions. Within this study the surface properties of the considered enzymes are expressed in terms of: surface cavities and the global surface roughness which is quantitatively characterized by global surface fractal dimension. This quantity is defined using the fractal geometry concepts and its calculation is based on the method proposed by Lewis and Rees (1985) that considers the scaling law between the surface area (SA) and the radius of a rolling probe molecule (R) on the surface. The surface fractal dimension is determined from the slope of the double logarithmic plot of SA versus R. The surface area of the protein is computed using on-line free software GETAREA (Franczkiewicz & Braun, 1998; http://curie.utmb.edu/getarea.html) and probe radii of 1, 1.2, 1.4, 1.6, 1.8 and 2 Å. Also, surface properties of the investigated proteins are analyzed using the CASTp (Dundas et al, 2006) and 3Dsurfer (Li et al., 2008) online tools. These tools allow detection, visualization and characterization of cavities and/or protrusions present at the protein surface and thus characterization of its local geometric properties. Electrostatic properties are investigated using the PyMol software (DeLano, 2002).

Predicted functional partners for proteins may be obtained using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), an on-line free available tool (Snel *et al.*, 2011). We only considered those interacting partners that had high confidence interaction scores, i.e. higher than 0.700.

The possible interactions of the GH4 enzymes with difenoconazole were analyzed using molecular docking performed using the SwissDock server with default parameters and accurate docking option (Grosdidier *et al.*, 2011). The targets were prepared uniformly as an input for docking experiments by eliminating the ligand from the structural file (except the cations where it was the case) and using the Dock Prep tool of the CHIMERA software (Pettersen *et al.*, 2004). The three-dimensional structure of difenoconazole was generated using FROG — Free Online drug conformation generation software

(Leite *et al.*, 2007) starting from its chemical formula in SMILES (Simplified Molecular-Input Line-Entry System) format (Weininger, 1988).

RESULTS AND DISCUSSION

Sequence alignment, presented in Fig. 1, reveals similarity scores between 10 and 50 for the sequences of the considered glucosidases, as presented in Table 2. Figure 1 also presents the elements of secondary structure corresponding to *AgITm*, 1OBB chain A (Lodge *et al.*, 2003).

The similarity score, calculated for every pair of sequences that are aligned is the number of identities between the two sequences divided by the length of the alignment and represented as a percentage (Larkin *et al.*, 2007). For the alpha-glucosidases the similarity scores vary between 10.14 and 50.53 and for the beta-glucosidases the similarity score is 36.39.

The low degree of sequence identity is not reflected in the GH4 enzymes structural properties. Structure matching using the CHIMERA software reveals a high degree of similarity between the analyzed structures that is expressed in terms of RMSD values for pairs of structures and presented in Table 2.

Based on the structural and sequence similarities presented in Table 2, two groups can be distinguished: enzymes 10BB, 1VJT and 3U95 form the first group and 1U8X, 3FEF, 1UP6 and 1S6Y form the second group. The First group comprises alpha-glucosidases from *Thermotoga maritima* and *Thermotoga neapolitana* and is characterized by high sequence identity and structure similarity. Within this group, the superposition of chain A of *AgITm* with the other enzymes usually reveals smaller RMSD values than those obtained for-chain B, so in our further analysis we consider only the A chain.

Alpha-glucosidases from *Bacillus subtilis (AglBs)* show small sequence and structure identity to those found in *Thermotoga maritima* and *Thermotoga neapolitana*; they bear more resemblance to the investigated beta-glucosidases.

The global properties of the investigated proteins are quite similar, as presented in Table 3.

The analyzed proteins have high values of aliphatic indexes revealing high relative volume occupied by the amino acids with aliphatic side chains. This is in good agreement with their known increased thermostability (Conners *et al.*, 2006). Also, it is known that proteins found in thermophilic bacteria are characterized by high values of the aliphatic index (Ikai, 1980). The grand average of hydropaticity (GRAVY) indices have negative values illustrating the hydrophilic character of the investigated proteins. It is in agreement with their net charges and low theoretical isoelectric points indicating their acidic character.

The computed surface fractal dimensions are comparable and no significant differences have been observed between alpha- and beta-glucosidases.

Varrot and coworkers (2005) performed a structural comparison between the A chains of four enzymes belonging to the GH4 familly: *Ag/Tm* (PDB code 10BB), *AgrTm* (PDB code 1VJT), *Ag/Bs* (PDB code 1U8X) and *Bg/Tm* (PDB code 1UP6). They found that these structures were similar, with some structural differences situated in the central region, comprising residues 220–310 of Bg/Tm (PDB code 1UP6).

We extend the structural comparison for the A chains belonging to the other 3 enzymes considered in this study: pAg/Tn (PDB code 3U95), pAg/Bs (PDB code

.... .

sp|033830|AGLA_THEMA sp|Q9X108|BGLT_THEMA tr|P84135|P84135_GE05E _ tr | Q9WZL1 | Q9WZL1_THEMA tr | B9KAM3 | B9KAM3 THENN _ _ sp|P54716|GLVA_BACSU sp | P39130 | LPLD_BACSU м h sp|033830|AGLA_THEMA sp|Q9X108|BGLT_THEMA tr|P84135|P84135_GE05E E E E tr|Q9WZL1|Q9WZL1_THEMA tr|B9KAM3|B9KAM3_THENN sp|P54716|GLVA_BACSU R R E sp | P39130 | LPLD_BACSU A sp | 033830 | AGLA_THEMA sp|Q9X108|BGLT_THEMA tr|P84135|P84135_GEOS tr|Q9WZL1|Q9WZL1_THEM tr|B9KAM3|B9KAM3_THEN sp|P54716|GLVA_BACSU sp|P39130|LPLD BACSU sp|033830|AGLA_THEMA sp|Q9X108|BGLT_THEMA tr | P84135 | P84135_GEOS tr | Q9WZL1 | Q9WZL1_THEM tr | B9KAM3 | B9KAM3_THEM sp | P54716 | GLVA_BACSU sp | P39130 | LPLD_BACSU sp|033830|AGLA_THEMA sp|Q9X108|BGLT_THEMA tr | P84135 | P84135_GEOS tr | Q9WZL1 | Q9WZL1_THEM tr | B9KAM3 | B9KAM3_THEM sp | P54716 | GLVA_BACSU sp|P39130|LPLD_BACSU ⇒p|033830|AGLA_THEMA ⇒p|Q9X108|BGLT_THEMA tr|P84135|P84135_GE05 tr | Q9WZL1 | Q9WZL1_THEM tr | B9KAM3 | B9KAM3_THEM sp | P54716 | GLVA_BACSU sp | P39130 | LPLD_BACSU sp | 033830 | AGLA_THEMA sp | Q9X108 | BGLT_THEMA tr | P84135 | P84135_GE055 tr | Q9WZL1 | Q9WZL1 | C9WZL1 | tr | B9KAM3 | B9KAM3_THEM sp | P54716 | GLVA_BACSU sp | P39130 | LPLD_BACSU sp | 033830 | AGLA_THEMA sp|Q9X108|BGLT_THEMA tr|P84135|P84135_GEO31 tr|Q9WZL1|Q9WZL1_THEM2 tr|B9KAM3|B9KAM3_THEN0 sp|P54716|GLVA_BACSU sp | P39130 | LPLD_BACSU >p|033830|AGLA_THEMA
>p|Q9X108|BGLT_THEMA
tr|P84135|P84135_GE03 tr | Q9WZL1 | Q9WZL1_THEM tr | B9KAM3 | B9KAM3_THEM sp|P54716|GLVA_BACSU sp | P39130 | LPLD BACSU sp|033830|AGLA_THEMA sp|Q9X108|BGLT_THEMA tr|P84135|P84135_GE058 tr | Q9WZL1 | Q9WZL1 THEMA tr | B9KAM3 | B9KAM3 THENN

sp|P54716|GLVA_BACSU sp|P39130|LPLD_BACSU

Figure 1. Alignment of the sequences of bacterial glucosidases.

Regions with the highest structural dissimilarity are highlighted in grey (see Fig. 2–5). The elements of secondary structure corresponding to AgITm (O33830/1OBB chain A) are also presented with notations h for helix and e for sheet (Lodge et al., 2003).

- *

D. Craciun and others	
eeeee hhhhhhhhhhhhhhhhh eeeee hh	
MPSVKIGIIGAGSAVFSLRLVSDLCKTPGLSGSTVTLMDIDE	42
MRIAVIGGGSSYTPELVKGLLDISEDVRIDEVIFYDIDE	39
-SDAXDKRLKIATIGGGSSYTPELVEGLIKRYHELPVGELWLVDIPEGK	48
MKISIIGAGSVRFALQLVGDIAQTEELSREDTHIYMMDVHE	41
MKISIVGAGSVRFALQLVEDIAQTDELSREDTHIYLMDVHE	41
MKKKSFSIVIAGGGSTFTPGIVLMLLDHLEEFPIRKLKLYDNDK	44
FHISTLDQIKIAYIGGGSQGWARSLMSDLSIDERMSG-TVALYDLDFEA	49
~. * *.** [~] . : :	
hhhhhhhhhhhhh eece hhhhhhh eece h	
RLDAILTIAKKYVEEVGADLKFEKTMNLDDVIIDADFVINTAMVG	88
KOKIVVDFVKR-LVKDRFKVLISDTFEGAVVDAKYVIFQFRPG	82
KLEIVGALAKRXVEKAGVPIEIHLTLDRRRALDGADFVTTÖFRVG	94
RLNASYILARKYVEELNSPVKIVKTSSLDEAIDGADFIINTAYPYDPRY	91
RLNASYILARKYVEELNSPVKVVKTESLDEAIEGADFIINTAYPYDPRY	91
RODRIAGACDVFIREKAPDIEFAATTDPEEAFTDVDFVMAHIRVG	90
OKNEVIGNHSGNGRWRYEAVSTLKKALSAADIVIISILPG	90
· · · · · · · · · ·	
hb	
GHTYLEKVROIGEKYGYYRGIDACEFNMVSDY-YTFSNYNOLKYFVD	13
GLKGRENDEGIPLKYGLIGCETTGVGGF3AALRAFPIVEE	12
GLEARAKDERIPLKYGVIGOETNGPGGLFKGLRTIPVILD	13

	GHTYLEKVROIGEKYGYYRGIDACEFNMVSDY-YTFSNYNOLKYFVD	134
	GLKGRENDEGIPLKYGLIGOETTGVGGF3AALRAFPIVEE	122
E.	GLEABAKDERTPLKYGVIGOETNGPGGLEKGLBTIPVILD	1.3.4
A,	HD3GSOBWDEVTKVGEKHGYYRGIDSOELNMVSTYTYVI.SSYPDMKIALE	141
J.	HDSGSORWDEVTKUGEKHGYYRGIDSOELNMUSTYTYULSSYPDUKLALE	141
	KYAMBALDEOIPLKYGVVGOETCGPGGIAYGMBSIGGVLE	130
	SLDDMEVDVHLPERGIYOSVGDTVGPGGTIBGLBAVPIFAE	132
	- · * · · · · · · · · · · · · · · · · ·	101
	hbbbbbbbb ecce bbbbbbbbbbbbbbbbbbbbbbbbb	
	TARKTEKLSPKAWYLOAANPTFEGTTIWTRTVP-TKAVGECHGHYG	179
	VUDTUERTS_NATIUNETNESCHITEFUENVLEVERFIGLCNUDINE	168
F	TROXEELCODAWLINFTNDAGXUTEAULDYTKOEKUUGLCNUDIGX	181
L .	TAEKMKKMA DKA VIMOTANDUFETTOAUBBWTG-ANTUGECHGUAG	186
T T	TAEVARAMATATION TANDUFFTTO AUDDUTG_ANTIGECHOUNG	186
.4	TLDVMFVVSDD1MMLNVSND11TU1F1TDDLDDNSVTLNTCDMDUCT	177
	TADA TODVA DE SWUTNYTNOMSUCTOUL VUUEDCIVA TOCCHEUECTOVI.	182
	INAIRDIAEDDWVIMIMEADVCIRVDIAVIFOIAAIOCCHDVIOIQAD	TOF
	bbbbbbbb bb bessesses essesbbbbbbbb	
	-WETVERLGLEE - FRVDWOVAGUNHGTWINDED - VNGGNAVDI.LDRW	224
	_TDEINEMESSDIPRUFLAVAGINHISENEVAGINAIEDDDAW	212
-	_DVCUBVLLCUDBDDUHIDEBCLMHVUECLHUV_LDCUEUTEVUIDL	226
a .	-WEVERLOLDD FEVDWOVAGUNGATWINDFD -VDGFDVDII TOFM	220
a a	-VEVENERIGI.DDFEVDWOVAGUNHGIWINKIR-IRGEDAIPIIDEW	221
	-FDRMAOTLGLSSBVEWEVEVQUAREAUNTSTODOFCNDIMDULVEN	224
	LIFMITFOLATFUDDDFDTDUNULATNHFTWTTV19_VDWTDLUPFDFF	221
	· · · · · · · · · · · · · · · · ·	201
	hhh hhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhh	
		274
	ILL-READWARENFINDULEPAAIDMIRIIGVAFIGUIVENSSWRYHR	2/1
-	DRYLR	293
	VARPUKSEVIAKNIVULGWEPDFLKGLKVLFCFYHK	202
1	IEK-KLFLWLFKNFWDIQMSFAAMLMIKFIGMLFIGDTVRNGSWKYHY	278
4	ILK-LLORWLFKNFWUTQMOFAAMLMIKFIGMLFIGDTVRNGTWKYHY	2/0
	VOVIGIIFKILALAVLADWNDIFAKARDVQAADFDTLPN	203
	SARIGESGILLEGECWRDSVICSARRVAPDLPETYGA	205
		221
	VILLETRREWIGERWEGADDELIGWEWIGDILGEVILTIKKVARFIKENFSVR	321
,	VVEOTDVVLAFFLEAAVTVCTDAFUTCOLEVELEFLVVDDVLATVDDOLE	207
<u>,</u>	MIETWWWFCW_FCCIDNFUEDDWFHFOLDDADFDLIWAFFYDD	227
1	MILLINGENIGE-IGGIDNEVERFRIDENERENIKUREN INDEVENDUT	327
•	TVI AVVI, FORDAUVYSNONHTO I NFILMADE I FRAADUTADEAR SEMA	212
	TDAACDHIAFFI.DCDVI.VOD_FUJUFHI.TDISFDVODAFVOOFTEDIT	217
	THROUGHDRUIDFOFTEN/F-DVANENDIFIDERNQDRACKN/CICKDI	31/
	I.SDI GSUI GVDI SEVOEVI EVENTI DEEDVSGEONT DET DI L'ADDIVA DE	271
	VBCCSMVSTILLHI.TDDI FTDFCVTW	212
7	VDCCLVVSDLCSLTSSTNDUDDTA	228
<u>,</u>	I.TEEHDETEDVOVI.SCEOHIDETMATAMMUDUDI	261
1	TTEVHDET FDVGDI SGEOHT DET MATAMMARVAD	261
	FIVIDDHARVNOLADATAVNTCEDM	220
	UOODCUODVACCECUTIANI OF CEL	247
	VWWGVAERASGEEGVNIIAALLGLGELVT	347
	. : : httl://	
		4.2.4
	VVATPARGIINGIDDDVVVEVPADVDKNGINPEKIEPPDPDRVVKYYLRP	261
-	INTERNEDIENDEDIVELITEIVESKVR-TLSQGKGDRALSFIRA	301
<u>.</u>	FUNIENOGALASISALSAVEVNEVITKUGFKFIAVGDEFVAVRGEVQQ	300
1	FINISHOCH UNEDPODY WELFYWYDCCGIREKVEPDLTRRIKIFYLWP	411
4	I LIVENGGALKDFPDDLVMELFVWVDSSGIHREKVEPDLTHRIKIFYLWP	411
	LLIVENNGALANFDFTAMVEVPCIVGSNGPEPITVGTIPQFQKGLMEQ	387
	NVNMPNQGQVLNLPIQAIVETNAFITRNRVQPILSGALPKGVEMLAAR	395
	: *:* : : : : : : : : : : : : : : : : :	
	hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh	
	RIMRMEMALEAFLTGDIRIIKELLYRDPRTKSDE-QVEKVIEEILALPEN	470
_	VKMYERLTIEAYLKRSKKLALKALLSHPLGPDVE-DAKDLLEEILEAN-R	409
2	IKSFERVAAEAAVTGDYQTALVAXTINPLVPSDT-IAKQILDEXLEAH-K	434
7	RILRMEWNLEAYISRDRKVLEEILIRDPRTKSYE-QIVQVLDEIFNLPFN	460
1	RILRMEWNLEAFISRDRKVLEEILIRDPRTKSYE-QVVKVLDEILSLPFN	460
	AT METERS AND A DECEMPTOR AND	4 2 5
	QVSVERLTVEAWAERSFORLWQALILSRTVPNAR-VARLILEDLVEAN-K	100
	QVSVERLTVEAWAEKSFORLWQALILSKTVPNAR-VARLILEDLVEAN-K HISNQEAVADAGLTKDTGLAFQAFLNDPLVQIDRSDAEQLFNDMLQCIMQ	445

Table 2. Sequence and structure similarity indices for the GH4 enzymes.

Sequence code en- try/ PDB code entry	Sequence code en- try/ PDB code entry	Sequence identity score	RMSD (Å) /number of equivalent Cα atom
O33830/1OBB_A	Q9WZL1/1VJT	50.32	0.545/468
O33830/1OBB_B	Q9WZL1/1VJT	50.32	0.885/412
O33830/1OBB_A	B9KAM3/3U95_A	50.53	0.940/406
O33830/1OBB_B	B9KAM3/3U95_A	50.53	0.969/146
O33830/10BB_A	P54716/1U8X	18.49	1.247/145
O33830/1OBB_B	P54716/1U8X	18.49	1.223/145
O33830/1OBB_A	Q9X108/1UP6_A	18.31	1.017/148
O33830/1OBB_B	Q9X108/1UP6_A	18.31	0.969/146
O33830/1OBB_A	P84135/1S6Y	20.89	1.052/200
O33830/1OBB_B	P84135/1S6Y	20.89	1.025/204
O33830/10BB_A	P39130/3FEF_A	17.94	1.226/208
O33830/1OBB_B	P39130/3FEF_A	17.94	1.192/216
Q9WZL1/1VJT	Q9X108/1UP6_A	17.11	1.000/162
Q9WZL1/1VJT	P84135/1S6Y	15.56	1.004/176
Q9WZL1/1VJT	P54716/1U8X	10.91	1.277/144
Q9WZL1/1VJT	P39130/3FEF_A	14.80	1.198/196
Q9WZL1/1VJT	B9KAM3/3U95_A	91.90	0.545/468
B9KAM3/3U95_A	P84135/1S6Y	16.67	1.056/191
B9KAM3/3U95_A	P39130/3FEF_A	14.80	1.238/200
P54716/1U8X	Q9X108/1UP6_A	26.99	1.153/258
P54716/1U8X	P84135/1S6Y	29.62	1.113/207
P54716/1U8X	P39130/3FEF_A	15.70	1.324/189
P54716/1U8X	B9KAM3/3U95_A	10.47	1.215/127
Q9X108/1UP6_A	P84135/1S6Y	36.39	0.970/318
Q9X108/1UP6_A	P39130/3FEF_A	22.65	1.133/215
Q9X108/1UP6_A	B9KAM3/3U95_A	16.87	1.049/166
P84135/1S6Y	P39130/3FEF_A	18.16	1.146/241

3FEF) and *Bg/Gs* (PDB code 1S6Y). Comparative structural analysis has been performed using the PyMol software (DeLano, 2002) and reveals the following:

There are no regions with distinct structural organization between alpha-glucosidase (1OBB_A) and alpha-glucoronidase (1VJT) from *Thermotoga maritima*.

The LYS315- LYS351 region of Ag/Tm (1OBB_A) has no correspondence in the structure of Bg/Gs (1UP6_A) where 25 residues are not located in the structure the sequence is 30 residues shorter; for this reason we cannot analyze their structural similarity.

The ARG321–ASN347 region of AgITm (1OBB_A) which contains the ASNS332–ASN347 helix is distinct from the LYS327– LYS338 region of pAgITn (3U95_A), as it is revealed in Fig. 2.

The LYS327–LYS338 region of pAg/Tn monomer A contains a short helix LYS327–HIS332 and the rest is unstructured.

The PRO257–SER289 and regions LYS315-LYS351 of AgITm (10BB A) are distinct from the SER242-SER279 and SER309-SER322 regions, respectively, of AglBs (1U8X, Fig. 3A and 3B). Regions PRO257-SER289 of AgITm and region SER242-SER279 of AglBs are mainly structured in helices, but the orientations of helices are different for the two proteins. The LYS315-LYS351 region of AgITm is mainly structured in a long helix, AŚNS332-ASN347, whereas the SER309-SER322 region of AglBs is unstructured.

Structural dissimilarity between alpha-glucosidase

(1OBB_A) and 6-phospho-beta-glucosidase (1UP6_A) from *Thermotoga maritima*, is reflected by two regions with distinct structural organization (Fig. 4A and 4B):

Table 3.	Global	prope	rties	of bac	terial	alpha-	and	beta	-glu	icosi	dases	
							<i>c</i>		i.			CD 41 0

						··· J · · · ·						
A /	\ number	ofamina	acide MC	malacular	curface. V	malacular	valuma	CDAVA	arond	21/082 00	of budrow	aathicity
A۲	, number	or amino) acius: ivis,	molecular	surface; v.	molecular	volume;	GRAVI.	uranu	average	JI HVUIUL	Jatriicity
	,		, ,		, ,		,	· /	J	J		

Protein accession codes UniProt/PDB	AA	MS (Ų)	V (ų)	theoretical pl	Net charge	Aliphatic index	GRAVY	Surface fractal dimension
O33830/ 10BB_A	480	20290	61890	5.68	-9	92.15	-0.377	2.41±0.01
Q9WZL1/ 1VJT	471	19890	62780	5.85	-9	83.80	-0.546	2.46±0.01
B9KAM3/ 3U95_A	469	19450	62350	6.12	-7	86.44	-0.552	2.33±0.01
P54716/ 1U8X	449	17550	56150	4.93	-8	84.74	-0.308	2.50±0.01
P39130/ 3FEF_A	446	17310	54770	5.47	-12	97.11	-0.063	2.34±0.01
P84135/ 1S6Y	450	17160	52610	5.66	-8	100.53	-0.147	2.41±0.01
Q9X108/ 1UP6_A	415	17640	54900	5.76	-8	98.12	-0.223	2.39±0.01

Α

В

Figure 2. Regions with distinct structural organization inside of alpha-glucosidase monomer A (10BB_A — black) form *Thermotoga maritima* (ARG321–ASN347) and putative alpha-glucosidase monomer A (3U95_A — grey) of *Thermotoga neapoletana* (LYS327–LYS338).

PRO257-TRP295 (region 1) and LIS315-LYS351 (region 2) for alpha-glucosidase (1OBB_A) compared to PRO240-LEU260 and GLU271-HIS300, respectively, for 6-phospho-beta-glucosidase (1UP6 A). All these regions are mainly structured in helices. Re-gion 1 (PRO257-TRP295) of 1OBB_A contains a short beta sheet PRO257-ILE258 and three helices, GLY259-VAL262, SER266-GLY281 and SER289-TRP295. The PRO240-LEU260 region of 1UP6_A contains two helices, PRO240-TRP245 and GLU247-TYR257, but there is an appreciable distance between the helical segments SER266-GLY281 of 1OBB A and GLU247-TYR257 of 1UP6 A. As already mentioned, the LYS315-LYS351 region of 1OBB_A contains two helices, ARG321-LYS325 and ASNS332-ASN347. The GLU271-HIS300 region of 1UP6_A contains the LYS286-HIS300 helix that has as a 90° rotated orientation compared to helix ASN332-ASN347 of alphaglucosidase.

The LYS315–LYS351 region of AgTm is also distinct from region ARG315–GLU330 of pAgBs (Fig. 5). The long ASNS332–ASN347 helix of AgTm has no correspondent in the pAgBs structure (3FEF_A), its ARG315–GLU330 region being unstructured.

All presented results reveal that at least one of the regions, PRO257–SER289 and LYS315–LYS351 of Ag/Tm, is structurally distinct from the other investigated glucosidases and we focus our attention on these regions and compare their properties with those of the corresponding regions in the other investigated proteins. We must also mention that the structural differences in the two regions of Ag/Tm are not unexpected since these regions correspond to the insertion/deletion part of the glucosidase sequences. Moreover, these structurally distinct regions could be associated with substrate specificity.

Figure 3. Regions with distinct structural organization inside of alpha-glucosidase monomer A (10BB_A — black) form *Thermotoga maritima* and alpha-glucosidase A (1U8X — grey) from *Bacillus subtilis*

(A) region 1, PRO257–SER289 of 1OBB compared to SER242– SER279 of 1U8X and (B) region 2, LYS315–LYS351 for 1OBB compared to SER309–SER322 of 1U8X

The global physicochemical properties of these regions are presented in Table 4.

Different physicochemical properties of the regions with distinct structural organization in the alpha-glucosidases and beta-glucosidases from correlate well with the sequence alignment reflecting sequence dissimilarity. Regions 1 of Ag/Tm and Ag/Bs are more hydrophilic and unstable than the corresponding regions of Bg/Tm. Also, region 1 of Ag/Tm has a basic character such as region 1 of Bg/Tm, whereas region 1 of Ag/Bs has an acidic character. This observation is also sustained by the higher electrostatic potential of region 1 of Bg/Tm. Within region 1, residues ASP260 and ARG263 of Ag/Tm are implicated in interactions with the substrate, i.e. maltose (Lodge *et al.*, 2003), residue TYR265 of Ag/Bs, is involved in the interaction with alpha-D-glucose-6-phosphate (Rajan *et al.*, 2004) and the corresponding residues of Bg/Tm are

Table 4. The physicochemical properties of regions with distinct structural organization in alpha-glucosidase and 6-phospho-betaglucosidase from bacteria.

	Region 1			Region 2				
Region/ property	PRO257– SER289 of 1OBB	SER242– SER279 of 1U8X	PRO240– LEU260 of 1UP6	LYS315– LYS351 of 1OBB	LYS327– LYS338 of 3U95	ARG315– GLU330 of 3FEF	SER309– SER322 of 1U8X	GLU271– HIS300 of 1UP6
Theoretical pl	8.77	4.39	9.62	5.18	8.51	8.75	4.31	5.63
Aliphatic index	35.45	56.58	74.29	105.14	65.00	97.50	62.86	62.00
GRAVY	-1.485	-0.789	-0.705	-0.643	-1.167	-0.512	-1.214	-0.600
Electrostatic potential	-64.19÷ 64.19	-67.34÷ 67.34	-90.88÷ 90.88	-66.45 ÷ 66.45	–98.21 ÷ 98.21	–78.20÷ 78.20	-84.03÷ 84.03	-56.48÷ 56.48

Figure 4. Regions with distinct structural organization inside AgITm monomer A (10BB_A — black) and BgITm (1UP6 — grey): (A) region 1, PR0257–TRP 295 for AgITm compared to PR0240–LEU260 for BgITm and (B) region 2, LYS315–LYS351 for AgITm compared to GLU 271–HIS 300 for BgITm.

not involved in interactions with either substrate or cofactors (Yip et al, 2004).

The identified structurally distinct regions 2 also differ in terms of thermostability, hydrophilicity and electrostatic properties. Within region 2 of 1OBB, the 313– 334 fragment shows notable disorder reflected by high values for the temperature factors (Lodge *et al.*, 2003). Furthermore, the 316–355 region contains the 332–347 helix which has a distinct orientation in the A and B monomers in the dimer. This region not only has differ-

Table 5. Surface properties of investigated proteins.

ent structural properties in the two monomers of 1OBB, it is also distinct from the corresponding regions of the other investigated glucosidases. It seems that this region is implicated in the dimerization process (Lodge *et al.*, 2003). Except for the GLY290 residue of *BglTm* which is involved in the interaction with alpha-D-glucose-6-phosphate (Yip *et al.*, 2004), the other residues belonging to regions 2 of the investigated proteins are not involved in interactions with substrates or cofactors (Lodge *et al.*, 2003; Leisch *et al.*, 2012; Rajan *et al.*, 2004; Yip *et al.*, 2004).

Comparison of the surfaces of the investigated proteins reveals distinctive local surface features suggesting potential distinct interacting partners. The number of surface cavities differs for the investigated proteins and also the geometric properties of the first three cavities (considered the biggest) are distinct, as presented in Table 5.

STRING results for the predicted functional partners of the investigated proteins are given in Table 6. STRING predicts the functional association between proteins based on the genomic association of their genes. For the query gene, the program retrieves all the genes that occur in proximity encode functionally interacting proteins that are part of the same protein complex or are members of the same metabolic pathway (Snel *et al.*, 2000).

For AglTm, AgrTm and BglTm there is only one predicted common interaction partner, beta-glucosidase. Unfortunately, there are no experimental data to confirm these predicted interactions.

Using molecular docking on the SwissDock server (Grosdidier *et al.*, 2011) we have tested the possible interaction between the investigated enzymes and difenoconazole, an fungicide. All considered enzymes are predicted to interact with difenoconazole, but there are some differences especially concerning the identified structurally distinct regions of proteins. The energies of the best scored pose for every enzyme-difenoconazole interaction are presented in Table 7.

The interacting energies for the most favorable interactions with the DFC molecule are comparable for all investigated proteins. In the case of *AgITm*, *AgrTm* and *BgITm*, those structural files also contain ligands (others

Protein PDB code/ Property	10BB chain A	1VJT	3U95	1U8X	3FEF	1UP6	1S6Y		
Electrostatic po- tential [kbT/e] (T=300°K)	-72.17÷72.17	-72.55 ÷ 72.55	-64.28÷64.28	-78.14÷78.14	-70.52÷70.52	-74.12÷74.12	-71.13÷71.13		
Number of surface cavities	54	57	55	68	66	47	50		
Surface of 1 st cavity (Å ²)	3726.7	2266.3	1505.7	2624.1	2668.3	1250.3	1620.1		
Volume of 1 st cavity (Å ³)	6673.9	3698.5	2438.8	5655.9	6209.7	1739.9	2249.5		
Surface of 2^{nd} cavity $(Å^2)$	193.7	955.5	388.6	564.6	168.2	496.8	623.3		
Volume of 2 nd cavity (Å ³)	321.5	1129.5	526.8	508.6	207.2	748.1	1220.7		
Surface of 3 rd cavity (Å ²)	273.8	384.4	374.1	409.5	151.7	536.7	614.1		
Volume of 3rd cavi- ty (Å ³)	216.4	503.8	408.8	390.8	258.6	736	676.2		

Table 6. Predicted functional partners of GH4 glucosidases.

Protein (gene name, UniProt accession number)	Predicted interacting partners	Gene name	UniProt accession number
	beta-D-galactosidase	TM_0310	Q9WYE6
	alpha-glucosidase, putative	TM_0752	Q9WZL1
	alpha-glucosidase, putative	TM_0434	Q9WYR5
	alpha-glucosidase, putative	TM_1068	Q9S5X4
alpha-glucosidase from Thermotoga maritime	alpha-galactosidase	galA TM_1192	O33835
(agia im_1834 O33830)	beta-galactosidase	TM_1195	Q9X0S2
	galactokinase	galK TM_1190	P56838
	beta-galactosidase	lacZ TM_1193	Q56307
	beta-fructosidase	bfrA TM_1414	033833
	riboflavin-specific deaminase	TM_1828	Q9X2E8
	alpha-glucosidase,	aglA TM_1834	O33830
	alpha-galactosidase	galA TM_1192	O33835
alpha-glucoronidase from <i>Thermotoga maritima</i>	xylosidase (beta-glucosidase)	TM_0076	Q9WXT1
(111_0/52, 0) W2(1)	alpha-glucosidase, putative	TM_1068	Q9S5X4
	beta-glucosidase	TM_0025	Q9WXN2
	beta-galactosidase	CTN_1379	B9K9C2
	alpha-glucosidase	CTN_0761	B9K7K4
	beta-D-galactosidase	CTN_0377	B9KC07
	alpha-glucosidase	CTN_1501	B9K9P4
nutative alpha-glucosidase from Thermotoga peapo-	galactokinase	galK CTN_1385	B9K9C8
litana (CTN 1820 POKAM2)	alpha-galactosidase	agalA CTN_1383	B9K9C6
	beta-galactosidase	bgalB CTN_1382	B9K9C5
	beta-fructosidase	CTN_1079	B9K8H2
	menaquinone biosynthesis methyl- transferase ubiE	CTN_1829	B9KAM2
	oxidoreductase	CTN_1828	B9KAM1
	phosphotransferase system (PTS) maltose-specific enzyme IICB com- ponent	glvC BSU08200	P54715
	transcriptional activator of the Mal operon; Positive regulator of the glv operon expression	glvR BSU08190	P54717
	putative phosphotransferase system enzyme IIA component	ypqE BSU22230	P50829
	aryl-phospho-beta-d-glucosidase	BSU03410	P42403
6-phospho-alpha-glucosidase A from <i>Bacillus subtilis</i>	maltose phosphorylase	yvdK BSU34570	O06993
(giva b3008180, F34710)	trehalose-6-phosphate hydrolase	treA BSU07810	P39795
	putative phosphotransferase system enzyme IIA component	yyzE BSU40120	032292
	phosphotransferase system (PTS) trehalose-specific enzyme IIBC com- ponent	treP BSU07800	P39794
	putative component of transporter	yvdJ BSU34580	006992
	beta-phosphoglucomutase; glucose- -1-phosphate phosphodismutase	yvdM BSU34550	006995

	beta-galacturonidase	yesZ BSU07080	O31529
	putative oligo-1,6-glucosidase	yugT BSU31290	O05242
	maltose phosphorylase	yvdK BSU34570	O06993
	putative ABC transporter (permease)	IpIC BSU07120	P39129
putative alpha-glucosidase (alpha-galacturonidase) from <i>Bacillus subtilis</i> (IpID BSU07130 P39130)	putative beta-hexosaminidase, puta- tive lipoprotein	ybbD BSU01660	P40406
	putative ABC transporter (permease)	IpIB BSU07110	P39128
	alpha-L-arabinofuranosidase	xsa BSU28510	P94552
	putative endo-1,4-beta-glucanase; Putative aminopeptidase	ysdC BSU28820	P94521
	glucose-6-phosphate isomerase	pgi TM1385	Q9X1A5
6-phospho-beta-glucosidase from Thermotoga ma-	hypothetical protein	TM_1280	Q9X107
ritima (balT TM_1281, O9X108)	glucokinase	TM_1469	Q9X1I0
(- <u>-</u> , - ,	beta-glucosidase	TM_0025	Q9WXN2

A

R

6-phospho-beta-glucosidase from *Geobacillus stearothermophilus* (P84135) STRING was unable to find this protein as it has not an assigned gene name.

Figure 5. Regions with distinct structural organization inside of alpha-glucosidase monomer A (10BB_A — black) form *Thermotoga maritima* (LYS315–LYS351) and putative alpha-glucosidase monomer A (3FEF_A) from *Bacillus subtilis* (ARG315–GLU330).

than cations).We can notice that DFC is able to bind to the protein in the same binding region as the ligands. It means that DFC can modulate the catalytic act of these enzymes, although, based only on the information we have collected, we cannot predict if this modulation will be an inhibition or an activation of the catalytic reaction with the natural substrate. We do not exclude the possibility that during the interaction of the enzyme with DFC a catalytic reaction is initiated.

Figure 6 illustrates the identified poses for the predicted interactions of DFC with AglTm (A) and BglTm (B) and Fig. 7 illustrates the poses for the predicted interactions of DFC with the PRO257–SER289 and LYS315– LYS351 regions of *AglTm*.

For region 1 (PRO257–TRP295) of *AgITm*, there are three identified positions for DFC binding to the protein and the corresponding interaction energies are: –2804.92 kcal/mol, –2800.82 kcal/mol and –2799.60 kcal/mol, respectively. For region 2 (LYS315–LYS351) of AgITm, there is only one position for DFC binding and the interaction energy is –2802.36 kcal/mol.

In the case of *BgITm* (1UP6), for region 1 (PO240– LEU260) there are seven identified poses for DFC binding, all of them concerning the TYR242 residue and the interaction energies between -2508.49 kcal/mol and -2504.06 kcal/mol. For region 2 (SER271–HIS300), there are 12 poses for DFC binding with the interaction energy -2511.93 kcal/mol and -2496.30 kcal/mol. Four residues: GLU271, ARG277, ARG289 and TYR294 are

Figure 6. Illustration of the identified poses for the predicted interactions of DFC (grey spheres) with *AgITm* (A) and *BgITm* (B) respectively.

The proteins are presented as ribbon in dark grey and in black are shown the regions with distinct structural organization: PRO257–TRP295 and LYS315–LYS351 for *AgITm* (A), PRO240–LEU260 and GLU271–HIS300 for *BgITm* (B).

Figure 7. Illustration of the identified poses of DFC (grey spheres) located in the regions PRO257–TRP295 (A, B and C) and LYS315–LYS351 (D) of *AgITm* (black spheres).

involved in DFC binding. There are also four poses of DFC binding simultaneously to region 1 and 2 of *Bg/Tm*.

For pAgBs, there are four identified poses for DFC binding to the ARG315–GLU330 region, all of them involving the GLU300 residue, with the interacting energies between -2188.35 kcal/mol and -2176.51 kcal/mol.

There are no predicted binding sites for DFC in the identified structurally distinct regions of *Ag/Bs* (1U8X)

and pAg/Tn (3U95_A). Analysis of the predicted poses for DFC interactions with Ag/Bs reveals the involvement of residues ARG160, ARD162, GLU344, VAL343 and GLU370. Also, the DFC interactions with pAg/Tn usually involve residues ARG12, TYR85, TYR87, GLU304, ARG307 and GLU311. We notice that both charged and hydrophobic residues are important for DFC binding to GH4 enzymes.

Table 7. The energies for the best scored pose for every enzyme-uneroconazore interac	Table	7.	The energ	ies for	the be	st scored	pose foi	every	enzyme-d	lifenoconazo	ole intera
---	-------	----	-----------	---------	--------	-----------	----------	-------	----------	--------------	------------

Protein accession codes UniProt/PDB	Number of scored poses	FullFitness (kcal/mol)	Estimated ΔG (kcal/mol)
O33830/ 1OBB_A	48	-2807.65	-7.90
Q9WZL1/ 1VJT	37	-2722.07	-8.49
B9KAM3/ 3U95_A	50	-2405.12	-7.87
P54716/ 1U8X	40	-2461.61	-7.86
P39130/ 3FEF_A	51	-2191.61	-7.99
P84135/ 1S6Y	47	-2329.74	-8.22
Q9X108/ 1UP6_A	41	-2511.93	-7.84

CONCLUSIONS

A major challenge biotechnological in applications is to understand the mechanism of action of active carbohydrate enzymes from ther-mophilic bacteria in terms of their interactions and activity. As far as we know, it is the first study that compares the structural properties of the GH4 enzyme family using structural bioinformatics approaches. Our results reveal similar global structural characteristics of these enzymes despite low sequence identity, and are in good agreement with other published data (Rajan et al., 2004). This global structural similarity reflects a common reaction mechanism of these involving NAD+ and divalent metal ions as cofactors. Our findings also agree with the observation that the difference in substrate specificity between alpha- and beta-glucosidases from the GH4 family is due to simple steric factors and subtle modification of the protein conformation (Varrrot et al., 2005) and not to their distinct structural properties.

Our bioinformatics study identified two local regions in the investigated proteins with highly dissimilar structural organization and also with quite distinct physicochemical properties:

- region 1: PRO257-SER289 of 1OBB differs from SER242-SER279 of 1U8X and from PRO240-LEU260 of 1UP6, respectively;

- region 2: LYS315-LYS351 of 1OBB differs from LYS327-LYS338 of 3U95, ARG315-GLU330 of 3FEF, SER309-SER322 of 1U8X and GLU271-HIS300 of 1P6, respectively.

Except for AgITm (ASP260 and ARG 263) and AglBs (TYR265), residues belonging to region1 are situated at the interior of the proteins and are not involved in cofactor binding, catalytic activities or specific interactions with the substrates (Lodge et al., 2003; Leisch et al., 2012; Rajan et al, 2004; Varrot et al., 2005; Yip et al., 2004). Also, except for Gly290 of BglTm, residues belonging to region 2 are not involved in catalytic activities, but they are exposed to the solvent (Lodge et al., 2003; Leisch et al., 2012; Rajan et al, 2004; Varrot et al., 2005; Yip et al., 2004). It suggests that these structurally distinct regions may be involved in oligomerization processes or in other specific protein-protein interactions. This hypothesis is sustained by the presence of cavities with different geometric properties at the protein surfaces and by distinct predicted functional partners. Also, molecular docking studies reveal that all the investigated proteins are able to bind the fungicide, difenoconazole, but there are some differences in difenoconazole binding to the structurally distinct regions of the proteins. For the moment, we are not able to conclude if difenoconazole binding to GH4 enzymes increases or decreases the enzyme activity, or modulates it in an allosteric manner and further experimental data concerning GH4 enzyme family structures and interactions are needed to obtain a detailed knowledge on their reaction and interaction mechanisms with direct implications on their biotechnological applications.

Acknowledgement

This work was partially supported by the following projects: POSDRU project "Transnational network for integrated management of postdoctoral research in the field of Science Communication. Institutional set up (postdoctoral school) and scholarship program (CommScie)" POSDRU/89/1.5/S/63663 and PN-II-RU-PD-2012-3-0220 project "Metabolization of difenoconazole by crop plants and fungi communities from soil".

REFERENCES

- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–242.
- Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database

(CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37: D233–D238.

- Carugo O, Eisenhaber F (1997) Probabilistic evaluation of similarity between pairs of three-dimensional protein structures utilizing temperature factors. J Appl Crystallogr 30: 547–549. Chhabra SR, Shockley KR, Ward DE, Kelly RM (2002) Regulation of
- endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. Appl Environ Microbiol 68: 545-554.
- Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM (2006) Microbial biochemistry, physiology, and biotech-nology of hyperthermophilic *Thermotoga* species. *FEMS Microbiol Rev* 30: 872–905
- Del Pozo MV, Fernández-Arrojo L, Gil-Martínez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA, Golyshina O, Newbold CJ, Polaina J, Ferrer M, Golyshin PN (2012) Microbial beta-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. *Biotechnol Biofuels* 5: 73. DeLano WL (2002) The PyMOL Molecular Graphics System, DeLano
- Scientific, San Carlos. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated resi-dues. *Nucleic Acids Res* **34**:W116–W118.
- European Food Safety Authority (2011) Conclusion on the peer review of the pesticide risk assessment of the active substance difenocona-zole. *EFSA J* **9**:1967. [71 pp.]. doi:10.2903/j.efsa.2011.1967. Franczkiewicz R, Braun W (1998) A new efficient algorithm for calcu-
- lating solvent accessible surface areas of macromolecules. J Comput Chem 19: 319-326.
- Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook. Walker JM, ed, pp 571-607. Humana Press, Totowa, New Jersey. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small
- molecule docking web service based on EADock DSS. Nucleic Acids Res 39: W270–W277
- Ikai A (1980) Thermostability and aliphatic index of globular proteins. Biochem 88: 1895-1898.
- Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23: 2947-2948.
- Leinonen R, Nardone F, Zhu W, Apweiler R (2006) UniSave: the Uni-ProtKB Sequence/Annotation Version database. Bioinformatics 22: 1284-1285
- Leisch H, Shi R, Grosse S, Morley K, Bergeron H, Cygler M, Iwaki H, Hasegawa Y, Lau PC (2012) Cloning, Baeyer-Villiger biooxidations, and structures of the camploor pathway 2-oxo-(3)-4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase of *Pseu*domonas putida ATCC 17453. Appl Environ Microbiol 78: 2200–2212. Leite TB, Gomes D, Miteva MA, Chomilier J, Villoutreix BO, Tufféry
- (2007) Frog: a FRee Online druG 3D conformation generator. Nucleic Acids Res 35:W568-W5672
- Lewis M, Rees DC (1985) Fractal surfaces of proteins. Science 230: 1163-1165.
- Li B, Turuvekere S, Agrawal M, La D, Ramani K, Kihara D (2008) Characterization of local geometry of protein surfaces with the Visibility Criterion. Proteins: Struct Funct Bioinf 71: 670–683. Lodge JA, Maier T, Liebl W, Hoffmann V, Sträter N (2003) Crystal
- structure of *Thermotoga maritima* alpha-glucosidase AglA defines a new clan of NAD⁺-dependent glycosidases. J Biol Chem 278: 19151-19158
- McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4: 885–892.
- Pei J, Pang Q, Zhao L, Fan S, Shi H (2012) Thermoanaerobacterium ther*mosaccharolyticum* beta-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. *Biotechnol Biofuels* 5: 31.
- Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera A visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612
- Rajan SS, Yang X, Collart F, Yip VYL, Withers SG, Varrot A, Thom-pson J, Davies GJ, Anderson WF (2004) Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+ Mn2+-dependent phospho-alpha-glucosidase from Bacillus subtilis. Structure 12: 1619-1629.
- Snel B, Lehmann G, Bork P, Huynen MA (2000) STRING: a webserver to retrieve and display the repeatedly occurring neighbour-hood of a gene. *Nucleic Acids Res* 28: 3442–3444.
- Thom E, Ottow JCG, Benckiser G (1997) Degradation of the fungicide difenoconazole in a silt loam soil as affected by pretreatment and organic amendment, Environ Pollut 96:409-414.
- Ugwuanyi JO (2008) Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricul-

tural wastes for animal feed supplementation. Bioresour Technol 99: 3279-3290.

- Varrot A, Yip VLY, Li Y, Rajan SS, Yang X, Anderson W, Thompson J, Withers SG, Davies GJ (2005) NAD⁺ and metal-ion dependent hydrolysis by family 4 glycosidases: Structural insight into specificity for phospho-beta-D-glucosides. J Mol Biol 346: 423-435.
- Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 28: 31-36.
- Yang B, Dai Z, Ding S-Y, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. *Biofuels* 2: 421–450.
 Yip VL, Varrot A, Davies GJ, Rajan SS, Yang X, Thompson J, Anderson WF, Withers SG (2004) An unusual mechanism of glycoside

hydrolysis involving redox and elimination steps by a family 4 betaglycosidase from *Thermologa maritima*. J Am Chem Soc 26:8354–8355. Yip VL, Withers SG (2006) Mechanistic analysis of the unusual re-

- dox-elimination sequence employed by Thermotoga maritima BgIT: a 6-phospho-beta-glucosidase from glycoside hydrolase family 4. *Bio-chemistry* **45**: 571–580.
- Yip VL, Thompson J, Withers SG (2007) Mechanism of GlvA from Bacillus subtilis: a detailed kinetic analysis of a 6-phospho-alpha-glucosidase from glycoside hydrolase family 4. Biochemistry 46: 9840-9852.