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Microarray technology changed the landscape of con-
temporary life sciences by providing vast amounts of 
expression data. Researchers are building up repositories 
of experiment results with various conditions and sam-
ples which serve the scientific community as a precious 
resource. Ensuring that the sample is of high quality is of 
utmost importance to this effort. The task is complicated 
by the fact that in many cases datasets lack information 
concerning pre-experimental quality assessment. Tran-
scription profiling of tissue samples may be invalidated 
by an error caused by heterogeneity of the material. 
The risk of tissue cross contamination is especially high 
in oncological studies, where it is often difficult to ex-
tract the sample. Therefore, there is a need of develop-
ing a method detecting tissue contamination in a post-
experimental phase. We propose Microarray Inspector: 
customizable, user-friendly software that enables easy 
detection of samples containing mixed tissue types. The 
advantage of the tool is that it uses raw expression data 
files and analyses each array independently. In addition, 
the system allows the user to adjust the criteria of the 
analysis to conform to individual needs and research 
requirements. The final output of the program contains 
comfortable to read reports about tissue contamination 
assessment with detailed information about the test 
parameters and results. Microarray Inspector provides 
a list of contaminant biomarkers needed in the analysis 
of adipose tissue contamination. Using real data (data-
sets from public repositories) and our tool, we confirmed 
high specificity of the software in detecting contamina-
tion. The results indicated the presence of adipose tissue 
admixture in a range from approximately 4% to 13% in 
several tested surgical samples.
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INTRODUCTION

Microarrays have provided a tremendous amount of 
interesting data, but as a tool they pose technical difficul-
ties in experiment execution, which raises certain ques-
tions pertaining to the method’s reliability (Tan, 2003; 
Shi et al., 2004; Michiels et al, 2005; Ioannidis, 2005; Du-
puy & Simon, 2007). Large scale microarray quality as-
sessment projects such as MAQC (Shi et al. 2006), have 
confirmed that it is possible to obtain reproducible re-

sults, even between various platforms (Chen et al. 2007). 
Nevertheless, common standards for both experiment 
preparation and data analysis are required (Tan, 2003; 
Dupuy, 2007; Ji et al., 2006; Shi et al., 2010). Still, some 
side effects are to be expected (Chen et al., 2007), as 
each step of the procedure (sample extraction, storage, 
preparation, hybridization, washing) can introduce an 
error (Ji et al., 2006). On the other hand, a positive result 
in MAQC-II study reports that different data analysis 
approaches produce comparable predictive models for 
a given dataset, thus confirming that applying enough 
quality measures can yield reliable data for analysis.

Quality control in data analysis is usually integrated 
with normalisation (Affymetrix; Irrizarry, 2003) and 
considers mainly RNA integrity and technical problems 
of hybridization such as spatial and probe effects. The 
methods and tools provided by microarray suppliers and 
the research community, allow conducting tests of signal 
intensity, average background noise, percent of present 
calls verification, RNA fragmentation assessment, and in 
some cases, sample and lab effects (Affymetrix; Affym-
etrix I, 2002; Irizarry, 2003; Bolstad et al., 2004; McCall 
et al., 2011). Surprisingly, the problem of tissue contami-
nation and its consequences on data quality is usually ig-
nored. Nevertheless, as already emphasised by research-
ers (McCall et al., 2011), there is a great need for dataset 
independent (single array) quality assessment methods, 
especially considering that 10% of publicly available 
datasets are estimated to be corrupted.

The general disadvantage of the above methods is that 
biologically atypical samples can be incorrectly consid-
ered to be of poor quality. The methods test only if a 
sample deviates from other samples in the experiment, 
and provide no information or explanation of the cause. 
This situation leads to two classes of errors: 1. removing 
from further analysis results that are proper, but which 
represent an atypical biological image, and 2. forming a 
set of results that were classified as “good/clean”, but 
can in fact represent a homogeneous set of contaminat-
ed results (contaminated by other tissues). For example, 
the extracted RNA was of good quality, but came from 
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two or more cell types, e.g., tumour and surrounding 
adipose tissue.

The current paradigm deems it necessary to confirm 
tissue sample integrity before hybridization and exam-
ining its morphology after dissection (Skrzypczak et al., 
2010). This step is time-consuming and, therefore, some-
times omitted. False microarray findings can be identified 
after hybridization, when attempting to confirm them 
with qRT-PCR. This procedure, however, is resource-
consuming and thus limited to a small number of genes 
of utmost interest. Furthermore, both morphological ex-
amination and qRT-PCR require the same sample which 
was used for hybridization. Considering that in clinical 
and diagnostic studies, the entire sample is often used 
for the microarray, it is not possible to perform such 
tests. Similarly, when file sets from public repositories 
are to be analysed, computational techniques remain the 
only available test for the quality of microarray samples.

Thus, we see a need to develop a method that is able 
to recognize tissue contamination in a post-experimental 
phase. Failing to detect contamination at the early stage 
of microarray data analysis can lead to non-representa-
tive conclusions and, in consequence, further costly re-
search which produces inaccurate results. In this paper, 
we present a method applied in a flexible, user-friendly 
software called Microarray Inspector. It is available for 
free for non-commercial research at our site: http://bio-
informatics.tt.com.pl/.

MATERIALS AND METHODS

Contaminant tissue definition. The basis of an ac-
curate contamination analysis is the correct evaluation 
of which tissues constitute the contamination in a given 
microarray experiment, as well as the correct identifi-
cation of which biomarkers are related to such tissues 
(Table 1). Microarray Inspector provides a definition of 
adipose tissue composed of selected biomarkers based 
on tissue-specific and tissue-enriched genes (Table 2). 

The adipose tissue definition is designed for Affymetrix 
HG-U133A, HG-U133Av2, HG-U133plus2 array types, 
however, the software itself allows new tissue defini-
tions, provided the array is annotated in AnnotationDbi 
(Pages et al., 2008). The Microarray Inspector tool analy-
ses a set of contaminant biomarkers against a reference 
set. Technically, a biomarker is either a named gene that 
will be mapped to a list of probe sets, or an individual 
named probe set. The contamination set is formed via 
a collection of probe sets mapped from selected bio-
markers. It is desirable for such biomarkers to have a 
high level of expression in the defined type of tissue 
(Chunlei et al., 2009; She et al., 2009; Xiao et al., 2010). 
The choice of a proposed set of adipose biomarkers was 
made based on differential gene expression analysis of a 
few hundred preselected arrays (183 of contaminated as-
says to 217 not contaminated).

Algorithm. The Microarray Inspector algorithm 
(Fig. 1) currently uses only raw expression data from 
Affymetrix CEL files. Each file is being normalized us-
ing MAS5 algorithm implemented in R (RC Team 2012) 
Bioconductor (Gentleman et al., 2004) package affy 
(Gautier et al., 2004). MAS5 algorithm has been selected 
among others for several reasons. First and foremost, 
it uses the Wilcoxon test and is therefore adjusted for 
it, which is convenient for further calculations. Moreo-
ver, MAS5 normalizes each CEL file separately, whereas 
other algorithms, like RMA or GCRMA, use informa-
tion from all the CEL files loaded, thus giving dataset-
dependent results. Additionally, normalizing and analys-
ing one file at a time is also much less computationally 
expensive.

After normalization, the base-2 log of the normal-
ized MAS5 expressions of the sample are calculated and 
initially put on a scale of 500 (Bioconductor defaults — 
Gentleman et al., 2004). Expression values are mapped 
to probe sets from the two analysed tissue sets (test and 
reference), yielding two lists of real numbers and allow-
ing a statistical analysis to be performed. Our goal is to 
determine if there is a reason to believe in significant ex-

Figure 1. The Microarray Inspector algorithm.
The basic component of the method is the Mann-Whitney-Wilcoxon U test which compares two sets of numbers (normalized expression 
values of biomarker A and reference B sets), yielding a p-value reflecting the probability that the location (the dotted line) of A is not 
shifted towards higher values from B. If a resulting p-value is lower than the present significance level (by default 0.05), then the test 
shows lack of A in B.
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pression of contaminating tissue biomarkers in the sam-
ple. The decision on contamination detection is based 
on the analysis of the biomarker probe sets’ expression 
in the context of the expression of microarray probe sets 
related to the reference set. By default, the reference set 
consists of all probe sets that, after MAS5 (Affymetrix) 

normalization, obtained “Present” 
status in the Wilcoxon test (Wilcox-
on, 1945). However, references can 
be also formed from “Marginal” or 
“Absent” probe sets, or even from 
another set of biomarkers (detailed 
information in Additional options 
section).

Next, the Mann-Whitney-Wilcox-
on U Test (Mann & Withney, 1947) 
is used to determine if the contami-
nating probe sets are, as a whole, 
less expressed than the reference 

set. There are two reasons to use the Mann-Whitney-
Wilcoxon U Test. First, it is a non-parametric test that 
can compare datasets of different sizes. The second and 
more important reason, is that the test assesses whether 
or not one set of numbers has larger values than the 

Table 1. Possible tissue sample contamination in oncological experiments.

Cancer type Possible contamination with

Breast cancer Adipose, muscle, fibroblasts, vasculatory or inflammation tissues

Colorectal cancer Muscle, fibroblasts, vasculatory or inflammation tissues

Ovulary cancer Adipose, fibroblasts, vasculatory or inflammation tissues

Eye cancer Fibroblasts, vasculatory or inflammation tissues

Brain cancer Fibroblasts, vasculatory or inflammation tissues

Figure 2. Visual comparison of biomarker and reference expression results of a fully contaminated experiment (GSE28005) (default 
settings).
(A) The whisker plots of the experiment’s ten example assays show the distribution of the probe sets’ expression values of tested tis-
sue (light grey) and the distribution of the reference set (dark grey). (B) Probe sets’ expression charts of the first contaminated assay 
GSM692701.CEL sample (p>0.05). The dotted lines represent the reference quartile’s expression values.
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other, what is required when trying to compare the ex-
pression of a possible contaminant against a reference 
set.

Our null hypothesis is that the location (a pseudo-me-
dian, Hollander & Wolfe, 1973) of the expression values 
of the contamination set is greater or equal to the loca-
tion of the expression values of the reference set. The 
alternative hypothesis says, that the location of the ex-
pression values of the contaminant is smaller than the 
location of the expression values of the reference set. 
The test yields no information pertaining to the magni-
tude of the difference when the null hypothesis is reject-
ed. If, with a given significance level, the null hypoth-
esis is not rejected for a given sample (i.e. we do not 
accept the alternative hypothesis), then the sample will 
be marked as contaminated with the given set of bio-
markers (Fig. 2). However, if with a given significance 
level the null hypothesis is rejected, then the sample 
will not be marked as contaminated with the given set 
of biomarkers (Fig. 3); any determination of a possible 
contamination is left for further investigation by the in-
volved scientists.

The statistical test relies on a simplified assumption 
that the probe sets’ expression values are independent, 
and furthermore, that the distributions of the two sets 
(test and reference) are of the same type, but shifted 
from each other.

The main calculation parameter in this test is the sig-
nificance level α, which has a default value of 0.05. Thus 
α is the threshold that Microarray Inspector will compare 
against the p-value returned by the Mann-Whitney-Wilcox-
on U Test. This test gives a p-value assessment of whether 
the values in the contaminant list are at least as large as 
those in the reference set. A sample is marked as contami-
nated, when the expression values from the contaminant 
set are at least as large as those from the reference set. This 
happens when the yielded p-value is greater than the signifi-
cance level α. It can then be said with (1-α)*100% confi-
dence, the unmarked sample is not contaminated.

Additional options. To enable the experienced 
user to flexibly apply their own expert knowledge, 
Microarray Inspector allows for several parameter ad-
justments: changing MAS5 parameters (τ, α1, α2), set-
ting the Mann-Whitney-Wilcoxon U Test significance 
level (α), selecting reference sets, trimming reference 
set probe sets by upper and/or lower percentage. For 
instance, tuning α can easily add either flexibility or ri-
gidity to the analysis. Higher α will cause less samples 
to be marked as contaminated, but the confidence of 
cleanliness estimation will drop. Smaller α yields more 
results marked as contaminated, but samples are esti-
mated not to be contaminated with a higher degree of 
confidence. The reference set could also be trimmed, 
which affects the location of reference. Such tuning 
enables focusing the contamination test in either high-
er or lower expressed genes.

The user can also choose between reference sets. 
Using “Present” probe sets imposes the strict-
est standards when potentially marking a sample as 
contaminated. The location (or the aforementioned 
pseudo-median) of the expression of “Present” probe 
sets will be higher than that of “Marginal”, which it-
self will be higher than that of “Absent”. Hence the 
contaminant will have to be “more expressed” when 
tested against the “Present” probe sets in order to be 
marked as contaminated. Likewise, using the “Absent” 
probe sets as reference will mark much more of the 
samples as possibly contaminated. It may be desired, 
if the researcher prefers, to consider even the lowest 
possibility of contamination for the sake of caution. 
Similar effects may be achieved by using a reference 
tissue composed of user defined biomarkers. In this 
case, the tested contamination biomarkers distribution 
location must be at least as high as the location of the 
reference biomarker set.

The trimming of reference set values from the top 
and bottom is designed to modify the location of the 
reference. Trimming the top to a greater extent than 

Table 2. Details pertaining to biomarkers of a contaminating tissue.

Biomarkers (gene symbols) Probe sets platform HG-U133plus2 Probe sets platforms: HG-U133A, HG-U133Av2

ADIPOQ 207175_at 207175_at

AQP7 206955_at 206955_at

CHRDL1 209763_at 209763_at

CIDEC 219398_at 219398_at

FABP4 203980_at, 235978_at 203980_at, 235978_at

ITH5 1553243_at, 219064_at 1553243_at, 219064_at

LGALS12 223828_s_at N/A

LPL 203548_s_at, 203549_s_at 203548_s_at, 203549_s_at

PLIN1 205913_at 205913_at

PLIN4 228409_at N/A

SEMA3G 219689_at 219689_at

1554044_a_at N/A

1558421_a_at N/A

204997_at 204997_at

213706_at 213706_at

230463_at N/A

231050_at N/A
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the bottom, should result in a reference set’s loca-
tion with lower expression values and possibly more 
samples will be marked as contaminated. Conversely, 
trimming the bottom significantly more than the top 
ought to result in a reference set’s location with high-
er expression values and possibly fewer samples will 
be marked as contaminated. To be more descriptive, 
trimming the top 50% of values will result in using 
the location as a pseudo first quartile instead of a 
pseudo-median. Likewise, trimming the bottom 50% 
of values will result in using the location as a pseu-

do third quartile instead of a pseudo-median. Lastly, 
choosing to trim the top and bottom values with an 
equal amount should not significantly affect the loca-
tion of the reference set. Such flexibility in trimming 
is desired for some experiments. In some cases, even 
relatively low expression of contaminant biomarkers 
can represent considerable contamination, while in 
other cases quite the opposite.

An easy interface for self-definition of test and ref-
erence tissues, using any genes and probe sets, is also 
provided.

Table 3. Summary of tested experiments.
The first column provides experiment numbering for convenient referencing in the text. The second column indicates the Affymetrix 
platform, the third provides GEO series code of the experiment, the fourth column presents the number of assays, followed by the mate-
rial used in transcription profiling in the fifth column. The last two columns show the percentage of expected contamination (number of 
contaminated assays to all assays from experiment) and the result of analysis using Microarray Inspector.

No. Platform Experiment Assays Material
Contamination [%]

Expected  Results

1. HG-U133_Plus_2 GSE28005 38

318

adipose tissue 100 100

2. HG-U133_Plus_2 GSE26637 20 adipose tissue 100 100

3. HG-U133A GSE5090 17 adipose tissue 100 100

4. HG-U133_Plus_2 GSE28603 12 adipocytes 100 100

5. HG-U133_Plus_2 GSE27657 18 adipose tissue 100 100

6. HG-U133A GSE35710 48 adipose tissue 100 100

7. HG-U133_Plus_2 GSE35411 26 adipose tissue 100 100

8. HG-U133_Plus_2 GSE29410 6 adipose tissue 100 100

9. HG-U133_Plus_2 GSE24422 24 adipocytes 100 100

10. HG-U133_Plus_2 GSE20950 39 adipose tissue 100 100

11. HG-U133_Plus_2 GSE41168 70 adipose tissue 100 100

12. HG-U133_Plus_2 GSE29721 20

1298

hepatic cellular carcinoma 
or normal liver (microdis-
section)

0 0

13. HG-U133A_2 GSE10797 66 breast epithelium and 
stroma (microdissection) 0 0

14. HG-U133_Plus_2 GSE25155 28 kidney or gastric cell lines 0 0

15. HG-U133_Plus_2 GSE11919 9 skin fibroblasts 0 0

16. HG-U133_Plus_2 GSE11917 105 coronary artery smooth 
muscle cells 0 0

17. HG-U133_Plus_2 GSE21654 22 pancreatic cancer cell lines 0 0

18. HG-U133_Plus_2 GSE40968 18 breast cancer cell lines 0 0

19. HG-U133_Plus_2 GSE16249 8 melanoma cell lines 0 0

20. HG-U133_Plus_2 E-MTAB-37 950 various cancer cell lines 0 0

21. HG-U133_Plus_2 E-MTAB-274 40 blood 0 0

22. HG-U133_Plus_2 GSE15932 32 blood 0 0

23. HG-U133_Plus_2 GSE41168 70

340

skeletal muscles 0–100 5.7

24. HG-U133_Plus_2 GSE7117 8 liver 0–100 0

25. HG-U133_Plus_2 GSE30718 47 kidney 0–100 12.8

26. HG-U133_Plus_2 GSE7821 40 intestine 0–100 0

27. HG-U133_Plus_2 GSE18864 84 breast tumour 0–100 3.6

28. HG-U133A GSE42822 91 breast cancer 0–100 7.7



652           2013P. Stępniak and others

Datasets. Firstly, to analyse the specificity of our 
method, we tested 11 experiment datasets (total of 318 
assays) for the presence of adipose tissue/cells. These 
experiments include transcription profiling analysis of ad-
ipose tissue or adipocytes. We expected to produce close 
to 100% positive “contamination” reports. The other 11 
datasets (total of 1298 assays) were selected to reflect the 
expected 0% “contamination”. They were both different 
cancer or normal cell lines (apart from adipocytes), as 
well as microdissected material derived from various or-
gans or blood. To check the purity of the samples from 
public repositories, we selected six experiment datasets 
(total of 340 assays) expected to be contaminated. These 
were surgical biopsies of, for example, skeletal muscles, 
liver, kidney, intestine, or breast.

All above datasets were downloaded from GEO data-
base (Edgar et al., 2002; Barrett et al., 2011) and analysed 
using Microarray Inspector.

RESULTS AND DISCUSSION

Specificity

Our results proved that all analysed adipose tissue/cell 
arrays were reported as “contaminated” when using the 
following default sensitivity setup: MAS5 parameters (τ 
= 0.015, α1 = 0.04, α2 = 0.06), significance level 0.05 
and no trimming of reference sets. It is important to 
note that with the same parameters, none of the theo-
retically clean samples returned as contaminated after the 
tests. Summary of the results is presented in Table 3. 
Occasional high values of biomarkers in “unspecific” tis-
sue samples are to be expected. Most experiments are 
designed to change the natural balance of sample gene 
expression patterns. In particular, cancer cells deviate 
from their standard counterparts. However, our bio-

Figure 3. Visual comparison of biomarker and reference expression results of a clean experiment (GSE21654) (default settings).
(A) The whisker plots of the experiment’s ten example assays show the distribution of the probe sets’ expression values of tested tissue 
(light grey) and the distribution of the reference set (dark grey). (B) Probe sets’ expression charts of the example’s not contaminated as-
say GSM540375.CEL sample (p<0.05). The dotted lines represent the reference quartile’s expression values.
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marker set has been selected to minimize the possibil-
ity of false positive results under “unspecific” conditions, 
which could increase the expression of biomarkers.

Purity of the samples and the trimming effect

We examined six experiments that could possibly 
contain sample tissue cross-contamination (Table 3, no. 
23–28). Four of the six datasets showed adipose tissue 
contamination ranging from approximately 4% to 13%. 
Taking into consideration that usual data analysis meth-
ods filter out low expression probe sets, we trimmed 
the bottom 20% of present reference probe sets, thus 
lowering the sensitivity of the contamination detection. 
For instance, in experiment GSE30718 we identified a 
contamination level of 12.8%. A total 6 assays out of 
47 showed adipose contamination with default sensitiv-
ity settings. After trimming the reference by the bottom 
20% of values, four of the previously contaminated ar-

rays were marked as not contaminated. Figures 4 and 5 
present a clear example of a trimming effect. The length 
of low whiskers of references (in red) is visibly short-
er in the trimmed experiment chart (Fig. 5) than in the 
same experiment but with default setting (Fig. 4). After 
trimming of the reference set, some biomarker probe 
sets fell to lower expression quartiles, thus changing 
their labelling to contamination-free. This feature of the 
test can be applied for instance when the further analy-
ses on the tested microarrays will focus only on highly 
expressed genes, making it reasonable to ignore probe 
sets with low expression values.

Microarray Inspector and other similar methods/tools

We propose simple, user friendly software that ena-
bles screening analysis of adipose contamination in hun-
dreds of arrays simultaneously. Our software predicts in 
silico the purity of the sample, similarly to the method 

Figure 4. Visual comparison of biomarker and reference expression results of the tested experiment GSM30718 (default settings).
(A) The whisker plots of the experiment’s ten example assays show the distribution of the probe sets’ expression values of tested tissue 
(light grey) and the distribution of the reference set (dark grey). (B) Probe sets’ expression charts of the example’s contaminated assay 
GSM761745_pPB3.CEL sample (p>0.05). The dotted lines represent the reference quartile’s expression values.
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presented by Wang et al., 2010. Contrary to that method, 
however, our tool does not require histological evaluation 
to build a prediction model that is necessary in the cited 
article. Instead, we use predetermined experiments with 
0% (cell lines, apart from adipocytes experiments) and 
100% of contamination (adipose tissue profiling assays). 
The aim is to answer the following question: is the ex-
periment contaminated or not? Several approaches have 
already focused on determining the proportion of admix-
ture (Venet et al., 2001; Lu et al., 2003; Lähdesmäki et al., 
2005; Wang et al., 2006; Clarke et al., 2010). However, 
regardless of the proportion value of admixture in the 
sample, the results and data interpretation may be incon-
sistent. Furthermore, the methods that are based on his-
tological evaluation of admixture percentage do not take 
into account the amount of mRNA. Particular attention 
should be brought to the fact that cancer cells generate 
much more RNA than normal cells, which could cause 

the result discrepancies. Several available methods (Venet 
et al., 2001; Lähdesmäki et al., 2005; Wang et al., 2006) 
require expression profiles of purified reference tissue 
i.e. microdissected material, to calculate the proportion 
of contamination. Unfortunately, reference hybridizations 
for many tissue types are unavailable. In addition, laser 
capture microdissection (LCM), which is used to purify 
the samples, remains a real challenge when attempting to 
extract high quality mRNA. This drawback is caused by 
mRNA’s inherent instability. We try to avoid all of the 
above problems and design a method useful for screen-
ing analysis of a lot of data at the same time, with high 
specificity and sensitivity controlled by the user. Another 
advantage of our method is that it enables the user to 
build necessary tissue definitions based on manually pre-
selected existing data from public repositories. Although 
confirmatory experiments are always preferred, they are 
time-consuming and costly. In our case this is not neces-

Figure 5. Trimming effect of bottom 20% values in the tested experiment GSE30718.
(A) The length of low whiskers of references (dark grey) is shorter in the trimmed chart than in the same experiment when using defaults 
settings (Fig. 4A). (B) Detailed probe sets’ expression of file GSM761745_pPB3.CEL. The shift of reference expression values quartiles (dot-
ted lines) results in marking the sample as not contaminated (p<0.05).
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sary, provided the researcher can access high quality data 
which underwent a thorough selection process in order 
to build a contamination biomarker set. Besides using 
Microarray Inspector, the user can check the method’s 
reliability on large portion of data in a relatively short 
time.

CONCLUSIONS

As presented in the results section, our method pro-
vides a unique insight into microarray experiments. Mi-
croarray Inspector helps researchers decide whether or 
not the results are reliable, should the contaminated 
samples be discarded, or if the analysis procedures have 
to be modified to provide more strict filtration and 
thresholds. For example, in our model case of adipose 
contamination, considering potentially discovered con-
tamination after the analysis, the findings may be reas-
sessed, and false results relating to contamination could 
be identified and subsequently discarded.

The default parameter settings should cover most ex-
perimental conditions, although we emphasise that the 
user has the means to control more than just the main 
test parameter α to tune the test as described above. Let-
ting the user apply his expert knowledge to the analysis, 
is the chief goal. We hope the method implemented in 
our software tool will fill a significant gap in post experi-
mental data analysis and will enable researchers to eas-
ily validate sample compositions. Currently, the software 
is limited to examine Affymetrix CEL files, however we 
expect to extend it to other platforms in the near future.

Conflict of interests

The authors declare that they have no conflict of in-
terests.

Acknowledgements

This work was supported by the Polish Agency for 
Enterprise Development [UDA-POIG.01.04.00-14-001/ 
10-00]. AS was supported by the MPD [MPD/2009/5/
styp11].

REFERENCES

Affymetrix I: Statistical algorithms description document. Technical paper 
2002.

Affymetrix Statistical Algorithms Reference Guide.
Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, 

Tomashevsky M, Marshall Ka, Phillippy KH, Sherman PM, Muert-
ter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2011) 
NCBI GEO: archive for functional genomics data sets — 10 years 
on. Nucleic Acids Res 39: D1005–D1010.

Bolstad BM, Collin F, Simpson KM, Irizarry RA, Speed TP (2004) Ex-
perimental design and low-level analysis of microarray data. Int Rev 
Neurobiol 60: 25–58.

Chen JJ, Hsueh H-M, Delongchamp RR, Lin C-J, Tsai C-A (2007) 
Reproducibility of microarray data: a further analysis of microarray 
quality control (MAQC) data. BMC Bioinformatics 8: 412.

Chunlei Wu CO et al., Wu C, Orozco C, Boyer J, Leglise M, Goodale 
J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW, Su AI (2009) 
BioGPS: an extensible and customizable portal for querying and or-
ganizing gene annotation resources. Genome Biol 10: R130.

Clarke J, Seo P, Clarke B (2010) Statistical expression deconvolution 
from mixed tissue samples. Bioinformatics (Oxford, England) 26: 1043–
1049.

Dupuy A, Simon RM (2007) Critical review of published microarray 
studies for cancer outcome and guidelines on statistical analysis and 
reporting. J Nat Cancer Institute 99: 147–157.

Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: 
NCBI gene expression and hybridization array data repository. Nu-
cleic Acids Res 30: 207–210.

Gautier L, Cope L, Bolstad BM, Irizarry Ra (2004) affy — analysis of 
Affymetrix GeneChip data at the probe level. Bioinformatics (Oxford, 
England) 20: 307–315.

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, 
Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber 
W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sa-
witzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J (2004) 
Bioconductor: open software development for computational biol-
ogy and bioinformatics. Genome Biol 5: R80.

Hollander M, Wolfe DA (1973) Nonparametric Statistical Methods. 2nd 
(1999) edition. New York: John Wiley & Sons.

Ioannidis JPA (2005) Microarrays and molecular research: noise discov-
ery? Lancet 365: 454–455.

Irizarry R a (2003) Summaries of Affymetrix GeneChip probe level 
data. Nucleic Acids Res 31: 15e–15.

Ji H, Davis RW (2006) Data quality in genomics and microarrays. Na-
ture Biotechnol 24: 1112–1113.

Lähdesmäki H, Shmulevich L, Dunmire V, Yli-Harja O, Zhang W 
(2005) In silico microdissection of microarray data from heterogene-
ous cell populations. BMC Bioinformatics 6: 54.

Lu P, Nakorchevskiy A, Marcotte EM (2003) Expression deconvolu-
tion: a reinterpretation of DNA microarray data reveals dynamic 
changes in cell populations. Proc Natl Acad Sci USA 100: 10370–
1035.

Mann HB, Whitney DR (1947) On a test of whether one of two ran-
dom variables is stochastically larger than the other. The Annals of 
Mathematical Statistics 18: 50–60.

McCall MN, Murakami PN, Lukk M, Huber W, Irizarry R a (2011) 
Assessing affymetrix GeneChip microarray quality. BMC Bioinformat-
ics 12: 137.

Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome 
with microarrays: a multiple random validation strategy. Lancet 365: 
488–492.

Pages H, Carlson M, Falco S, Li N (2008) AnnotationDbi: Annotation 
Database Interface. R package version 1.16.18.

She X, Rohl C a, Castle JC, Kulkarni A V, Johnson JM, Chen R (2009) 
Definition, conservation and epigenetics of housekeeping and tis-
sue-enriched genes. BMC Genomics 10: 269.

Shi L, Tong W, Goodsaid F, Frueh FW, Fang H, Han T, Fuscoe JC, 
Casciano DA (2004) QA/QC: challenges and pitfalls facing the mi-
croarray community and regulatory agencies. Expert Rev Mol Diagnos-
tics 4: 761–777.

Shi L, Reid LH, Jones WD et al. (2006) The MicroArray Quality Con-
trol (MAQC) project shows inter- and intraplatform reproducibility 
of gene expression measurements. Nature Biotechnol 24: 1151–1161.

Shi L, Campbell G, Jones W, Campagne F (2010) The MicroArray 
Quality Control (MAQC)-II study of common practices for the 
development and validation of microarray-based predictive models. 
Nature Biotechnol 28: 827–838.

Skrzypczak M, Goryca K, Rubel T, Paziewska A, Mikula M, Jarosz D, 
Pachlewski J, Oledzki J, Ostrowski J, Ostrowsk J (2010) Modeling 
oncogenic signaling in colon tumors by multidirectional analyses of 
microarray data directed for maximization of analytical reliability. 
PloS One 5.

Tan PK (2003) Evaluation of gene expression measurements from 
commercial microarray platforms. Nucleic Acids Res 31: 5676–5684.

Team RC (2012) A Language and Environment for Statistical Computing.
Wang M, Master SR, Chodosh L a (2006) Computational expression 

deconvolution in a complex mammalian organ. BMC Bioinformatics, 
7: 328.

Wang Y, Xia X-Q, Jia Z, Sawyers A, Yao H, Wang-Rodriquez J, Mer-
cola D, McClelland M (2010) In silico estimates of tissue compo-
nents in surgical samples based on expression profiling data. Cancer 
Res 70: 6448–6455.

Wilcoxon F (1945) Individual Comparisons by Ranking Methods. Indi-
vidual Comparisons by Ranking Methods 1: 80–83.

Venet D, Pecasse F, Maenhaut C, Bersini H (2001) Separation of sam-
ples into their constituents using gene expression data. Bioinformatics 
(Oxford, England) 17 (Suppl 1): S279–S287.

Xiao S-J, Zhang C, Zou Q, Ji Z-L (2010) TiSGeD: a database for 
tissue-specific genes. Bioinformatics (Oxford, England) 26: 1273–1275.


