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Background & Aims: Infrared spectroscopy is an increas-
ingly common method for bacterial strains’ testing. For 
the analysis of bacterial IR spectra, advanced mathemati-
cal methods such as artificial neural networks must be 
used. The combination of these two methods has been 
used previously to analyze taxonomic affiliation of bac-
teria. The aim of this study was the classification of Es-
cherichia coli strains in terms of susceptibility/resistance 
to cephalothin on the basis of their infrared spectra. The 
infrared spectra of 109 uropathogenic E. coli strains were 
measured. These data are used for classification of E. coli 
strains by using designed artificial neural networks. Re-
sults: The most efficient artificial neural networks classify 
the E. coli sensitive/resistant strains with an error of 5%. 
Conclusions: Bacteria can be classified in terms of their 
antibiotic susceptibility by using infrared spectroscopy 
and artificial neural networks.
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INTRODUCTION

Multi-drug resistant strains are one of the main prob-
lems in the bacterial infection treatment. Cephalothin is 
a semisynthetic antibiotic belonging to the first genera-
tion of cephalosporins. It is used as a therapeutic agent 
in infections caused by Gram-negative bacteria - Escheri-
chia coli, Proteus mirabilis, Klebsiella pneumoniae (Empel et al., 
2008). Cephalosporins, including cephalothin, are inacti-
vated by ESBL β-lactamases i.e. AmpC, TEM, SVH or 
MBL (Prabhu et al., 2013). Percentage of uropathogenic 
E. coli strains resistant to first class cephalosporins is 
still increasing (Kot et al., 2010). Drug-resistant strains 
are isolated from environmental samples as well as from 
clinical samples.

There are several techniques for determining the sus-
ceptibility of bacteria to antibiotics. Most of the tech-
niques (e.g. disc diffusion method and E-test) are based 
on the cultivation of bacteria in the presence of an an-
tibiotic. It is also possible to detect genes for resistance 
to antibiotics by using PCR (Empel et al., 2008). These 
methods, however, require time and are labor intensive.

Traditional methods of bacterial phenotypic assess-
ment i.e. antibiotics resistance/sensitivities are based 
on growing bacterial cultures on specific media (e.g. 
Christensen medium). Strains are differentiated on the 
basis of the appearance of bacterial colonies and micro-

bial medium changes. Modern chemical methods allow 
the phenotypic differentiation of bacteria based on the 
presence of specific peaks in bacterial spectrum reflect-
ing presence of biopolymers of the intact bacterial cells. 
One of such methods is the Fourier Transform Infrared 
Spectroscopy (FTIR) (Lechowicz et al., 2013). On the 
basis of FTIR technique, reflection techniques have been 
developed which allow obtaining an IR spectrum by 
measuring light reflected by the sample. The most com-
monly used method is the Attenuated Total Reflection 
(ATR/FTIR). The ATR/FTIR technique has made the 
infrared spectroscopy a powerful tool for the analysis of 
systems previously inaccessible for it. Fast, cheap, non-
invasive method that does not require special prepara-
tion of samples quickly found use in biological research 
(Maquelin et al., 2002; Yu et al., 2005). The superposition 
of signals from many biomolecules present in a bacterial 
cell makes peak assignments difficult, but highly specific 
patterns of IR spectra of intact bacterial cells may be 
employed for the rapid and accurate identification of mi-
croorganisms and their phenotypic characteristics. This 
method has distinguished five major fragments of spec-
trum useful for the bacterial identification: 3000–2800 
cm–1 fragment (or W1 window) is the fatty acid region; 
1700–1500 cm–1 (W2 window) contains the amide I and 
II bands of proteins and peptides; 1500–1200 cm–1 (W3 
window) is a mixed region of fatty acid bending vibra-
tions, proteins, and phosphate-carrying compounds; 
1200–900 cm–1 (W4 window) contains absorption bands 
of the carbohydrates; and 900–700 cm–1 (W5 window) is 
the ‘fingerprint region’ that contains unique peaks that 
are characteristic for specific species of bacteria (Fig. 1) 
(Helm et al., 1991a; Helm et al., 1991b; Naumann et al., 
1991). Infrared spectra of intact microbial cells are very 
complex. Attempts have been made to use mathematical 
methods in the analysis of IR spectra of biological sam-
ples. The most popular mathematical methods include 
principal component analysis (PCA), cluster analysis 
(CA) and artificial neural networks (ANNs) (Mouwen et 
al., 2006; Bosch et al., 2008; Wenning et al., 2010; Lecho-
wicz et al., 2013). Artificial neural networks are mathe-
matical models of the nervous system. The basic units 
of ANNs are artificial neurons. Construction of artificial 
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neurons is analogous to the construction of a biological 
neuron (Fig. 2a). There are several types of neural net-
works, differing in arrangement of artificial neurons. Fre-
quently used ANNs are composed of one neuron layer 
for data input, two or three layers of hidden neurons 
and a neuron layer leading-out data from the network 
(Fig. 2b). ANNs have found many applications in the 
analysis of various types of data. The learning process 
of ANN is based on presentation of the data (learning 
set) to network. After learning, the network optimizes 

its structure and thereby increases the 
number of correct classifications. The 
main limitation of this technique is the 
need to have a large number of learn-
ing data. An increase in the complex-
ity of the network makes it necessary 
to increase the size of the learning set. 
To solve very complex problems, very 
complex neuronal networks need to be 
applied and thus the learning set must 
count thousands of observations.

The aim of this study was the use 
of IR spectroscopy and artificial neural 
networks to differentiate cephalothin 
(cephalosporine) resistant/sensitive 
uropathogenic E. coli strains.

MATERIALS AND METHODS

The bacterial strains. 109 uropath-
ogenic E. coli strains were isolated from urine samples of 
hospitalized patients suffering from urinary tract infec-
tion, from the wards of hospital No. 2, Medical Univer-
sity of Lodz, Poland, in the years 2006 to 2008. Follow-
ing isolation, the strains were stored at –80°C until the 
tests were carried out. Number of passages between the 
isolation and performance of the test was not more than 
five. Bacteria were grown at 37ºC for 24 hours. After 
this time the bacteria were stored at 4°C.

Figure 1. An example of infrared spectrum of uropathogenic E. coli strain.

Figure 2. Construction of an artificial neuron (a) and the structure of an artificial neural network (b).
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Designation of drug resistant strains. The drug re-
sistance of E. coli strains was determined by a suscep-
tibility test (ATB UR5, bioMerieux) at the Faculty of 
Laboratory Diagnostics and Clinical Biochemistry, hospi-
tal No. 2, Medical University of Lodz, Poland (Adamus-
Bialek W et al., 2009; Adamus-Bialek W et al., 2013).

Measurement of IR spectra. Bacterial strains were 
cultured on LB agar medium at 37ºC for 24 hours. A 
single bacterial colony was very carefully taken from 

the Petri dish using a disposable sterile pipette tip, just 
before the IR spectrum measurement. The bacterial 
mass was evenly distributed over the entire surface of 
the crystal. Bacterial colony was scanned 25 times, and 
the final result was averaged. For each bacterial strain, 
10 colonies were harvested. After IR spectrum meas-
urement, the bacterial mass was removed using acetone 
and 70% isopropanol. Residual solvents were removed 
with a sterile double-distilled water, and the crystal was 
dried. IR spectrum was measured in the range 4000–650 
cm–1 with an interval of 1 cm–1. The resulting spectrum 
of bacteria was then subjected to a pre-treatment: the 
baseline fixed, calculation of the first derivative, scaling 
to the range 0–1.

Designing a neural network. For creating a neural 
network Statistica 10 was used. The calculations were 
based on data from 1090 bacterial IR spectra. The IR 
spectra were randomly divided into independent subsets: 
learning subset (70% of all IR spectra), testing subset 
(15% of all IR spectra) and validation subset (15% of all 
IR spectra).

RESULTS

Distribution of bacterial strains due to the susceptibil-
ity to cephalothin was as follows: 51% of the bacterial 
strains were sensitive to cephalothin, 27% of the bacte-
rial strains were resistant to cephalothin, and the remain-
ing 22% were displaying intermediate resistance to ce-
phalothin (Fig. 3a) (Adamus-Bialek et al., 2009; Adamus-
Bialek et al., 2013). Unprocessed IR spectra of different 
bacterial strains were similar. However, after conversion 
of original spectra to the first derivative some differences 
could be observed. Especially large accumulation of the 
differences may be observed in the fragment 1500–1000 
cm–1 which corresponds to windows W3, W4 (Fig. 4a, 
b). Nonetheless these differences are so slight and unsta-
ble that the differentiation of resistant/sensitive of E. coli 

on their basis is not possible. The wave-
numbers related to cephalothin resist-
ance have been identified by using sta-
tistical methods. Advanced methods of 
multivariate data processing (eg. PCA, 
CA) did not allow to differentiate the 
E. coli strains (data not shown). We de-
signed a set of artificial neural network 
to classify the tested bacteria based on 
the selected wavenumbers. In this study 
two types of neural networks were used: 
Multilayer Perceptron (MLP) and Radial 
Basis Function networks (RBF). The in-
dividual networks differed in the num-
ber of neurons in the hidden layer and 
the type of the activation function. The 
quality of the network was evaluated on 
the basis of the number of correct clas-
sification in the validation subset, and in 
the second place, the network complex-
ity. The best results were obtained with 
the MLP networks (Table 1). The per-
formance of RBF networks was signifi-
cantly below expectations (Table 2). The 
best designed ANN obtained 83.43% 
of correctly classified strains (or cor-
rect answers) in the validating set (Ta-
ble 1). This result is decidedly unsatis-
factory. However, after examining the 
responses distribution in the validation 

Figure 3. The percentage of E. coli strains susceptible to cepha-
lothin used in the study. 
(a) distribution of strains into three categories — resistant, sensi-
tive and intermediate (b) distribution of strains into two catego-
ries — sensitive and “non-sensitive strains”

Figure 4. Differences in the IR spectra of three uropathogenic E. coli strains. 
(a) unprocessed spectra (b) the first derivative of absorbance. Some differences are 
marked by grey areas.
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set it turns out that the percentage of correctly classi-
fied strains for cephalothin-sensitive strains was about 
95%. For resistant and intermediate strains, the ANN 
obtained significantly worse results — 67.5% and 77% 
of correctly classified strains, respectively (Table 3). It is 
a well-known phenomenon of ANN functioning. Some-
times ANNs demonstrate a capacity to recognize one 
type of pattern (e.g. sensitive strains) and at the same 
time do not recognize the other patterns (e.g. intermedi-
ate and resistant strains). This particular network showed 
some predisposition for detecting susceptibility to cepha-
lothin. In the first experiment, networks were designed 
for classifying bacterial strains into three types of antibi-
otic action — resistant, intermediate and sensitive. How-
ever, ANNs performed better when only two types of 

strains were analyzed. Therefore, in the next experiment, 
intermediate and resistant strains were combined into 
one group called “non-sensitive strains”. The new dis-
tribution of strains is shown in Fig. 3b. In this case, the 
topology of the ANNs was changed — networks were 
constructed with 30 input neurons, 9 neurons in the hid-
den layer and two outputs. For data prepared this way, 
neural networks obtained slightly different results. Also, 
in this case MLP networks achieved the best results (Ta-
ble 4). In the validation set, the best network obtained 
92.64% of correctly classified strains. For cephalothin-
sensitive strains the number of correct answers was 
93.23%. It is therefore a slightly worse result than that 
obtained in the first experiment. However, for strains 
grouped in the category “non-sensitive strains” percent-

Table 1. Multilayer perceptrons (MLP) for classifying bacterial strains into 3 groups. 

ID Topology
Quality of the network

Error
function

Activation function

Training (%) Testing (%) Validating (%) Hidden
neurons

Output
neurons

1 MLP 30-8-3 89.66 79.14 83.43 Ent Log Softmax

2 MLP 30-10-3 94.11 80.37 79.75 Ent Log Softmax

3 MLP 30-6-3 84.95 77.91 79.14 Ent Tanh Softmax

4 MLP 30-9-3 89.66 77.30 78.53 Ent Log Softmax

5 MLP 30-9-3 91.75 79.14 77.91 Ent Log Softmax

6 MLP 30-8-3 86.78 74.85 77.91 Ent Tanh Softmax

7 MLP 30-9-3 89.66 79.14 77.30 Ent Tanh Softmax

8 MLP 30-7-3 90.84 77.91 77.30 Ent Log Softmax

9 MLP 30-9-3 81.94 73.00 76.69 Ent Log Softmax

10 MLP 30-6-3 85.73 78.53 76.69 Ent Tanh Softmax

Abbreviations: Tanh — hyperbolic tangent, Log — logistic function, Ent — entropy, Softmax — softmax function.

Table 2. Radial basis function networks (RBF) for classifying bacterial strains into 3 groups. 

ID Topology
Quality of the network

Error
function

Activation function

Training (%) Testing (%) Validating (%) Hidden
neurons

Output
neurons

1 RBF 30-10-3 52.75 60.12 58.90 SOS Gaussian Linear

2 RBF 30-10-3 53.01 58.28 58.28 Ent Gaussian Softmax

3 RBF 30-10-3 52.88 60.12 57.67 SOS Gaussian Linear

4 RBF 30-10-3 54.19 58.90 57.67 SOS Gaussian Linear

5 RBF 30-10-3 56.68 56.44 57.06 Ent Gaussian Softmax

6 RBF 30-10-3 51.70 56.44 56.44 Ent Gaussian Softmax

7 RBF 30-10-3 50.92 60.74 55.83 Ent Gaussian Softmax

8 RBF 30-10-3 52.75 55.83 55.83 Ent Gaussian Softmax

9 RBF 30-10-3 53.40 58.90 55.83 SOS Gaussian Linear

10 RBF 30-10-3 53.27 59.51 55.21 SOS Gaussian Linear

Abbreviations: Gaussian — Gaussian function, Softmax — softmax function, Linear — linear function, SOS — sum of squares, Ent — entropy.

Table 3. Compatibility of the results obtained from artificial neural network (see Table 1. ID 1) used for E. coli classification with ceph-
alothin susceptibility testing for the validation subset.

Cephalothin susceptibility testing

Resistant strains Intermediate strains Sensitive strains

Correctly classified strains 67.5 % 77 % 95 %

Incorrectly classified strains 32.5 % 23 % 5 %
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age of correct classification was 91.9%, which should be 
considered as a good result. Also in this case, the RBF 
network obtained validation of 64% which was not sat-
isfactory (Table 5).

DISCUSSION

One of the main problems in microbial diagnostics 
is labor and time-consuming drug-resistance testing. 
In case of a life-threatening bacterial infection (e.g. 
during systemic inflammatory response) it is neces-
sary to ensure proper antibiotic treatment within a 
few hours of onset of the symptoms. Through the use 
of modern chemometric methods it will be possible 
in the future to rapidly determine drug susceptibility 
of bacteria within several hours. Among such meth-
ods should be mentioned FTIR and MALDI-TOF. 
So far, there have been reports about the possibility 
of using IR spectroscopy and PCA in the study of 
imipenem-resistance of Pseudomonas sp (Sockalingum 
et al., 1997). No attempt was made to use artificial 
neural networks in such studies. A method of stor-
ing information of drug resistance in the IR spectrum 

of bacteria is not clear. There are several mechanisms 
for antibiotic resistance: the presence of specific en-
zymes (e.g. β-lactamase), transmembrane proteins and 
others. Possibly, the presence of these cellular com-
ponents is reflected in the IR spectrum of bacteria. 
These characteristics are not concentrated in a single 
fragment of the spectrum (or one peak), but dispersed 
over the whole length of the spectrum. E. coli strains 
may differ from each other in terms of genetic and 
metabolic characteristics. This makes the problem of 
drug-resistant strain identification very complex. The 
use of mathematical methods (e.g. CA, PCA) may not 
provide the expected validation and correct results. 
Differences in the phenotype of E. coli can cause dis-
tortion of the IR spectrum and obliteration of search 
features. It can be compared in the presence of ran-
dom noise in the IR spectrum. One of the character-
istics of neural networks is their resistance to certain 
distortions of data. This makes it possible to better 
recognize the patterns in the analyzed data. Based 
on these characteristics it can be concluded that the 
ANNs are one of the methods of choice for the anal-
ysis of the bacterial IR spectra.

Table 4. Multilayer perceptrons (MLP) for classifying bacterial strains into 2 groups. 

ID Topology
Quality of the network

Error
function

Activation function

Training (%) Testing (%) Validating (%) Hidden
neurons

Output
neurons

1 MLP 30-9-2 98.82 90.80 92.64 SOS Log Linear

2 MLP 30-9-2 98.04 92.64 92.02 SOS Tanh Tanh

3 MLP 30-9-2 95.29 92.02 91.41 SOS Tanh Tanh

4 MLP 30-8-2 97.38 92.64 91.41 SOS Log Linear

5 MLP 30-10-2 97.91 90.80 91.41 SOS Tanh Linear

6 MLP 30-8-2 97.25 90.80 90.80 SOS Log Tanh

7 MLP 30-8-2 97.51 92.02 90.80 SOS Tanh Tanh

8 MLP 30-10-2 96.99 90.80 90.80 SOS Log Linear

9 MLP 30-10-2 98.69 90.80 90.80 SOS Tanh Linear

10 MLP 30-10-2 95.81 88.96 90.80 SOS Exp Linear

Abbreviations: Tanh — hyperbolic tangent, Log — logistic function, Exp — exponential function, Linear — linear function, SOS — sum of squares.

Table 5. Radial basis function networks (RBF) for classifying bacterial strains into 2 groups. 

ID Topology
Quality of the network

Error
function

Activation function

Training (%) Testing (%) Validating (%) Hidden
neurons

Output
neurons

1 RBF 30-3-2 59.82 65.64 65.03 Ent Gaussa Softmax

2 RBF 30-3-2 63.22 63.80 65.03 Ent Gaussa Softmax

3 RBF 30-3-2 61.52 65.64 64.42 SOS Gaussa Liniowa

4 RBF 30-3-2 60.21 61.96 64.42 Ent Gaussa Softmax

5 RBF 30-3-2 58.12 57.06 64.42 Ent Gaussa Softmax

6 RBF 30-3-2 59.95 57.67 64.42 Ent Gaussa Softmax

7 RBF 30-30-2 57.98 58.90 63.80 Ent Gaussa Softmax

8 RBF 30-3-2 57.07 57.67 63.80 Ent Gaussa Softmax

9 RBF 30-3-2 65.18 65.64 63.80 SOS Gaussa Linear

10 RBF 30-3-2 59.42 60.74 63.80 SOS Gaussa Linear

Abbreviations: Gaussa — Gaussian function, Softmax — softmax function, Linear — linear function, SOS — sum of squares, Ent — entropy.



718           2013Ł. Lechowicz and others

CONCLUSIONS

The combination of infrared spectroscopy (ATR/
FTIR) of bacterial samples and advanced methods of 
data analysis (ANNs) may allow rapid differentiation of 
bacterial strains in terms of their antibiotic resistance/
sensitivity.
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