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A selection of carotenoids beyond normal appearance or 
properties has been presented at the 16th International 
Symposium on Carotenoids. Some of the exceptional 
compounds shown at the conference cannot be repro-
duced in this proceeding since they have not yet been 
published. In addition, editorial space limitation does 
not allow illustrating all of the previously mentioned ca-
rotenoids. 
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InStRoduCtIon

All compounds with the key structural elements of ca-
rotenoids (polyene chain connected to rings and func-
tional groups) are considered carotenoids in the context 
of this presentation. Superlative is used to express “more 
than is normal.” In other words, the presented carot-
enoids will normally not be found in the Carotenoids 
Handbook (Britton et al., 2004).

the ShoRteSt CARotenoId

The typical representative of carotenoids is β,β′-
carotene 1 (Scheme 1). Downsizing this compound 
results in the shortest carotenoid 7-apo-β-carotene 2 
(Naves, 1964). Adding an acid group generates the 
shortest carotenoic acid: C10:1 acid, cyclogeranic acid (3) 
(Kappeler et al., 1953).

the longeSt CARotenoIC ACId

Subsequent elongation of C10:1 (3) provides a series 
of homologous carotenoic acids C12:2, C15:3, C17:4, 
C20:5 (retinoic acid), C22:6, C25:7, C27:8, C30:9 (C30-
acid), C32:10 C35:11, C37:12 and finally results in the 
longest carotenoic acid so far detected in nature: torular-
hodin C40:13 (4), (Scheme 1) (Isler et al., 1959). The nat-
ural limit has now been passed by synthesizing C45:15 
acid (Zaidi, unpublished). The surface properties of the 

Na, K and Cs salts of these polyunsaturated fatty acids 
have been determined and compared with the data of 
saturated acids (Zaidi et al., unpublished).

the moSt wAteR-Soluble CARotenoId

Carotenoids are commonly classified as hydrophobic 
pigments. It is, therefore, quite astonishing that the best 
known carotenoid since historical times is water-soluble. 
The water-solubility of crocin (5), the saffron constitu-
ent, is exceptional; there is no saturation point (Nalum 
Naess et al., 2006). Some thousand years passed before a 
new water-soluble carotenoid emerged: astaxanthin-lysine 
6 (Scheme 2) (Jackson et al., 2004, Nalum Naess et al., 
2007). The distinct properties of hydrophilic carotenoids 
attract increasing interest (Lockwood et al., 2006, Breuk-
ers et al., 2009, Sliwka et al., 2010).

the moSt lIpophIlIC CARotenoId

Opposed to the few hydrophilic carotenoids are the 
numerous lipophilic ones. Consequently, the most li-
pophilic carotenoids would be carotenoid lipids. Dica-
rotenoid glycerol 7 (Partali et al., 1996) and carotenoid 
phospholipid 8 (Foss et al., 2003) are the most fatty ca-
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rotenoids described so far (Scheme 3). Nevertheless, the 
zwitterionic end group in phospholipid 8 confers some 
hydrophilicity to the molecule, it becomes amphiphilic. 
When in contact with water, phospholipid 8 self-assem-
bles to aggregates.

the SmAlleSt CARotenoId AggRegAte

The aggregate morphology and size of the phospho-
lipid 8 have been determined (Foss et al., 2005b).  In 
analogy to crystals, which are built of crystallization 
units, aggregates are expected to form basic aggregation 
units. The aggregation unit of phospholipid 8 is an oc-
tamer, representing the simplest repeating primary com-
ponent expressing absorption and optical activity (Foss et 
al., 2005a) (Scheme 4). 

the moSt optICAl ACtIve CARotenoId lIpId

Phospholipid 8, although a pure enantiomer, is not 
optically active showing a flat line in the CD spectrum. 
Absence of optical activity is common for monomolecu-
lar solutions of glycerolipids. However, in water optical 
inactive enantiomer 8 assembles to optical active aggre-
gates causing strong CD signals. Aggregation functions 
as an amplifier for the weak or absent optical activity in 
fats (Scheme 5). The advantages of carotenoids in fat re-
search are evident. Carotenoid fatty acids transmit color 
to lipids, they become visible for eyes and detectable for 
instruments (Foss et al., 2005a).

good neIghboRS

The glycerolipid structure allowed combining three 
different antioxidants in triglyceride 9 (Scheme 6) (Naal-
sund et al., 2001).

the beSt AntIoxIdAnt

Carotenoids easily transfer electrons to noxious radi-
cals transforming them to benign molecules. This prop-
erty established the reputation of carotenoids as potent 
antioxidants. The best antioxidant is astaxanthin (10) 
(Scheme 7) (Miki, 1991; Lockwood & Gross, 2005).

the beSt AntIReduCtAnt

Carotenoids do not only release electrons they also 
capture electrons. Electron transfer from radicals to ca-
rotenoids has not yet been observed in nature but has 
recently been predicted (Martinez et al., 2008). Usually, 
electron transfer to carotenoids is enforced with elec-
trochemical methods, with laser or nuclear radiation 
(Mairanovsky et al., 1975; Land et al., 1978; Naqvi et al., 
2009). We have found a more convenient approach: car-
bonyl carotenoids take up electrons from alkaline DMSO 
(DMSO–, CH3(S=O)CH2

–). Thus, C20-dialdehyd 11 and 
other carotenoid dialdehydes (C10–C50) all react with 
similar activity as antireductants (Scheme 8) (Øpstad et 
al., 2010) (Zeeshan, unpublished).

CARotenoIdS AS gene CARRIeRS

Cationic phospholipids, e.g. C30-6 12 (Scheme 9), 
function as potential gene carriers. In these phospho-
lipids, the rigid unsaturated carotenoid moiety is part 

Scheme 4. Self-assembling of phospholipid 8 to aggregates 
with an octamer as aggregation unit.

Scheme 5. no Cd signals of 8 in meoh, Cd bands of 8 in water.

Scheme 7.  Antioxidant function by electron transfer from carot-
enoid to radical.

Scheme 6.

Scheme 8.  Antireductant function by electron transfer from 
radical to carotenoid.

Scheme 9. Cationic phospholipid C30-6.
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of a molecule with saturated flexible alkyl chains of 
different lengths. The length of the alkyl chain modi-
fies the efficiency of the carrier. The results so far ob-
tained confirm the validity of the concept (Popplewell 
et al., 2012).

pRopelleR CARotenoIdS

Carotenoids form propeller shaped molecules under 
certain circumstances. Propeller 13 has a benzene ring as 
hub and three C30-chain as wings (Scheme 10) (Háda 
et al., 2010). Another propeller is build with trithia-cy-
clohexane as hub and C30-chains as wings (Sandru, un-
published).

the moSt pReCIouS CARotenoIdS

Hydrophilic carotenoids aggregate into several macro-
molecular structures; vesicles, rods, spheroids and cones 
have been observed (Sliwka et al., 2010) (Øpstad unpub-
lished). The size and morphology of the supramolecu-
lar assembly may change with time. Uncertainty on the 
aggregate architecture is avoided when carotenoids with 
an appropriate anchor self-assemble on metal surfaces. 
Previously, carotenoid thione 14, carotenoid thiol 15 and 
carotenoid-selena phospholipid 16 formed strong molec-
ular layers on gold surfaces (Scheme 11) (Ion et al., 2002, 

Liu et al., 2002; Foss et al., 2006). The self-assembling ef-
fect was applied to attach carotenoid selena derivative 16 
on gold nanoparticles. The selenacarotenoid-gold nano-
particles have a predefined size and morphology (Sandru, 
unpublished).

the moSt euRopeAn CARotenoId

Adding water or acid to dioxane carotenoid 17 induces 
the molecule to display the blue and yellow color of the 
European flag (Scheme 12) (Li et al., 2010). More Euro-
pean in character are carotenoid europium salts. These 
Eu-carotenoates will be used in photophysical investiga-
tions (Zaidi & Heng unpublished).

mAxImum λmax

Push-pull compound 18 with only four double 
bonds displays the highest λmax measured for a polyene 
(Scheme 13) (Blanchard-Desce et al., 1997). However, 
polarization incommodes studies of absorption in rela-
tion to the number of conjugated double bonds. Such 
investigation must be based on unperturbed polyene 
chains.

the longeSt CARotenoId

C60:19 carotenoid 19 represent since 1951 the ul-
timate length record (Scheme 14) (Karrer & Eugster, 
1951). An attempt to go beyond C60 failed, C70:23 β,β-
carotene was not stable (Broszeit et al., 1997). Modifying 
the classical Wittig reaction has now allowed extending 
C40-zeaxanthin via C50-, C60- and C70- to stable C80-
zeaxanthin with 27 conjugated double bonds (Zeeshan, 
unpublished).

ConCluSIon

Other superlative carotenoids are worth mention-
ing. Yet, superlative carotenoids may not be impor-
tant. It is, however, advantageous to use ordinary, 
commercial carotenoids in the synthesis of superlative 
compounds.

Scheme 10. propeller carotenoid.

Scheme 11.

Scheme 12.

Scheme 13.

Scheme 14.
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