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Two-color DNA microarrays are commonly used for the 
analysis of global gene expression. They provide infor-
mation on relative abundance of thousands of mRNAs. 
However, the generated data need to be normalized 
to minimize systematic variations so that biologically 
significant differences can be more easily identified. A 
large number of normalization procedures have been 
proposed and many softwares for microarray data 
analysis are available. Here, we have applied two nor-
malization methods (median and loess) from two pack-
ages of microarray data analysis softwares. They were 
examined using a sample data set. We found that the 
number of genes identified as differentially expressed 
varied significantly depending on the method applied. 
The obtained results, i.e. lists of differentially expressed 
genes, were consistent only when we used median nor-
malization methods. Loess normalization implemented 
in the two software packages provided less coher-
ent and for some probes even contradictory results. 
In general, our results provide an additional piece of 
evidence that the normalization method can profoundly 
influence final results of DNA microarray-based analysis. 
The impact of the  normalization method depends great-
ly on the algorithm employed. Consequently, the nor-
malization procedure must be carefully considered and 
optimized for each individual data set. 
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INTRoDuCTIoN

DNA microarrays are well-established tools for bio-
logical, medical and pharmaceutical research (Trevino et 
al., 2007; Cowell & Hawthorn, 2007). DNA microarray 
technology enables a simultaneous analysis of thousands 
of genes/transcripts/genome sequences. It can be ap-
plied for many purposes from genotyping to gene ex-
pression profiling (Howbrook et al., 2003; Venkatasub-
barao, 2004). The last one is still the most popular ap-
plication of DNA microarrays. In the simplest approach, 
this technique involves RNA isolation from cells, reverse 
transcription, fluorescent labeling of the resultant cDNA 
followed by its hybridization with probes immobilized 
on a solid surface, usually a glass slide (Simon et al., 

2007). Particular genes are represented by one or more 
specific probes on the array. After washing out of un-
bound cDNAs the microarray is scanned to determine 
the level of fluorescence emitted by each probe. Then 
the obtained results are digitalized. In a dual-label ap-
proach the application of two fluorescent dyes enables 
a direct comparison of two RNA samples (tested and 
control/reference samples). The ratio between the inten-
sity of signals detected for the examined and reference 
samples hybridized with the same probe reflects the dif-
ference in the level of a single gene’s expression. Such 
ratios need to be determined for each individual probe 
on the array. Usually, a microarray experiment involves 
a number of hybridizations and produces a large amount 
of data. Moreover, the experiments are often affected 
by numerous factors that can lead to unwanted, random 
or systematic (non-biological), variation (Chua, 2006). 
To obtain reliable results the collected data have to be 
normalized and analyzed using proper statistical meth-
ods (Yang et al., 2001; 2002; Quackenbush, 2002; Simon 
et al., 2007; Ness, 2007; Baker, 2008). Due to the wider 
and wider application of microarray-based techniques, a 
broad spectrum of programs devoted to microarray data 
analysis is available. Among them, Bioconductor, oper-
ating in R environment (R Development Core Team, 
2009), is one of the most commonly used and recom-
mended  (Gentleman et al., 2004 and 2005; Hahne et al., 
2008). In fact, Bioconductor offers much more than all 
other programs, beeing an open source and open de-
velopment software project, designed for genomic data 
handling and analysis (http://Bioconductor.org). Based 
on various statistical approaches, several methodolo-
gies and many software packages have been developed 
in Bioconductor for the analysis of data generated with 
different types of microarrays (http://Bioconductor.org/
packages/release/Software.html; Gentleman et al., 2005; 
Hahne et al., 2008). There are, however, several observa-
tions suggesting that some theoretically equipotent meth-
ods of data transformation offered by various software 
packages can differently influence the results of micro-
array experiments. To verify the above presumption we 
have compared two apparently similar normalization 
methods (median and loess) implemented in two types 
of software: GenePix Pro/Acuity (Molecular Devices) 
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and Bioconductor. As a probe data set we used repre-
sentative results of Caco-2 cell transcriptome analysis. 
The tested intestinal epithelial cells were subjected to 
interactions with selected probiotic microorganisms. The 
changes in their transcriptome were analyzed with Oper-
on DNA microarrays (Human V4.0 OpArrays). 

Probiotic microorganisms (mainly lactic acid bacteria) 
have been shown to have beneficial effects on human 
and animal health. The majority of the effects are attrib-
uted to their interaction with intestinal epithelium, main-
ly through adhesion to enterocytes (Heczko et al., 2006). 
Among the most widely used and best characterized are 
Lactobacillus rhamnosus GG (ATCC 53103) and Bifidobacte-
rium animalis subsp. lactis Bb12 (Nestle). Both strains are 
commercial probiotic bacteria, which are known to be 
able to adhere to enterocytes (Gopal et al., 2001). Since it 
is very difficult to study bacterial adhesion in vivo, intes-
tinal cell lines are used as in vitro models. One of them 
is Caco-2 cell line derived from human colon carcinoma. 
The cell line differentiates spontaneously under standard 
cell culture conditions and expresses several markers that 
are distinctive of normal small intestinal villi. The Caco-2 
cell line has become a standard tool in the pharmaceuti-
cal industry,  applied e.g. for investigation of drug trans-
port through intestinal epithelium (Sambuy et al., 2005; 
Delgado et al., 2008). 

MATeRIALs AND MeTHoDs

Strains and growth conditions. Probiotic microor-
ganisms: Bifidobacterium animalis subsp. lactis Bb12, Lacto-
bacillus rhamnosus GG (ATCC 53103), L. acidophilus LA-
5, L. plantarum PL02, L. rhamnosus KL53A, L. delbruecki 
subsp. bulgaricus LBY-27, and Lactococcus lactis PB411 were 
cultured in glucose-free Brain and Heart Infusion broth 
(BHI; BTL) supplemented with 2 % fructooligosaccha-
rides (FOS; Sigma-Aldrich) as a carbon source. Probiotic 
yeast Saccharomyces cerevisiae subsp. boulardi was grown in 
YAPD broth (Merck). All microorganisms were culti-
vated at 37 °C for 20 hours in anaerobic conditions (An-
aerocult A, Merck).

Caco-2 cell culture and in vitro adhesion assay. 
The Caco-2 cell line (ATCC HTB37) was cultured in 
Dulbecco’s Modified Eagle’s Minimal Essential Me-
dium (DMEM; Sigma-Aldrich) supplemented with 1x 
Non-Essential Amino Acids (Sigma-Aldrich), 10 % heat-
inactivated fetal calf serum (Gibco-Invitrogen), 50 µg/
ml gentamycin (Gibco-Invitrogen) at 37 °C in an atmo-
sphere of 10 % CO2/90 % air. The cells were cultured 
on PTFE filter (1 μm pore size, Millipore) at a concen-
tration of 4 × 105 cells/cm2 to obtain confluence. The 
culture medium was changed every second day and cells 
were maintained for 21 days, until differentiation.

The apical side of differentiated Caco-2 cell mono-
layer was washed twice and overlayed with 2 ml of 
10 mM HEPES-buffered Hank’s Balanced Salts Solu-
tion preconditioned at 37 °C in an atmosphere of 10 % 
CO2/90 % air. Approximately 108 cfu of bacteria was 
added to the Caco-2 apical side and incubated for 4 
h at 37 °C in an atmosphere of 10 % CO2/90 % air. A 
mock-control was performed as well. Four separate ad-
hesion experiments were carried out with: L. rhamnosus 
GG (L), B. animalis Bb12 (B), S. cerevisiae subsp. bou-
lardi (Y) and probiotic mixture (M) consisting of equal 
amounts of: L. acidophilus LA-5, L. plantarum PL02, L. 
rhamnosus KL53A, L. delbruecki LBY-27, L. lactis PB411, 
and B. animalis Bb12.

Microarray experiment. After the adhesion assay 
the Caco-2 cells were suspended in Trizole Reagent 
(Invitrogen) and total RNA was extracted according to 
the standard Trizole procedure (Invitrogen). The DNA 
contamination was removed from the samples by di-
gestion with DNase (TURBO DNA-free kit, Applied 
Biosystems). The quantity of the total RNA was evalu-
ated using a NanoDrop ND-1000 spectrophotometer 
(Nanodrop Technologies) and its integrity was verified 
on a BioAnalyzer 2100 (Agilent Technologies). Reverse 
transcription involving anchored-oligo(dT)20 and amino-
allyl-modified nucleotides was performed with Super-
Script Plus Indirect cDNA Labeling System (Invitrogen). 
Amino-allyl-cDNA was labeled with AlexaFluor 555 or 
AlexaFluor 647. Human V4.0 OpArray (Operon Bio-
technologies GmbH) microarrays containing over 35k 
70-nt-long oligonucleotide probes were hybridized with 
1–2 μg of labeled cDNA. Hybridization and washing 
were performed in automatic hybridization station Hy-
bArray12 (Perkin Elmer), in a buffer containing 5 × SSC, 
0.1 % SDS, and 0.1 mg BSA/ml. Step-down hybridiza-
tion protocol (5.5 h incubation at 60 °C, 55 °C and 50 °C 
each, 16.5 h in total) was followed by 3 washes: (I) 2× 
SSC, 0.1 % SDS at 35 °C, (II) 2x SSC at RT, (III) 0.2× 
SSC at RT. The slides were dried through centrifugation 
and scanned with a ScanArrayExpress (Perkin Elmer) la-
ser scanner at 5-μm resolution. 

Data analysis. Microarray images were processed us-
ing GenePix Pro v. 6.0 software (Molecular Devices) in 
order to obtain numerical data (raw data). Spots of poor 
quality (“bad” and “not found”) were removed from fur-
ther analysis by automatic flagging and filtration. Raw 
data (gpr files) were then submitted to a normalization 
procedure. Within array normalization was performed 
using two methods (median and loess), both imple-
mented in different software tools as depicted in Fig.1. 
Median normalization was executed in GenePix Pro v. 
6.0 software (Molecular Devices) and limma software (a 
package of R Bioconductor; Smyth, 2005). Loess meth-
od was performed in Acuity v. 4.0 software (Molecular 
Devices) and limma software (R Bioconductor) as well. 
Bioconductor R platform v.2.10.0 (R Development Core 
Team, 2009) was used. 

Median normalization. The median (as well as 
mean) method is the most simple and the earliest nor-
malization approach. This kind of global normalization 
approach treats all spots on a microarray equally, sub-
tracting a constant from all intensity log-ratios, usually 
their mean or median value (Churchill, 2002; Dudoit et 
al., 2002). It is implemented in the majority of programs 
designed for microarray data analysis. In the GenePix 
Pro software tested here, the median local background 
values were simply subtracted from the corresponding 
median spot intensities. For the data normalization the 
“Ratio of Medians” method was selected. An inter-chan-
nel normalization factor was set as equal to 1. 

In the limma package the median method subtracts 
the weighted median from the M-values for each array. 
It was performed  using “normalizeWithinArrays” func-
tion with the “median” method declared.

Loess normalization.  This method is a combination 
of linear least squares regression and nonlinear regres-
sion. It builds a function that describes the determin-
istic part of the variation in the data by fitting simple 
models to localized subsets of the data point by point. 
The loess function depends on the set of parameters. 
Parameter ‘smoothing’ (‘bandwidth’) is set between 0 
and 1 and determines the proportion of the data that is 
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used to fit each local polynomial. Parameter ‘iterations’ is 
the number of iterations of loess fit. Parameter ‘delta’ is 
connected with the speed of computations, representing 
the proportion of the data which are grouped in a sin-
gle bin during local regression fit. For the points within 
the bin the fitted values are filled in based on linear in-
terpolation. The aforementioned parameters for Acuity 
and R softwares were specified as follows: ‘smoothing’ = 
0.4, ‘iterations’ = 3, ‘delta’=0.01 of the range of data. To 
learn more about the method used in the Acuity soft-
ware see Dudoit et al., (2002) and Yang et al., (2002). In  
the case of limma package in R the normalization was 
performed with the “normalizeWithinArrays” function 
with the “loess” method declared. A detailed descrip-
tion of this implementation can be found in Smyth and 
Speed (2003). 

Gene selection. The four variously-normalized 
data sets of M and A values (“median” from GenePix 
Pro, “median” from limma, “loess” from “Acuity” and 
“loess” from limma) were then separately submitted to 
the same sequence of further analysis in R software. 
Normalization between arrays was done using the aquan-
tile method implemented in the function “normalizeBe-
tweenArrays” in limma package. To select differentially 
expressed genes, we calculated the fold change (FC) of 
every gene. The obtained M and A values from each 
normalization method had to be first transformed again 
to the R and G values. Afterwards, the fold change was 
derived as a ratio of the R and G values. The genes with 
an FC value greater than 1.7 or smaller than 1/1.7 were 
considered as differentially expressed. 

ResuLTs

The study was conducted to check how the microar-
ray data normalization methods influence the results of 
microarray experiment. A long-term aim of our research 
is to discover gene expression changes in human intesti-
nal epithelial cells induced by probiotic microorganisms 
colonizing the human gut. Prior to the main experiment 
we needed to establish the optimal data normalization 
procedure. 

Using Caco-2 cell culture we performed four separate 
cell adhesion assays with various probiotic microorgan-
isms: B. animalis Bb12 (experiment B), L. rhamnosus GG 
(experiment L), mixture (experiment M) consisting of 
equal amounts of six probiotic bacteria strains (L. aci-
dophilus LA-5, L. plantarum PL02, L. rhamnosus KL53A, 
L. delbruecki LBY-27, L. lactis PB411, and B. animalis 
Bb12) and S. cerevisiae subsp. boulardi (experiment Y). 
RNA samples (isolated from the variously treated or 
control Caco-2 cells) were reverse transcribed, fluo-
rescently labeled and hybridized to the Human V4.0 
OpArray oligonucleotide arrays. Standard two-color ap-
proach was applied to compare transcriptomes of the 
treated cells versus non-treated control, used as a com-
mon reference. Four microarray hybridizations (array 
B, L, M and Y), corresponding to four cell adhesion 
assays, were then used as a trial set for testing of the 
normalization procedures. In fact, only one normaliza-
tion step — within-array normalization — was tested, 
as the crucial step in two-color microarray data pr. We 
compared two methods of within-array-normalization: 
median and loess, both implemented in two different 
types of software: commercial (GenePix Pro and Acu-
ity, supported by Molecular Devices) and free (limma, 
a package of R Bioconductor) (Fig. 1). As a result we 

obtained 16 within-array-normalized files (4 arrays mul-
tiplied by 4 methods). All were subjected to the same 
further steps of analysis — between-array normaliza-
tion and differential analysis — using limma software 
only. Between-array normalization was done with the 
“Aquantile” method. Then, the fold change approach 
was applied for identification of differentially expressed 
genes in each set of normalized data. In Table 1, be-
sides the total numbers of differentially expressed genes 
for each experiment, we indicate the number of down- 
and up- regulated genes. 

The numbers of genes identified as differentially ex-
pressed between treated and untreated Caco-2 cells de-
pend on the software and method used for normaliza-
tion within microarrays. The most substantial differences 
appear between the two loess methods implemented in 
the two softwares compared, and the median and loess 
methods implemented in the Molecular Devices soft-
wares. Similar discrepancies can be observed for all four 
microarrays.

Figure 1. General scheme of experiment. 
Four microarrays were used for gene expression profiling in Caco-
2 cells treated with probiotic microorganisms: B. animalis Bb12 
(Array B), L. rhamnosus GG (Array L), mixture of six probiotic bac-
terial strains (Array M), probiotic yeasts (Array Y). All images were 
processed using GenePix Pro software (Molecular Devices). Raw 
data files (gpr files) were then separately submitted to four differ-
ent normalization approaches: two methods (median and loess), 
each performed with two types of software: commercial programs 
from Molecular Devices (GenePix Pro/Acuity) or open-source R 
Bioconductor (limma package). The next steps of analysis, per-
formed only in R Bioconductor (limma package), were identical for 
all datasets. The end results were sixteen lists of genes selected as 
differentially expressed in probiotic-treated cells when compared 
to an untreated control.
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Table 2 presents the numbers of differentially ex-
pressed genes included into a common set of genes that 
was determined for particular microarrays, programs and 
normalization methods. The data presented in Table 2 
clearly shows a high compatibility only between the two 
median methods (81–99 %). 

Venn diagrams, presented in Fig. 2, also demonstrate 
a higher conformity between the two median methods 
for all four microarrays (Fig. 2.1–2.4). The majority of 
genes determined as differentially expressed are shared 
between the data sets normalized with the median meth-
ods in the two softwares. The common sets of genes are 
definitely less numerous in the cases of the two loess 
methods (Fig. 2.5–2.6). 

The number of genes indicated as differentially ex-
pressed after loess normalization with the R Bioconduc-
tor limma software is much smaller than after the loess 

normalization performed with the Molecular Devices 
Acuity software. The loess normalization executed in 
limma seems to be more restrictive. However, not all 
genes selected after limma loess normalization are found 
among those assigned as differentially expressed after 
loess normalization with the Molecular Devices Acuity 
software. This suggests more general differences in the 
algorithms implemented in the two loess methods.

Taking into account the biological background of the 
experiment, we expected that microarrays B, L, and M 
should give similar results as they all concern treatment 
of human epithelial intestinal cells with probiotic bac-
terial strains. The Venn’s diagrams presented in Fig. 3 
show common sets of differentially expressed genes for 
these three microarrays for each normalization method 
and software. Surprisingly, only 3–8 % of the differen-
tially expressed genes obtained after the two median 
normalization approaches are shared by the B, L and M 
data sets (Fig. 3.1–3.2). In the case of the loess normali-
zation method from Molecular Devices Acuity, the com-
mon set of genes comprised about 21 % of differentially 
expressed genes selected for each microarray separately 
(Fig. 3.3). At first sight, the Acuity loess method seems 
to be the best one, since it results in the most abundant 
set of shared genes. However, it must be remembered 
that this normalization method led to the most numer-
ous lists of differentially expressed genes, comprising be-
tween one third and half of the genes present on the 
microarrays (see Table 1). 

Table 1. Numbers of differentially expressed genes obtained 
from each microarray experiment. 
Microarray analysis of Caco-2 cell transcriptome was performed 
after treatment with probiotic bacteria: B. animalis Bb12 (B), L. 
rhamnosus GG (L), mixture of six selected strains (M), and probiotic 
yeast (Y), as compared with an untreated control. Total numbers 
of differentially expressed (all), and up (↑) and down (↓) regulated 
genes (absolute fold-change greater than or equal to 1.7) were 
identified in the datasets normalized with two different methods 
(median and loess) in two types of software (Molecular Devices 
GenePix Pro for median and Molecular Devices Acuity for loess 
(MD) and R Bioconductor limma for both median and loess (R)).

Software type and norma-
lization method

Microarray analysis

B L M Y

MD

median

all 6958 4353 5796 5525

↑ 2484 179 1619 2431

↓ 4474 4174 4177 3094

loess

all 14667 12199 17049 15155

↑ 6290 2226 7914 6908

↓ 8377 9973 9135 8247

R

median

all 6986 3734 5685 5531

↑ 2576 403 1816 2479

↓ 4410 3331 3869 3052

loess

all 3435 1984 3479 4115

↑ 1455 497 1688 2332

↓ 1980 1487 1791 1783

Table 2. Common sets of differentially expressed genes determined using two types of software and two methods of normalization. 
Sample and software notation as in Table 1. Two percentages are counted per microarray — in each case they are derived as a quotient of 
common differentially distributed gene sets and the total number of differentially expressed genes in the case considered.

Z ∩ W
Microarray analysis

B L M Y

MDmedian ∩ MDloess 4755 2775 4327 4505

68 % of Z 32 % of W 64 % of Z 23 % of W 75 % of Z 25 % of W 82 % of Z 30 % of W

Rmedian ∩ Rloess
2299 1524 2500 3189

33 % of Z 67 % of W 41 % of Z 77 % of W 44 % of Z 72 % of W 58 % of Z 77 % of W

MDmedian ∩ Rmedian
6894 3511 5454 5469

99 % of Z 99 % of W 81 % of Z 94 % of W 94 % of Z 96 % of W 99 % of Z 99 % of W

MDloess ∩ Rloess
2982 1453 3117 3687

20 % of Z 87 % of W 12 % of Z 73 % of W 18 % of Z 90 % of W 24 % of Z 90 % of W

Z ∩ W, a pair of compared methods, different in each line of the table;  MDmedian, Molecular Devices GenePix Pro median normalization; Rmedi-
an, R limma median normalization; Rloess, R limma loess normalization; MDloess, Molecular Devices Acuity loess normalization; B, L, M, Y, symbols 
of the arrays.

Figure 2. overlap of lists of genes found to be differentially ex-
pressed. 
Probiotic microorganisms used in Caco-2 treatments were as fol-
lows: B. animalis Bb12 (1, 5), L. rhamnosus GG (2, 6), mixture of 
six selected strains (3, 7), and yeast (4, 8). The normalization ap-
proaches were: median (1-4) and loess (5-8) performed with Mo-
lecular Devices GenePix Pro/Acuity software (MD), or R Bioconduc-
tor (R).
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Even though the numbers of differentially expressed 
genes selected for each microarray normalized with a 
median method are similar (Table 1), the number of 
overlapping genes for arrays B, L and M normalized in 
limma R Bioconductor (Fig. 3.2) is by 25 % smaller than 
the one obtained after median normalization performed 
with Molecular Devices GenePix Pro software (Fig. 3.1). 
However, a comparison of the lists of overlapping dif-
ferentially expressed genes (indicated in the two median 
normalized datasets) showed that the set of genes com-
mon for the three microarrays (B, L and M) comprised 
92 % of the genes from limma (R) and 69 % of the 
genes from GenePix Pro (Fig. 4.1). A similar comparison 
of the results for loess normalization revealed that the 
common set of differentially expressed genes included 
84 % of genes obtained from limma (R) and only 3 % of 
genes from Molecular Devices Acuity software (Fig. 4.2). 
This divergence results from the difference in the over-
all number of genes assigned as differentially expressed 

after loess normalization in the two software types.Lists 
of differentially expressed genes were extracted from 
the two softwares and the fold-change values were ana-
lyzed in pairs: MD median vs. R median, MD loess vs. 
R loess. The distribution of fold-change was very co-
herent for the genes selected as differentially expressed 
after the median normalization methods (Fig. 5a–d). 
On the contrary, in the case of the loess normalization 
methods the fold-change values of shared differentially 
expressed genes were dissimilar or sometimes even op-
posite between the two methods (Fig. 5e–h). A small 
subset of genes showed upregulation after normalization 
by one software and downregulation after normaliza-
tion with the other, and vice versa. This tendency was 
observed mainly for genes with low fold-change values. 
Table 3 presents median and standard deviation values 
of differences between the fold-changes obtained for the 
data obtained after the same normalization method per-
formed in the two programs. The high values of stan-
dard deviation  indicate how divergent were the results 
obtained using the loess methods implemented in the 
two programs analyzed.

DIsCussIoN

The design of the experiment and data normalization 
are crucial steps of microarray-based gene-expression 
profiling. Two-color hybridization is commonly used and 
has many advantages, allowing for direct comparison 
between control (reference) and tested sample (Knapen 
et al., 2009). Ratiometric data analysis minimizes differ-
ent sources of variation related to the construction and 
hybridization of a microarray, thus providing the highest 
level of precision in the comparison of gene expression 
profiles (Quackenbush, 2002). Several principal methods 
of microarray data normalization are in use but which 
one is the optimal remains an open question (Chua et 
al., 2006). It depends on the type of the array and the 
biological background of the assay. In the case of two-
color hybridization, the most important step is within-
slide (inter-channel) normalization that aims to correct 
discrepancies resulting from variable dye incorporation, 
fluorescence intensity and sensitivity to degradation. It 
can similarly affect all the genes or only genes with simi-
lar intensity (Berger et al., 2004).

Here, we used a simple model of four biological rep-
licates (samples treated with probiotic microorganisms) 
and a common reference (untreated control) to test the 
selected methods of within-array normalization. Applica-
tion of a whole-genome microarray (35 thousand spots) 
and a special biological model entitled us to use global 
normalization methods. Although the probiotic micro-

Figure 3. overlap of differentially expressed gene lists gener-
ated using two normalization methods.
Probiotic microorganisms used in Caco-2 treatments were as fol-
lows: B. animalis Bb12 (B), L. rhamnosus GG (L), and mixture of 
selected six strains (M). The normalization approaches were:  me-
dian (1-2) and loess (3-4) method performed by Molecular Devices 
GenePix Pro/Acuity (1, 3) and R Bioconductor (2, 4) software.

Figure 4. Intersection of differentially expressed gene lists gen-
erated using two normalization methods.
Lists of differentially expressed genes common to experiments B, 
L, and M (B ∩ L ∩ M) were obtained from comparison of lists of 
differentially expressed genes from microarrays: B, L, and M (see 
Fig. 3) obtained after median (1) and loess (2) normalization per-
formed by Molecular Devices GenePix Pro/Acuity (MD) and R Bio-
conductor (R) software.

Table 3. statistical comparison of normalized fold-change data.
Mean and standard deviation of differences between fold-changes obtained using the same normalization method implemented in the 
two programs, calculated for each microarray separately.  B. animalis Bb12 (B), L. rhamnosus GG (L), mixture of six selected probiotic bacte-
rial strains (M) and probiotic yeasts (Y) as compared with control.

Characteristic
Microarray

B L M Y

MDmedian ∩ Rmedian
Mean 0.0137 0.1441 0.0449 0.0091

Standard deviation 0.0232 0.0451 0.0466 0.0470

MDloess ∩ Rloess
Mean 1.3549 2.2030 1.9116 1.5667

Standard deviation 1.3539 2.0425 1.5655 1.0644

MDmedian, Molecular Devices GenePix Pro median normalization; Rmedian, R limma median normalization; Rloess, R limma loess normalization; 
MDloess, Molecular Devices Acuity loess normalization.
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Figure 5. Comparison of log-transformed fold-change distribution of differentially expressed genes for the four analyzed microar-
rays.
Graphs: a (array B),  b (array L), c (array L), and d (array Y) illustrate the consistency of median normalization performed by the Molecular 
Devices GenePix Pro (MD median) and R Bioconductor (R median). The median-normalized data points for each gene calculated by the 
two software types are positioned at the diagonal. Graphs: e (array B),  f (array L), g (array L), and h (array Y) illustrate the disparity of 
results obtained with loess normalization performed by Molecular Devices Acuity (MD loess) and R Bioconductor (R loess). Lower left 
and upper right quadrants represent genes in statistical agreement between both programs. Upper left and lower right quadrants show 
genes that were attributed opposite expression change direction by the two programs and the same normalization method. Coefficients 
of determination (R2) are given for each dataset on graphs.
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organisms are generally beneficial for the host and are 
recommended as a component of the diet, they presum-
ably do not drastically change the physiology of human 
epithelial intestinal cells. Similar studies showed that in-
teractions with bacteria (either probiotic, commensal or 
pathogenic) modified the expression of a relatively small 
fraction of epithelial cell genes (0.35 to 13 %) (Eckmann 
et al., 2000; Belcher et al., 2000; Rosenberger et al., 2000; 
Pedron et al., 2003; Fukushima et al., 2003; Panigrahi  et 
al., 2007). Consequently, we expected only a slight effect 
of the probiotics on the gene expression in Caco-2 cells. 

There are many advanced approaches to solve the 
gene selection problem, such as classical or moderated 
t-statistics, significance analysis of microarrays (SAM), 
analysis of variance (ANOVA), between group analy-
sis (BGA) or area under the ROC curve (Jeffery et al., 
2006; Hsu et al. 2008). It is known that the feature se-
lection process, as well as the data preprocessing, the 
number of genes, the number of samples and the noise 
in the dataset, all have a profound impact on the results 
of microarray experiments. This problem has been dis-
cussed in details in several papers (Jeffery et al., 2006; 
Hsu et al., 2008; Jirapech-Umpai & Aitken, 2005; Jung et 
al., 2011). Here, we focused on one of the earliest stages 
of microarray data preprocessing to show how much 
one element of the microarray experiment puzzle could 
affect the end result. The main aim of our work was to 
identify differences in the results coming from applica-
tion of distinct within-array normalization methods. The 
small size of our dataset and the lack of technical repli-
cates prompted us to use fold change, the simplest ap-
proach to select differentially expressed genes. Shi et al. 
(2005) and Guo et al. (2006) indicated that differential 
analysis based on fold-change results in more reproduc-
ible gene lists than the ordinary and modified t-statistics. 
Our test has revealed a dramatic impact that the within-
array normalization methods have on the results of a 
microarray experiment. Table 1 shows that the ‘median’ 
method implemented in both analyzed programs results 
in the identification of similar numbers of differentially 
expressed genes. For this method the ratios of up- to 
down-regulated genes and their positions in the rank-
ing are also similar for each microarray. A comparison 
of the two variants of this type of normalization indi-
cated not only very similar numbers of differentially 
expressed genes (Table 1) but also a very high propor-
tion of genes shared between the two median methods, 
comprising approximately 95 % of the differential genes 
(Table 2, Fig. 2.1–4). Furthermore, the sets of common 
genes are coherent between the biological experiments. 
On average, 81% of the genes determined as differential-
ly expressed were common for all three microarrays that 
examined treatment with probiotic bacteria, regardless of 
the software used for median normalization (Figs. 3.1–2 
and 4.1). However, median normalization is one of the 
simplest methods and as such is not always recommend-
ed as it treats all the genes equally, regardless their fluo-
rescence intensities.

More sophisticated algorithms, such as “loess”, ca-
pable of removing intensity-dependent bias, produce 
much more divergent results when implemented in dif-
ferent softwares. The Molecular Devices Acuity software 
finds up to six times more differential genes than limma 
from R Bioconductor and their fold-change values are 
also higher. Following Acuity loess normalization even 
half of the genes presented on the array were indicated 
as differentially expressed. This result stands in contra-
diction with the idea of global normalization, based on 

the assumption that only a small subset of genes reveal 
up- or down- regulation. Such tendency is usually true 
for microarrays covering the whole genome/transcrip-
tome of a studied organism. From the biological point 
of view, such a huge number of genes responding to 
treatment with probiotic microorganisms would not be 
expected either. Furthermore, in the case of the Molecu-
lar Devices software the “median” method compared 
to “loess” resulted in a smaller number of differentially 
expressed genes whereas in the R Bioconductor lim-
ma software the tendency was opposite — the “loess” 
method was more restrictive than ‘median’. Irrespective 
of the normalization method and software the ratios of 
the numbers of up- and down-regulated genes are similar 
(Table 1). However, after loess normalization in the two 
types of software tested some of the genes reveal op-
posite modes of regulation (Fig. 5). Taking into account 
the fact that it concerned mainly genes with a low level 
of expression, it would be useful to apply an additional 
step of filtration in order to avoid distorted results. In 
our opinion, it is more desirable to obtain a shorter list 
of genes selected as differentially expressed than to get 
a long list with a high number of false-positive results.

Summarizing, data normalization performed using 
each of the software types tested (two Molecular De-
vices programs and R Bioconductor limma package) and 
methods (median and loess) gave divergent results of the 
analysis of the same microarrays. Furthermore, the two 
loess normalization methods produced opposite chang-
es for some of the genes. The high values of the mean 
standard deviation of fold-change of shared differentially 
expressed genes (Table 3) indicate significant differences 
between the algorithms applied for loess normalization 
in Molecular Devices Acuity and R Bioconductor limma. 
This information has to be taken into account before 
the analysis of microarray data. Researchers who start 
their work with microarray-based gene expression pro-
filing must be aware that each data transformation step 
can remove technical bias but, on the other hand, it can 
also introduce major changes influencing later biological 
interpretation of the results. The choice of the normali-
zation method should be carefully considered based of 
the demands stremming from both (biological and tech-
nical) points of view as well as the aims of the experi-
ment. A more restrictive method seems to be more reli-
able, as it probably produces less false-positive results. 
On the otherhand, some biologically relevant informa-
tion can be lost. This is especially important in experi-
ments where substantial modulation of gene expression 
is not expected. Nevertheless, once the method is cho-
sen it should be applied consequently for normalization 
of all the microarrays from the studied dataset. 
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