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Microarray methods have become a basic tool in studies of global gene expression and changes 
in transcript levels. Affymetrix microarrays from the HGU133 series contain multiple probe-sets 
complementary to the same gene (4742 genes are represented by more than one probe-set in a 
microarray HGU133A). Individual probe-sets annotated to the same gene often show different 
hybridization signals and even opposite trends, which may result from some of them matching 
transcripts of more than one gene and from the existence of different splice-variant transcripts. 
Existing methods that redefine probe-sets and develop custom probe-set definitions use math-
ematical tools such as Matlab or the R statistical environment with the Bioconductor package 
(Gentleman et al., 2004, Genome Biol. 5: 280) and thus are directed to researchers with a good 
knowledge of bioinformatics. We propose here a new approach based on the principle that a 
probe-set which hybridizes to more than one transcript can be recognized because it produces 
a signal significantly different from others assigned to the particular gene, allowing it to be de-
tected as an outlier in the group and eliminated from subsequent analyses. A simple freeware 
application has been developed (available at www.bioinformatics.aei.polsl.pl) that detects and re-
moves outlying probe-sets and calculates average signal values for individual genes using the 
latest annotation database provided by Affymetrix. We illustrate this procedure using microarray 
data from our experiments aiming to study changes of transcription profile induced by ionizing 

radiation in human cells. 
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IntRodUctIon

DNA microarray technology allows meas-
urement of the abundance of thousands of specific 
transcripts in an RNA sample (Lockhart et al., 1996; 
Ramsay, 1998; Stoughton, 2005; Perez-Iratxeta et 
al., 2005). The Affymetrix technology is the most 
widely used in human transcript profiling, and 
microarrays from the HGU133 series have the par-
ticular characteristic that each probe-set consists of 
eleven Perfect Match (PM) 25-mer oligonucleotide 
probes that can hybridize with the respective gene, 
together with an additional set of eleven Mismatch 
probes (MM) containing a single mismatch at the 
13th position, which serve as specificity controls by 

comparison with the corresponding Perfect Match 
probes. In the HGU133A microarrays used in the 
present study there are 247 965 PM and MM probes 
altogether grouped into 22 283 probe-sets that rep-
resent only about 13 thousand annotated genes. A 
PM probe-set and its corresponding MM set are ad-
jacent to each other, but different pairs assigned to 
a given gene are located in different regions of the 
microarray to prevent errors caused by effects of 
increased luminescence intensity in certain regions 
(Affymetrix, 2004). In spite of the careful microarray 
design, differences in signal strength from different 
probes assigned to one probe-set were observed (Li 
& Wong, 2001) and some discrepancies in the origi-
nal probe-set/gene assignments in these microarrays 
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have been revealed by improved genome sequence 
annotations (Chalifa-Caspi et al., 2004) and show 
that many probes match transcripts from more than 
one gene or even do not match any transcribed se-
quence (Mecham et al., 2004; Gautier et al., 2004; 
Harbig et al., 2005; Stalteri & Harrison, 2007; Yu et 
al., 2007). Hybridization signals read from differ-
ent probe-sets annotated to the same gene are often 
different and may even show opposite trends in 
the direction of change of transcript level. Attempts 
have been made to resolve these problems, most of 
which propose procedures for redefining probe-sets 
and for developing custom probe-set definitions 
for Affymetrix gene chips that greatly improve the 
reliability of the results (Dai et al., 2005; Lu et al., 
2007; Ferrari et al., 2007). Choosing one probe-set 
as representative or treatment of each probe-set as 
individual gene was also proposed (Jordan et al., 
2005; Elbez et al., 2006; Bourquin et al., 2006; Liao 
& Zhang, 2006; Li et al., 2008). Most of the meth-
ods are based only on gene sequence and annota-
tion information available in public databases and 
do not take into account possible inconsistencies in 
the experimental data.

Here we propose a different approach 
which is based on the principle that a probe-set 
which hybridizes to more than one transcript can 
be recognized because it produces a hybridization 
signal significantly different from those of other 
probe-sets assigned to the particular gene, allow-
ing it to be detected as an outlier in the group and 
eliminated from subsequent analyses. We describe 
this method using examples of transcript profile 
changes induced by exposure of human cells to 
ionizing radiation assessed with Affymetrix HG-
U133A microarrays and based on single probe-sets 
only or on all probe-sets annotated to a particular 
gene, and provide a link to a free computer pro-
gram that allows such calculations for large num-
bers of genes. 

MAtERIAls And MEtHods

Cells and irradiation. K562 (human lymphob-
lastoid) and Me45 (human melanoma) cells were 
grown in suspension in DMEM (Sigma-Aldrich, St. 
Louis, MO, USA) with 10% fetal bovine serum (ICN, 
Irvine, CA, USA) and used at a density of 105 cells/
ml. Cultures were irradiated 24 h after a change of 
medium using an X-ray dose of 4 Gy at 1 Gy/min 
from a Clinac 600 GMV (Varian, Palo Alto, CA, 
USA) at room temperature, and were resuspended 
in fresh medium after irradiation. Control untreated 
cells and irradiated cells were processed in parallel 
in similar conditions and collected at different times 
of incubation at 37°C. 

Microarray assays of transcript levels and 
normalization of microarray data. Total RNA was 
isolated from about 3 × 106 cells with RNeasy Mini 
Kits (Qiagen, Valencia, CA, USA) including a diges-
tion step with RNase-free DNase I, and its quantity 
and integrity were checked spectrophotometrically 
and by electrophoresis in 1% agarose gels. Materi-
als and methods for microarrays were from Affyme-
trix (Santa Clara, CA, USA); double-stranded cDNA 
prepared with the GeneChip Expression 3’-Amplifi-
cation One-Cycle cDNA Synthesis Kit was cleaned 
using the Sample Cleanup Module and biotinylated 
cRNA was synthesized with GeneChip Expression 
3’-Amplification Reagents for IVT Labeling, cleaned 
on RNA Sample Cleanup columns, and fragmented 
at 94°C for 35 min in Fragmentation Buffer. The bi-
otinylated cRNA was hybridized first to a control 
Test3 microarray to evaluate its quality and then 
to a Human Genome U133A array. Chips were 
stained with streptavidin-phycoerythrin conjugate 
and scanned in a Gene Array G2500A scanner (Agi-
lent, Santa Clara, CA, USA). Signals from replicate 
experiments were normalized by Robust Multiarray 
Analysis (RMA) (Irizarry et al., 2003; Bolstad, 2007).

statistical methods. The multiple hybridi-
zation signal values obtained for a particular gene 
were tested for outliers by the Dixon test (Dixon, 
1953), which applies to small series of 3–30 data 
points and is based on a ratio that describes the 
difference between minimal, maximal and adjacent 
values for two given extreme values in the group 
analyzed, allowing a conclusion to be made whether 
the minimal or maximal value is an outlier. A com-
puter application which enables fast identification 
and elimination of outliers using the Dixon test, and 
calculation of average hybridization values for large 
groups of genes on the basis of the latest Affymetrix 
probe-set annotation database, is freely available at 
www.bioinformatics.aei.polsl.pl.

REsUlts And dIscUssIon

Affymetrix microarray assays give different results 
from different probe-sets for the same gene

RNA was isolated at different times after ex-
posure of K562 or Me45 cells to 4 Gy of X-radiation 
and the levels of transcripts from different genes 
were assessed by hybridization to Affymetrix HG-
U133A microarrays which include multiple probe-
sets assigned to the same gene. Table 1 shows the 
numbers of annotated genes which are characterized 
by one, two, or more probe-sets on this microarray 
(excluding 1239 sets with unspecified gene annota-
tions), calculated using the annotation files obtained 
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on 16 December 2008 from the Affymetrix website 
(Liu et al., 2003). 

We found that in many cases the probe-sets 
assigned to a single gene produced different hybrid-
ization signal values and sometimes opposite trends. 
Table 2 presents examples of results obtained with 
such probe-sets for transcripts in control cells and in 
cells at 1, 12, and 24 h after X-irradiation. 

In Table 2 the probe-sets assigned to a particu-
lar gene by the Affymetrix database are grouped; the 
first two columns show the gene symbol and probe-
set numbers. For these genes, signals obtained from 

different probe-sets varied widely and in some cases 
by an order of magnitude. To resolve this problem 
and to obtain a single hybridization signal value for 
each gene, we removed from the subsequent analy-
sis those probe-sets that could be recognized as out-
liers in the group assigned to one gene. 

signal averaging combined with the dixon test for 
outliers

The Dixon method for removing outliers was 
chosen for this purpose because it was designed for 

table 1. Probe-sets assigned to a single gene on HGU133A microarrays.
Number of probe-sets/gene 1 2 3 4 5 6 7 8 9 10+
Number of genes 8310 2780 1230 464 162 64 14 11 7 10

table 2. Microarray hybridization signals from multiple probe-sets.

Gene 
symbol Probe-set

K562 cells Me45 cells

Control
After irradiation

Control
After irradiation

1 h 12 h 24 h 1 h 12 h 24 h

PTBP1

212016_s_at 329.7 299.1 252.1 410.2 175.4 129.4 58.7 257.8

212015_x_at 1059.6 1294.4 1127.0 1094.6 546.9 554.1 398.0 804.2

211271_x_at 1215.3 1265.8 1204.0 1111.2 623.2 564.7 429.7 839.7

202189_x_at 1455.0 1472.7 1390.5 1174.6 737.3 724.7 873.1 955.5

211270_x_at 1589.2 1552.7 1492.0 1354.9 766.7 831.7 1034.4 1007.2

216306_x_at 1606.3 1759.9 1581.4 1586.8 826.5 777.2 643.4 1174.5

BAT2D1

214052_x_at 27.7 25.7 22.1 23.9 25.7 31.9 17.9 24.2

211947_s_at 54.8 101.0 88.6 97.0 62.3 55.3 37.1 51.2

214055_x_at 85.4 113.7 71.4 64.8 45.7 46.9 25.1 38.7

211944_at 105.3 110.8 71.9 93.5 58.2 49.8 26.4 53.2

211948_x_at 180.1 217.9 159.5 138.1 110.2 106.2 64.5 90.9

211946_s_at 403.3 477.2 433.8 386.4 244.1 279.5 323.1 217.5

HUWE1

207783_x_at 2869.9 2718.8 2698.1 2986.0 3391.7 3502.1 3235.8 3349.9

208598_s_at 376.4 325.7 392.1 505.8 516.3 464.9 408.1 536.7

208599_at 24.9 21.0 22.1 23.1 23.9 21.5 20.5 21.0

214673_s_at 29.5 28.4 29.2 29.3 26.8 22.6 22.4 21.6

ATP5C1

214132_at 29.5 24.7 31.6 34.1 33.9 41.9 59.4 36.7

208870_x_at 1781.7 1680.9 1499.0 2326.2 1615.7 1972.1 1709.9 1639.5

213366_x_at 1840.0 1936.5 1773.3 2236.5 1707.7 1982.7 1985.6 1623.9

205711_x_at 1906.4 1883.1 1622.8 2475.6 1683.5 2025.0 1824.3 1674.4

RPL38

202028_s_at 182.3 209.0 199.6 147.9 233.8 308.3 325.1 283.4

221943_x_at 288.3 312.9 289.8 199.7 416.3 471.8 375.6 443.0

202029_x_at 4534.8 4320.7 4672.5 4040.6 5499.5 5144.2 6413.6 5089.9
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small groups of values, from 3 to 30 (Dixon, 1953). 
In Table 2, rows in bold italic type show probe-
sets which were classified as outliers by this test 
at a significance level of α ≤ 0.05. The first example 
(top row) shows probe-sets classified as outliers 
because of their significantly lower signal value 
than the others. The PTBP1 gene has four different 
transcript variants and four probe-sets that match 
these transcripts exactly (10–11/11 probes hybrid-
ize with a transcript of this gene according to its 
sequence in the Reference Sequence database). The 
location of the sequence which hybridizes with the 
fifth probe-set is very similar, whereas the probe-
set which gives the outlying hybridization value is 
complementary to a sequence about 1000 bp closer 
to the 5’ end of the gene. The lower level of tran-
scripts matching probe-set number 212016_s_at 
could therefore result from degradation of tran-
scripts starting from the 5’ end. 

For the BAT2D1 gene, one probe-set which 
hybridize with sequences located about 3000–4000 
bp closer to the 3’ end than the others and show-
ing hybridization signals significantly higher than 
the others, were recognized as outlier, and removed 
from the subsequent analysis. The sequences of 
probe-set 214052_x_at do not match sequences in the 
BAT2D1 gene at all; however, this set showed a sig-
nal close to the noise level measured for others and 
thus was not recognized as an outlier by the Dixon 
test. The gene HUWE1 is represented by four probe-
sets, with set 207783_x_at classified as an outlier be-
cause it showed a much higher signal compared to 
the others representing that gene; the main reason 
may be that 6 of 11 probes belonging to that set hy-
bridize with the gene TPT1 instead of HUWE1. The 
average expression value of the other probe-sets spe-
cific for TPT1 was 3000, which may have caused the 
strongly increased value of 207783_x_at. One of the 
probe-sets assigned to the gene ATP5C1 was classi-

fied as an outlier in all experiments; the transcript 
level detected by this set was close to the noise level 
while other sets showed signal values about 60 times 
higher. Probes of the removed set (214132_at) did 
not match the transcript sequence, while those in the 
other sets showed 10–11/11 matches. Gene RPL38 
illustrates a weak point in our approach: only one 
of the three probe-sets for this gene showed 10/11 
sequence matches to the transcript, but it was clas-
sified as an outlier since its value was significantly 
different from the other two although those did not 
match the gene sequence at all (0/11 matches).

The hybridization signals measured by probe-
sets for the same gene can be not only significantly 
different in some or all experiments, but can also 
show opposite trends (up- or down-regulation) as 
seen in the example of the PTBP1 gene (Table 2), 
where the probe-set classified as an outlier shows a 
reduced transcript level immediately after irradia-
tion while the others show an increased level. Such 
differences in expression can result not only from 
inaccurate measurements or normalization methods, 
but also from a different location of the sequence hy-
bridizing with the probe-set; for example, transcripts 
could be broken as a consequence of genotoxic ef-
fects and therefore hybridize differently with dif-
ferent probe-sets. RNAs that do not have a marked 
poly-A tail are not converted to cRNA and therefore 
are not detected, although they could potentially hy-
bridize with a probe-set. Different expression values 
can also be a result of inaccurate gene sequencing 
at the time when the probes were designed (Hey-
debreck et al., 2004), but also of hybridization with 
different members of a family of similar genes or 
with various splice variants of a single gene, which 
increase the diversity of over 60% of human genes 
(Ladd & Cooper, 2002) and very often can lead to 
totally different expression levels of individual ma-
ture transcripts (Buck et al., 1992; Lim et al., 2006).

table 3. Average hybridization results after detection and removal of outliers.

Gene symbol

K562 cells Me45 cells

Control
After irradiation

Control
After irradiation

1 h 12 h 24 h 1 h 12 h 24 h

PTBP1 1385.1 1469.1 1359.0 1264.4 1669.0 1993.3 1839.9 1645.9

RPLP0 8173.1 7742.5 7995.9 8738.7 60.4 58.0 34.2 51.6

BAT2D1 90.6 113.8 82.7 83.5 700.2 690.5 572.9 956.2

HUWE1 143.6 125.0 147.8 186.1 189.0 169.6 150.3 193.1

ATP5C1 1842.7 1833.5 1631.7 2346.1 325.1 390.1 350.4 363.2

RPL38 235.3 261.0 244.7 173.8 8165.3 8320.1 8169.3 7979.9
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The differences in read-outs from individu-
al probe-sets make it impossible directly to assess 
from microarray data the changes in gene expres-
sion caused, for example, by ionizing radiation. The 
method described here, in which outlying values are 
detected and removed from the analysis, enables 
calculation of the average signal assigned to each 
gene and reasonable comparisons of transcript lev-
els between samples, since it removes any probe-sets 
which show a significantly different fold-change of 
expression of a gene. Table 3 presents the data for 
the genes in Table 2 after recalculation by this meth-
od. On the average, 400 of 22 215 probe-sets were 
removed by this operation from the data set from 
each microarray.

data analysis software

We developed a user-friendly bioinformatics 
tool to perform the Dixon test, as well as signal av-
eraging for probe-sets for the same gene. Access to 
the data-processing algorithms is provided by a sim-
ple graphical user interface (Fig. 1). 

This program detects outlying signals using 
the Dixon test and removes the data for the corre-
sponding probe-set, followed by signal averaging. 
The interface usage can be divided into three steps: 
data import, display options, and analysis. In the 
first step the user can import the data from many 
microarray experiments in the form of text files or 

by pasting the data table. Imported data appear 
in the upper Table (see Fig. 1). The option is pro-
vided to select a labelled column (probe-sets, gene 
symbols or other gene identifiers) to be analyzed 
(“Key” column) and columns for calculations from 
the displayed list (only the selected columns will be 
analyzed in the particular run). The “Display op-
tion” box enables the choice of the result data that 
will be displayed in one row with each gene iden-
tifier, the mean expression value (“Mean value”) 
calculated after excluding the values from the out-
lying probe-sets, the standard deviation (“Standard 
deviation”), the number of outlying probe-sets (“Re-
moved probe-sets”) and, in the last column of the 
results, the names of all probe-sets which were an-
notated to each gene (“Key values”). Coming to the 
analysis step, the user should choose the input and 
output symbol type (i.e., wheather the key column 
labels should be translated from probe-sets to sym-
bols or other identification numbers before looking 
for values annotated to the same gene). The “Ana-
lyze” button starts the calculations and the results 
appear in the lower Table (see Fig. 1) and can be 
saved as a text file by using the “Save” button. The 
columns of the lower Table present the results of the 
analysis and contain the information chosen in the 
“Display options” box and also, in the second col-
umn, the information on the number of probe-sets 
annotated to the particular gene (“Repeats”). The 
program was designed especially for analyzing data 

Figure 1. the graphical interface of computer application nucleodix.
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from HGU133A microarrays, but it can also be used 
for other types of microarrays or other types of ex-
periments as long as the labels column is provided 
with the experimental data. 

conclUdInG REMARKs

The analysis of microarray results raises many 
questions, mainly because even a single experiment 
provides a huge amount of information that needs 
to be stored, processed and analyzed. The Affyme-
trix GeneChip is a very popular microarray platform 
for characterizing transcription profiles and has been 
widely used in functional genomics and in clinics, 
for example for classification of cancers (Györffy & 
Schäfer, 2008; Karlsson et al., 2008). The results of 
an experiment depend highly on the quality of the 
probe-set annotations, which should be as specific 
for a single gene as possible. The first Affymetrix 
microarrays were designed some years ago, and 
since that time the number of human gene sequenc-
es available in databases has increased enormously 
so that a large amount of the information used at 
the time these probe-sets were designed is outdated 
and some on the HGU133A microarray can hybrid-
ize to more than one gene or are not properly anno-
tated to genes (Zhang et al., 2005; Lu & Zhang, 2006; 
Okoniewski et al., 2006). Comparisons of probes 
representing the same gene on different microarray 
platforms or on different generations of the same 
platform also show discrepancies (Kuo et al., 2002; 
Kothapalli et al., 2002; Carter et al., 2005; Hwang et 
al., 2004; Elo et al., 2005). Many attempts have been 
made to match the probe-set definitions with the 
new information in public databases (Chalifa-Caspi 
et al., 2004; Hwang et al., 2004; Mecham et al., 2004). 

Our approach is based on averaging the sig-
nal from probe-sets representing the same gene 
based on the most up-to-date probe annotation data 
from Affymetrix. In theory, these signals should 
not be averaged since we cannot determine if they 
hybridize with the same efficiency (i.e., have equal 
weight) and therefore we first carry out a Dixon test 
for outliers and remove those probe-sets which give 
a signal significantly different from the others for the 
same gene, and only then the remaining values are 
averaged. This strategy can be justified in a biologi-
cal sense by considering that the diversity among 
genes is much higher than the diversity between 
probe-sets related to the same gene after removal 
of outliers. The disadvantage of this method is that 
the results are questionable when there are only 
two probe-sets representing a single gene so that 
we cannot carry out the Dixon test, or when there 
are many values which vary over a large range. The 
main positive aspects are that no genes are removed 

from the analysis, and that we obtain a single ex-
pression value for each of them that can be used 
for further comparisons. This approach is not as 
strongly dependent on gene sequence as most others 
are; none of the probe-sets are removed if we can-
not determine their relation to a transcript because 
the current knowledge about the individual gene se-
quences is not so precise as we would like it to be. 
The identification of differentially expressed genes is 
still the major goal of microarray-based expression 
studies, and a combination of modern bioinformat-
ics technologies with the most up-to-date genomic 
information can significantly improve the outcome 
of microarray analyses even using data from experi-
ments that were performed a few years ago.
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