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The endothelium is a highly active organ responsible for vasculatory tone and structure, ang-
iogenesis, as well as hemodynamic, humoral, and inflammatory responses. The endothelium is 
constantly exposed to blood flow, sheer stress and tension. Endothelial cells are present as a vas-
culature in every tissue of the body and react to and control its microenvironment. A variety of 
ion channels are present in the plasma membranes of endothelial cells. These include potassium 
channels such as inwardly rectifying potassium (Kir) channels, voltage-dependent (Kv) channels, 
ATP-regulated potassium (KATP) channels and three types of calcium-activated potassium chan-
nels (KCa), the large (BKCa), intermediate (IKCa), and small (SKCa) -conductance potassium chan-
nels. Potassium current plays a critical role in action potentials in excitable cells, in setting the 
resting membrane potential, and in regulating neurotransmitter release. Mitochondrial isoforms 
of potassium channel contribute to the cytoprotection of endothelial cells. Prominent among 
potassium channels are families of calcium-activated potassium channels, and especially large-
conductance calcium-activated potassium channels. The modulation of BKCa channels, which are 
voltage- and calcium-dependent, has been intensively studied. The BKCa channels show large ex-
pression dynamics in endothelial cells and tissue-specific expression of large numbers of alterna-
tively spliced isoforms. In this review, a few examples of the modulatory mechanisms and physi-
ological consequences of the expression of BKCa channels are discussed in relation to potential 

targets for pharmacological intervention. 
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INTRODUCTION

The endothelium is a monolayer of the cells 
that line the entire internal surface of the blood ves-
sels and lymphatic system. The term endothelium 
was introduced by the anatomist Wilhelm His in 
1865, and for a long time it was considered to be an 
inert “layer of nucleated cellophane” serving only 
as a non-reactive barrier (Galley & Webster, 2004). 

The important internal part of the blood vessels is 
the glycocalyx, discovered after the introduction of 
light and electron microscopy techniques. The gly-
cocalyx is a layer of endothelial membrane-bound 
macromolecules composed of a variety of extracellu-
lar polysaccharide coating on cells. The membrane-
bound glycocalyx with adsorbed plasma compo-
nents plays a role in microvessel permeability. Most 
proteins at the endothelial surface are glycoproteins 
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(e.g., selectins and integrins) (Pries et al., 2000). In-
teractions between highly specialised adhesion mol-
ecules are modified by sulfated glycans (e.g. heparin 
sulfate), the most abundant components of the gly-
cocalyx (Skinner et al., 1991). The layer of endothe-
lial glycocalyx seems to play a significant role in the 
modulation of angiogenesis (Brown et al., 1996; Pries 
et al., 2000). It has also been shown that ischemia-
reperfusion can damage the glycocalyx layer of en-
dothelial cells and impair endothelial vasodilata-
tion. These changes, related to reactive oxygen spe-
cies (ROS), are reversed by superoxide dismutase 
(SOD) treatment. Oxidised low-density lipoproteins 
(oxo-LDL) can also severely damage the glycocalyx 
layer (Abrahamsson et al., 1992; Czarnowska & Kar-
watowska-Prokopczuk, 1995; Beresewicz et al., 1998). 
It is now well established that the endothelium is a 
very important active component of the cardiovas-
cular system and has autocrine and paracrine activi-
ties (Galley & Webster, 2004). Endothelial cells (ECs) 
regulate vascular tone and blood flow, thrombosis 
and thrombolysis, and platelet adherence processes. 
The main role of the endothelium is to regulate vas-
cular tone by releasing vasodilator and vasoconstric-
tor substances (Table 1). The endothelial cells in the 
vascular tree are not uniform in shape, thickness or 
expression of cell adhesion molecules (e.g., ICAM, 
VCAM, PECAM). The endothelium differs among 
the leukocyte trafficking between the skin, muscle 
mesentery (with classical multistep for leukocyte 
recruitment), and the lung, liver, and mescendrinc 
lymph nodes (Aird, 2007a; Dietmar, 2007; Aghajani-
an et al., 2008; Wittchen, 2009). Each EC is a dynam-
ic structure that responds to the extracellular envi-
ronment, which may include mechanical (e.g., shear 
stress and tension) or biochemical factors (e.g., cy-
tokines, hormones, growth factors, ROS, NO). These 
environmental factors cause endothelial phenotypic 
changes which can alter as cell shape, calcium influx, 
protein expression, mRNA levels, migration, prolif-
eration, apoptosis and survival, vasomotor tone, in-
flammatory response, leukocyte adhesion and migra-
tion. Because the endothelium is distributed through 
the body and has contacts with every tissue, its dys-

function can influence the state of each tissue in the 
body (Aird, 2007b). A rapid progress in the docu-
mentation of the phenotypic heterogeneity of the 
endothelium with the use of different approaches 
has been achieved recently (e.g., immunohistochem-
istry, in situ hybridisation, real-time microscopy, and 
proteomic techniques) (Pasqualini & Arap, 2002; 
Aird, 2003; Shibata et al., 2005; Shin & Anderson, 
2005; Sandow & Grayson, 2009). The endothelial 
phenotypic changes related to the environment can 
clearly be seen in the formation of endothelium in 
the blood-brain barrier, where endothelium is under 
the regulation of astroglial-derived paracrine factors. 
Another example are the ECs lining microvessels 
in the heart, which are exposed to the mechanical 
forces generated by contracting cardiomyocytes and 
to their paracrine and electrical factors (Hsieh et al., 
2006). In embryogenesis, the mesoderm is the exclu-
sive source of ECs precursors, which are in close co-
localisation with haematopoietic precursor cells, and 
this has suggested that both arise from hemangiob-
lasts. In the adult body, ECs in quiescent vasculature 
are proliferatively inactive with a relatively long 
life-span (Hobson & Denekamp, 1984; Ferran, 2006; 
Langenkamp & Molema, 2009). It is important to 
note that tumours depend on new vasculature sup-
ply for their growth, and it is crutial to characterise 
the phenotype of the ECs to understand the action 
of anti-angiogenic drugs that can affect tumours 
through their vasculature (Aird, 2009; Langenkamp 
& Molema, 2009). The endothelium is in constant 
balance between vasodilatation and vasoconstriction, 
proliferation and its inhibition, activation of smooth 
muscle cell migration, and activation and inhibition 
of adhesion, thrombogenesis and fibrinolysis. Shifts 
in the metabolism of the endothelium toward re-
duced vasodilatation, a proinflammatory state, and 
prothrombic characteristics lead to endothelial dys-
function (Feletou & Vanhoutte, 2006a; Vanhoutte et 
al., 2009). The actions of endothelial vasoactive com-
ponents very often involve the activation of potassi-
um channels, especially calcium-activated potassium 
channels (KCa), a key component in the regulation of 
membrane potential in endothelial and smooth mus-

Table 1. Major components of endothelial metabolic activities

Endothelial function Mediators
Vasodilators Nitric oxide (NO), prostacyclin (PGI)2, endothelium-derived hyperpolarizing factor (EDHF), 

adrenomedullin (AM), natriuretic peptide (CNP)
Vasoconstrictors Angiotensin II (AgII), endothelin (ET), thromboxane A2 (TxA2), leukotrienes, free radicals
Growth factors Transforming growth factor, colony stimulating factor, insulin like growth factor
Antithrombotic factors Thrombomodulin (TM), antithrombin, plasminogen activator, heparin
Inflammatory mediators Interleukins 1, 6, 8 (IL-1, IL-6, IL-8), leukotrienes, MHC class II
Procoagulant factors Von Wilebrand factor (vWF), thromboxane A2, thromboplastin, factor V, paltelet activating 

factor, plasminogen activator inhibitor (PAI-1)
Lipid metabolism LDL-receptor, lipoprotein lipase
Matrix components Fibronectin, laminin, collagen, proteoglycans, proteases
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cle cells that are among the regulatory components 
of vascular tone (Nelson & Quayle, 1995; Nilius & 
Droogmans, 2001). The endothelium-dependent re-
sponse to aggregating platelets is not present to the 
same extent in all arteries, but is most prominent in 
the coronary and cerebral circulation. When analys-
ing the architecture of the vasculature, the internal 
elastic lamina (IEL), with the fenestration required 
for myoendothelial gap junctions (MEGJ), is worthy 
of note, as it is probably related to the presence of 
sites of low resistance passage for the diffusion-me-
diated release of vasoactive endothelial and smooth 
muscle substances. The MEGJ are specialised struc-
tures with microdomains representing a selective 
target for the control of endothelial and vascular 
functions (Sandow et al., 2009a; 2009b). The most 
important component of the control of vascular 
tone is regulation by potassium channels, which are 
themselves regulated by the best known endothelial 
releasing factors nitric oxide (NO) and prostacyc-
lin (PGI2). There are also other regulatory factors 
released from endothelium, known as endotheli-
um-derived hyperpolarising factors (EDHF), which 
are not fully characterised and are associated with 
hyperpolarisation of the underlying endothelium 
smooth muscle cells (Feletou & Vanhoutte, 2006b). 
A variety of ion channels are present in the plasma 
membranes of endothelial cells. These include potas-
sium channels such as Ca2+-activated K+ channels 
(BKCa channels), inwardly rectifying K+ channels 
(KIR channels), and voltage-dependent K+ channels 
(KV channels). Endothelial potassium channels have 
been implicated in endothelium-dependent vasodila-
tion. Setting the membrane potential (Vm) leads to 
modulation of endothelial Ca2+ signalling and the 
synthesis of vasodilating factors. Different levels of 
potassium ion channel expression and a variety of 
alternative splicing particularly in variants of BKCa 
channels have multiple interactions with tissue-spe-
cific proteins and a large diversity of interactions 
with the microenvironments of ECs in the vascula-
ture. Expression of specific channels responsible for 
stabilisation of the resting membrane potential and 
its changes are the paramount task for specific parts 
of endothelium (Nilius et al., 1997; Nilius & Droog-
mans, 2001; Schmidt et al., 2008).

ENDOTHELIAL POTASSIUM CHANNELS

Although ECs are not electrically excitable, a 
large number of the signalling functions performed 
by the vascular endothelium depend on the modula-
tion of activity of endothelial cell ion channels. ECs 
secrete a variety of endothelium-derived vasoactive 
molecules and endothelium-derived hyperpolaris-
ing factors (EDHF) required for rapid calcium entry 

(Carter et al., 1988; Lantoine et al., 1998). Addition-
ally, gap junction proteins (connexins) functionally 
couple ECs in an electrical fashion in some specific 
regions to smooth muscle cells. These connections 
permit the spreading of changes in membrane po-
tential (Vm) in ECs to the underlying excitable tissue 
(De Wit et al., 2006; De Wit & Wolfle, 2007). Chang-
es in ECs membrane potential occur in response to 
a variety of stimuli (e.g., shear stress, hypertension, 
cytokines) (Mehrke & Daut, 1990; Barakat et al., 1999; 
Chauhan et al., 2003). The nature of the intracellular 
calcium dynamics and signalling in the ECs of the 
native endothelium are still unclear in comparison 
to the vascular myocytes (Tran & Watanabe, 2006). 
Potassium channels are the most diverse class of 
ion channels underlying electrical signalling in the 
cell, especially in excitable cells where they play a 
fundamental role in the regulation of action poten-
tial (AP). Potassium channels are ion-selective cati-
on channels with an equilibrium potential near the 
typical potential of resting cells. A multiplicity of 
ion channels are present in the plasma membranes 
of ECs, including inwardly rectifying potassium (Kir) 
channels, voltage-dependent (Kv) channels and ATP-
regulated potassium (KATP) channels and a group 
of channels also responsible for modulation of the 
membrane potential in endothelial cells are Ca2+-ac-
tivated K+ channels (KCa channels) (Nilius & Droog-
mans, 2001; Taylor et al., 2003). 

Endothelial calcium-activated potassium channels 
(KCa)

Elevation of intracellular calcium concen-
tration [Ca2+]i in ECs is the first response to most 
stimuli experienced by the cell. The Ca2+ influx into 
the ECs depends on the electrochemical gradient set 
primarily by membrane potential. Influx of Ca2+ into 
the ECs leads to depolarisation of the membrane, 
which is compensated by the activation of KCa chan-
nels. An increased opening probability of KCa at el-
evated [Ca2+]i causes ECs membrane hyperpolarisa-
tion and a driving force for Ca2+ entry through the 
opened calcium channels. Three types of calcium-
activated potassium channels (KCa), the large (BKCa), 
intermediate (IKCa), and small (SKCa) conductance 
potassium channels, have been identified in the vas-
cular wall (Table 2).

LArgE-CONDUCTANCE CALCIUM-ACTIvATED 
POTASSIUM CHANNELS (BKCA)

The discovery in many tissues of a large out-
ward K+ current with a dependence on calcium in-
flux and membrane depolarisation has led to the 
identification of large conductance calcium-activated 
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potassium (BKCa) channels (Heyer & Lux, 1976; Gor-
man & Thomas, 1980; Pallotta et al., 1981). A mam-
malian ortholog of Drosophila slo, Slo1, was cloned 
by hybridisation of a mammalian cDNA library us-
ing the Drosophila ‘slowpoke’ (slo) cDNA (Pallanck & 
Ganetzky, 1994). The BKCa channel encoded by the 
Slo1 gene (KCNMA1) is expressed in many excitable 
and nonexcitable cells. BKCa channels play a role in 
the control of vascular tone, coupling local increases 
in intracellular Ca2+ to membrane hyperpolarisation 
and vascular relaxation. BKCa channels can be acti-
vated by membrane depolarisation or intracellular 
calcium [Ca2+]i separately or by both factors syner-
gistically (Magleby, 2003). The BKCa channel belongs 
to the group of six/seven-transmembrane potassium-
selective channels and consists of four α- and four 
auxiliary β-subunits (Knaus et al., 1994a; Tanaka et 
al., 1997). The pore-forming α subunit is encoded 
by the KCNMA1 gene, which produces multiple iso-
forms through alternative splicing. The KCNMA1 
gene is located in the chromosome region 10q22.3 
(Pallanck & Ganetzky, 1994; Du et al., 2005). The α 
subunit and four β (1–4) subunits are encoded by 
different genes that show tissue-specific expression 
(Higgins et al., 2008; Latorre & Brauchi, 2006; Saus-
bier et al., 2004; Yu et al., 2006). Different combina-
tions of the β-subunits with α-subunit splice vari-
ants generate a physiologically diverse complement 
of BKCa channels that differ dramatically in their 
tissue distribution, trafficking, and regulation (e.g. 
individual splice variants are differentially sensitive 
to phosphorylation by cAMP-dependent protein ki-
nase), whose parameters provide the kinetic range 
needed for electrical fine-tuning (Chen et al., 2005; 
Langer et al., 2003; Ma et al., 2007; Ramanathan et al., 
1999). For a long time the expression of BKCa chan-
nels in ECs was questioned (Nilius & Droogmans, 
2001). Currently, however, it is accepted that ECs ex-
press BKCa channels at the mRNA and protein levels 
(Haburcak et al., 1997; Chiang & Wu, 2001; Wang et 
al., 2005; Dong et al., 2007). It has also been shown 
that the BKCa channel opener CGS7184 can cause en-
dothelium-dependent vasodilatation in isolated aor-
ta rings in a dose-dependent manner, increase NO 
production, and influence on mitochondrial mem-
brane potential in the endothelial cell line EA.hy 926 
(Wrzosek et al., 2009). The discrepancies regarding 
the existence of BKCa channels in ECs were likely 
caused by the tremendous diversity of ECs along 
the blood arteries and differences in the preparations 
obtained for studies of BKCa channel expression and 
function from freshly isolated and cultured vascular 
ECs, which are known to exhibit phenotypic drift. 
There is evidence for the presence of endothelial 
BKCa channels that have a potential for rapid upreg-
ulation in some intact vessels, which may occur in 
disease (Sandow & Grayson, 2009). Because the BKCa 
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channels have a high conductance, it is conceivable 
that they could play an important role in the gen-
eration of membrane potential in ECs when BKCa 
channels are activated and intracellular Ca2+ is ele-
vated. Indeed, it has been shown that the expression 
of BKCa channels in cultured ECs causes a transient 
hyperpolarisation induced by ATP (Kamouchi et al., 
1997). Studies have shown that polymorphism of the 
β1 regulatory subunit of the BKCa channel modulates 
the risk of diastolic hypertension in humans.

Modulation of BKCa channel activity by ROS and 
RNS

It is well documented that reactive oxygen 
(ROS) and reactive nitrogen (RNS) species are pro-
duced in ECs, and they are very important factors in 
controlling the cardiovascular function (Droge, 2002; 
Gutterman et al., 2005; Pacher et al., 2007; Wolin, 
2009). The endothelium can generate ROS and RNS 
through the enzymatic activity of nitric oxide syn-
thases (NOS) (i.e., endothelial NOS (eNOS or NOS3 
or cNOS) and inducible NOS (iNOS or NOS2)), xan-
thine oxidases, NAD(P)H oxidases, cyclooxygenases, 
cytochrome P450-dependent oxygenases, and leak-
age of electrons from mitochondria to generate su-
peroxide (O2

•–) (Basuroy et al., 2009; Gutterman et al., 
2005; Turrens, 2003). NO (also known earlier as en-
dothelium-derived relaxing factor (EDRF)) was dis-
covered as a compound that causes vascular smooth 
muscle relaxation in the presence of endothelium 
after stimulation by acetylcholine (ACh) (Furchgott 
& Zawadzki, 1980). Endothelium-derived RNS and 
ROS have been proposed to regulate vascular tone 
via complex mechanisms, one of them being the 
modulation of BKCa channel function (Matalon et al., 
2003). Most information regarding the actions of NO 
on BKCa channels comes from studies of vascular 
smooth muscle preparations. The relaxation caused 
by NO and NO donors (e.g., NTG, NONOate, SIN-1) 
and prostacyclin (PGI2) and its synthetic analogues 
(e.g., beraprost, iloprost, cicaprost) is associated with 
concomitant hyperpolarisation of smooth muscle 
cells (Tanaka et al., 2004). The important features of 
NO cellular actions are its high membrane perme-
ability and short half-life, which is in the range of 
seconds. Other free radicals, metal-containing pro-
teins, thiols, and oxygen are the major targets for 
NO. The NO released from ECs and many nitrova-
sodilators (e.g., nitroglycerine (NTG)) has been pro-
posed to mediate smooth muscle relaxation via the 
stimulation of soluble guanylate cyclase (sGC) (Gru-
etter et al., 1981; Cayabyab & Daniel, 1995). It is also 
well documented that muscle relaxation and mem-
brane hyperpolarisation in smooth muscle can be in-
duced by released NO in a manner independent of 
cyclic guanosine monophosphate (cGMP) (Bolotina 

et al., 1994; Watson et al., 1996). At least three pos-
sible mechanisms by which NO activates BKCa chan-
nels and leads to vascular smooth muscle relaxation 
have been proposed, including direct activation by 
NO via modulation of –SH groups, phosphorylation 
of the BKCa channel by cGMP-dependent protein ki-
nase (PKG), and inhibition of NO formation by 20-
hydroxyeicosatetraenoic acid (20-HETE), an inhibitor 
of BKCa channel activity. It is also possible that NO 
can modulate proteins that interact in vivo with BKCa 
channels. NO was shown to activate BKCa channels 
in a cGMP-independent manner via a direct modifi-
cation of BKCa channels from vascular smooth mus-
cle (Bolotina et al., 1994; Abderrahmane et al., 1998; 
Mistry & Garland, 1998; Ahern et al., 1999; Lang et 
al., 2000). Direct modulation of BKCa channel activ-
ity by NO and ROS has been demonstrated in renal 
artery endothelium (Brakemeier et al., 2003). Those 
authors identified BKCa channels in the endotheli-
um of porcine renal arteries using the patch-clamp 
technique in situ. The activity of the channel was 
controlled by calcium concentration and membrane 
potential and was inhibited by Ba2+ and iberiotoxin 
(IbTx), a potent and specific blocker of BKCa chan-
nels. NO donors also activated the channel. It is 
interesting that hydrogen peroxide led to a dose-
dependent inactivation of BKCa and caused inhibi-
tion of vasodilatation of isolated porcine artery after 
bradykinin treatment. It has been shown that in con-
trast to NO, intracellular and extracellular challenge 
of endothelial BKCa channels with H2O2 and ROS 
results in a dose-dependent and irreversible channel 
inactivation (Brakemeier et al., 2003). Such an inhi-
bition by H2O2 has also been reported for another 
type of KCa channel, the intermediate-conductance 
KCa (IKCa), in bovine aortic ECs (Cai & Sauve, 1997). 
Thus, it is likely that other intracellular second mes-
sengers in addition to [Ca2+]i co-stimulate endothelial 
BKCa channel activity. Therefore, such a stimulatory 
effect on whole-cell currents through BKCa channels 
might be a result of such an H2O2-induced influx of 
Ca2+, which presumably overrides the direct inhibi-
tory effects of H2O2 on the channel activity (Gupta 
et al., 2001). There are also studies that support the 
hypothesis that NO cannot directly modulate BKCa 
channel activity. It was shown using whole cell 
and patch-clamp techniques, that BKCa channels are 
present in the endothelial cell line EA.hy 926 and 
are not stimulated directly by NO (Haburcak et al., 
1997). Hydrogen peroxide is produced in endothe-
lial and smooth muscle cells from O2

•–, primarily 
enzymatically by superoxide dismutase. As previ-
ously mentioned, H2O2 can act as a vasoconstrictor 
or, depending on the tissue and the experimental 
conditions, can have dilatory properties that lead 
to hyperpolarisation of the vascular smooth muscle 
membrane (Ellis & Triggle, 2003). Oxidative stress is 
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also recognised as a significant determinant of BKCa 
channel function (DiChiara & Reinhart, 1997; Wang 
et al., 1997; Liu & Gutterman, 2002). It has been pro-
posed that the mechanisms of these changes involve 
the oxidation of cysteine residues located in the in-
tracellular and C-terminal regions of the channel that 
alter its voltage- and calcium-dependence (DiChiara 
& Reinhart, 1995). 

Moreover, it has been documented that both 
redox modulation and nitrothiosylation of cysteine 
residues on the cytosolic surface of the BKCa channel 
protein can alter channel gating (Lang et al., 2000). 

Modulation of BKCs channel activity by carbon 
monoxide 

Carbon monoxide is an endogenous gase-
ous messenger that regulates physiological function 
in a variety of tissues in a paracrine and autocrine 
manner. CO is a deadly poisonous gas physiologi-
cally produced during heme catabolism by heme 
oxygenases (HOs) and is recognised as a biological 
signalling molecule (Jaggar et al., 2005; Abraham & 
Kappas, 2008). CO is important in the regulation of 
vascular tone, synaptic plasticity, and tumour prolif-
eration (Kim et al., 2006). HO-1 and CO play roles 
in various aspects of vascular disorders, cancer, 
vascular restenosis, hypertension-impaired wound 
healing, ischemia/reperfusion, peripheral vascular 
disease, and atherosclerosis (True et al., 2007; Abra-
ham & Kappas, 2008; Dulak et al., 2008). One target 
of CO modulation is ECs, where it can modulate the 
BKCa channel directly as well as via a mechanism in-
volving NO or the cGMP-dependent pathway (Dong 
et al., 2007). BKCa channels are involved in the hy-
poxia-signalling cascade of a number of cellular sys-
tems. It has been shown that knockdown of HO-2 
expression leads to a reduction in BKCa channel ac-
tivity, and the CO production by HO-2 reduces this 
loss of function (Williams et al., 2004). Specificity to 
hypoxia is conferred by a highly conserved motif in 
the stress-regulated exon (STREX) of the BKCa chan-
nel α-subunit splice variant. Expression of the STREX 
splice variant is tissue-specific and can provide the 
control mechanism for cellular responses to hypoxia. 
Mutation of the serine (S24) residue abolished the 
hypoxia sensitivity of the STREX splice variant (Mc-
Cartney et al., 2005). Recently, a structural motif that 
acts as a sensor of CO was localized to the C-termi-
nal tail of the human BKCa channel within the RCK1 
domain and a high-affinity Ca2+ sensor (Hou et al., 
2008; Williams et al., 2008). In BKCa channels, motifs 
that bind reduced heme have been recognised. The 
data support the hypothesis that reduced heme is a 
functional CO receptor for BKCa channels and could 
provide a mechanism by which gaseous messengers 
regulate the channel activity (Jaggar et al., 2005). In 

fact, CO-mediated activation of BKCa channels can 
participate in the mesenteric arterial vasodilatation 
of ascetic cirrhotic rats (Bolognesi et al., 2007). It has 
also been documented that CO and biliverdin can 
prevent endothelial cell sloughing in diabetic rats, 
probably by decreasing oxidative stress (Rodella et 
al., 2006). The role of the CO and HO-2 pathway in 
astrocyte signalling is to activate BKCa channels in 
smooth muscle arterioles and dilate them (Li et al., 
2008a). Recently, it was shown that ECs respond 
to sheer stress by producing a sustained increase 
in NO, and a transient increase in ROS production 
can activate the HO-1 gene. This process is regu-
lated by mitochondria-derived H2O2 that diffuses 
into the cytosol, leading to HO-1 up-regulation and 
maintenance of ECs protection (Li et al., 2008b). The 
protective role of CO was demonstrated using the 
tricarbonylchloro(glycinato)ruthenium (II) (CORM-3) 
CO carrier in mice with lethal sepsis. Delivery of a 
controlled amount of CO dramatically reduced mor-
tality in septic mice by supporting mitochondrial 
energetic metabolism (Lancel et al., 2009). Variuos 
CO-releasing molecules have been tested for their 
potency in cell-protective mechanisms (Masini et al., 
2008; De Backer et al., 2009). The protective role of 
CO against hypoxia could, at least in part, be related 
to activation of BKCa channels located in the plasma 
or inner mitochondrial membranes. 

role of the auxiliary β subunits in BKCa activation

BKCa channels are accompanied by four types 
of regulatory auxiliary β-subunits, β1-β4, which are 
191 to 235 amino-acid residues long (Knaus et al., 
1994b; Wang et al., 2002). The β-subunits have two 
putative transmembrane segments and an extra-
cellular loop that contains glycosylation sites and 
cysteine residues capable of forming disulfide bonds. 
The N- and C-termini of the β-subunits are oriented 
intracellularly. In mammals, the β-subunits are en-
coded by the genes KCNMB1-4 (Brenner et al., 2000; 
Orio et al., 2002; Liu et al., 2008). Alternative splicing 
of transcripts encoding the β-subunits, especially the 
β3-subunit, leads to expression of a large number of 
proteins that modify cellular function. It seems that 
β-subunits are not uniformly expressed in every tis-
sue in the body, but their expression is very precise-
ly regulated (Torres et al., 2007). It is especially re-
markable that ECs do not express the regulatory β-
subunit at the mRNA and protein levels (McManus 
et al., 1995; Tanaka et al., 1997; Papassotiriou et al., 
2000), while the α-subunit of the channel is fully ex-
pressed in ECs (Kamouchi et al., 1997; Brakemeier 
et al., 2003). The BKCa channel β4-subunit is prefer-
entially localized to brain neurons, not only in the 
plasma membrane, but also in the inner mitochon-
drial membrane (Torres et al., 2007; Piwonska et al., 
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2008). It has been shown that the β4-subunit of BKCa 
channels has a role in charibtotoxin (ChTx) and ibe-
riotoxin (IbTx) resistance (Meera et al., 2000; Gan et 
al., 2008). It seems that the main role of β-subunits is 
the regulation of sensitivity to [Ca2+]i and membrane 
potential. It was shown that β-subunits also have a 
protective role against digestion of BKCa channels 
by trypsin, and the N-termini of the auxiliary β2-
subunit causes inactivation of the channel through 
its pore-blocking position (Zhang et al., 2009). Mice 
with deleted genes for β1-subunits show impairment 
in endothelium-dependent smooth muscle relaxation 
and are characterised by increased vascular super-
oxide production, which is probably caused by ex-
pression of vascular NADPH oxidase and leads to a 
reduction in cGMP-dependent kinase activity (Oelze 
et al., 2006). This also enhances the oxidative regu-
lation of BKCa channels and considerably alters the 
physiological voltage range at lower [Ca2+]i. Those 
authors have shown that the M177 β1-subunit is 
crucial for channel activation and oxidative sensitiv-
ity (Santarelli et al., 2004). The β1-subunit enhances 
the internalisation of the α-subunit of the channel 
(Toro et al., 2006) as well as the β-subunit via endo-
cytic trafficking signals that can regulate surface ex-
pression of the BKCa channel (Zarei et al., 2007). The 
Glu65Lys polymorphism of β1-subunit is associated 
with reduced systolic blood pressure in middle-aged 
men (Nielsen et al., 2008). The BKCa channel is re-
sponsible for ethanol tolerance at the molecular and 
behavioural levels (Martin et al., 2008). It was shown 
that β-subunit-specific modulation of BKCa chan-
nels and their different distribution in the brain can 
contribute to the pathophysiologies of epilepsy and 
dyskinesia (Lee & Cui, 2009). These differences in 
distribution and expression in different tissues can 
be critical for the development of β-subunit-selective 
drugs, as has been shown (Morimoto et al., 2007). 
Those authors presented data demonstrating drug 
specificity for the β1- and β4-subunits of BKCa chan-
nels, but not for the β2-subunit. 

Proteins interacting with the BKCa channels

There have been many observations suggest-
ing that a large number of proteins can interact 
with and modulate BKCa channel activity. Recently, 
studies by Kathiresan et al. (2009) using coimmu-
noprecipitation and 2-dimensional PAGE combined 
with mass spectrometry have revealed 174 putative 
BKCa channel-associated proteins (BKAP) from the 
cytoplasmic and membrane/cytoskeletal fractions 
of mouse cochlea. The data revealed that 50% of 
these proteins have affiliations with potassium and 
calcium channels. It is very interesting that about 
20% of the proteins are related to mitochondria. 
Compartmentalisation of BKCa channels to the mi-

tochondria has been found to be splice variant-spe-
cific for the BKCa-DEC channel isoform cloned from 
cochlea. Those authors have identified novel BKCa 
channel complexes with important roles in devel-
opment, calcium binding, chaperone activity and 
hearing loss. The presented observations also sup-
port earlier studies that revealed a wide range of 
interacting proteins with cellular localisations that 
regulate BKCa channel activity. Caveolae are mem-
brane microstructures to which BKCa channels were 
found to localise in bovine aortic endothelial cells 
(Wang et al., 2005). Caveolin-1 interacts directly 
with BKCa channels and exerts a negative regula-
tory effect on their function. Under control condi-
tions, it was shown that BKCa channels could be ac-
tivated by cholesterol depletion (Wang et al., 2005). 
In HEK293T cells, BKCa channels have a caveolin 
binding motif that facilitates tethering of the chan-
nels to the membrane (Alioua et al., 2008). A pos-
sible link between BKCa channels and the inositol 
1,4,5-trisphosphate receptor (IP3R) via lipids rafts in 
the membrane has also been shown (Weaver et al., 
2007). Data presented by those authors suggests a 
preferential association of BKCa channels with the 
lipid raft domain and provides evidence for a novel 
structure coupling to the source of calcium. Another 
well-documented interaction was observed between 
BKCa and IKCa channels co-localised in membranes 
rich in cholesterol (Romanenko et al., 2009). These 
two channels work in tandem, where the IKCa chan-
nel plays a role as a modulator for the BKCa chan-
nel because of its higher Ca2+ sensitivity. Membrane 
depletion of cholesterol disturbed the interactions 
between the BKCa and IKCa channels, which was 
restored by disruption of the actin cytoskeleton. In 
fact, an actin binding domain (ABD) were identi-
fied in BKCa channels, and an interaction between 
BKCa and actin is necessary for trafficking of BKCa 
channels to the plasma membrane. This interaction 
is different from that with F-actin that is responsi-
ble for stretch-sensitive gating (Zou et al., 2008; Ro-
manenko et al., 2009). LDL, and especially the oxi-
dised form oxo-LDL, can change not only the glyco-
calyx, but can also modulate BKCa channel activity. 
It is possible that oxo-LDL can remove cholesterol 
from the plasma membrane and thus modulate 
BKCa channels. In the rat brain, BKCa channels were 
co-purified with voltage-gated calcium channels of 
the L-type, P/Q-type, and N-type as macromolecu-
lar complexes. Complex formation in neurons with 
different types of voltage-gated calcium channels 
allows for rapid responses by mediating membrane 
hyperpolarisation that controls the neuronal release 
of hormones and neurotransmitters and firing pat-
terns in the central nervous system (Berkefeld et al., 
2006). In EA.hy 926 endothelial cells, the existence 
of BKCa channel complexes with subplasmalemmal 
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endoplasmic reticulum (the concept of subplasma-
lemmal control units (SCCU)) has been detected. 
These structures are responsible for local activation 
of BKCa channels through the release of Ca2+ into 
a limited space, leading to an increase in the local 
concentration of calcium ions (Frieden & Graier, 
2000; Frieden et al., 2002). In many cell types, BKCa 
channels are co-expressed with canonical transient 
receptor potential channels (TRPCs). In podocytes 
and human embryonic kidney (HEK293T) cells, 
TRPC6 and TRPC3 channels bind to BKCa chan-
nels, and this microorganisation can serve as an 
increased source of Ca2+ for the activation of BKCa 
channels. Additionally, TRPC6 channels can regu-
late the surface expression of a subset of podocyte 
BKCa channels (Larsen et al., 2007; Kim et al., 2009). 
Experiments employing a yeast two-hybrid screen 
to identify proteins that interact with BKCa channels 
have detected an essential adhesion and scaffolding 
molecule called nephrin. From the presented data, 
it was suggested that nephrin plays a role in organ-
ising the surface expression of ion channel proteins 
in podocytes, and may be involved in outside-in 
signalling to adapt stimuli from neighbouring cells 
(Kim et al., 2008). In addition to β-subunits, Mink 
and the Mink-Related peptides 3, which play a role 
in the human heart, can directly modulate channels 
(Levy et al., 2008). Nordilysin convertase, a Zn2+-
dependent metalloprotease, interacts in human 
myometrium with a specific BKCa channel splice 
variant with a 44 amino-acid insertion (mK44), and 
is part of the molecular mechanism that regulates 
the excitability of smooth muscle cells (Korovkina 
et al., 2009). Modulation of BKCa channel activity 
and direct binding have been shown for receptor 
of activated C kinase 1 (RACK1). RACK1 was dis-
covered as a PKC target, and recent studies sug-
gest that this protein acts as a scaffolding protein 
(Isacson et al., 2007). In addition to proteins, me-
tabolites of arachidonic acid and other lipids can 
act as endothelium-derived hyperpolarising factors, 
which makes the regulatory picture for BKCa chan-
nels very complex (Denson et al., 2006; Campbell & 
Falck, 2007; Medhora et al., 2008; Vaithianathan et 
al., 2008; Dhanasekaran et al., 2009). 

FINAL rEMArKS

The endothelium along the vasculature dis-
plays different patterns of adhesion molecule ex-
pression and different patterns of leukocyte (macro-
phage) penetration. The three-dimensional organisa-
tions of the vessel and the lining ECs are also varied 
along the vasculature (Aird, 2007a; 2007b). There is 
a large variety of ECs along the vascular bed that 
leads to different expression patterns of different iso-

forms of BKCa channels. A number of BKCa channel 
isoforms in ECs are expressed only during diseased 
endothelial states. Considerable data exists support-
ing the contributions of the BKCa channel to the de-
velopment and growth of cancer, and researchers 
still lack highly specific modulators of this channel. 
The molecular heterogeneity of normal endothelium 
and tumour endothelium might represent an oppor-
tunity to identify specific and high-potency modu-
lators of specific isoforms of the channel (Kunzel-
mann, 2005; Aird, 2009). Thus, the endothelium may 
constitute an attractive target for potassium channel 
openers that act on BKCa channels in the plasma 
membrane, or even as a specific compound that 
can act on BKCa channels in the mitochondrial in-
ner membrane. Currently, a large number of potent 
BKCa channel modulators are available (see: Wu et 
al., 2006; Bentzen et al., 2007; Nardi & Olesen, 2008; 
and Table 2) and future experiments showing their 
influence on ECs function are needed. 
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