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Influence of oleic acid in different solvent media on BRL 3A cell 
growth and viability
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Oleic acid (OA) is widely used in pathology studies of 
hepatocellular lipid deposition. Identifying the effects 
of different solvents on OA-induced liver lipid deposi-
tion would be beneficial for studies on hepatocytes. We 
treated BRL 3A cells with OA dissolved in different sol-
vents. After 12 h incubation, cell viability was assessed 
using MTT assays. Reactive oxygen species (ROS), tri-
glyceride (TG) and   total cholesterol (TC) counts, and the 
expression level of glucose regulated protein (GRP78), 
sterol regulatory element binding protein (SREBP-1C) 
and fatty acid synthase (FAS) were analyzed. Water, 
PBS and DMSO were disadvantageous to the dissolu-
tion of OA and did not cause an OA-induced response 
in hepatocytes. In the alcohol+OA-treated cells, the se-
vere ER stress, oxidative stress and cellular fat deposition 
were significantly increased. BSA promoted cell growth 
and the cells treated with 1.2% BSA+OA showed a lower 
grade TG and endoplasmic reticulum stress compared 
with KOH+OA and alcohol+OA treatments. KOH had 
no significant influence on BRL 3A cells viability. When 
treated with OA dissolved in KOH, BRL 3A cells showed 
a typical hepatocyte damage. KOH was considered the 
suitable choice for an OA solvent for BRL 3A cells in he-
patic lipidosis research.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is one of 
the types of fatty liver which occurs when fat is depos-
ited in the liver due to the causes other than excessive 
alcohol use. In most of the cases of NAFLD a metabol-
ic syndrome is also present (Xu et al., 2016a). A high-fat 
diet is the major pathogenesis factor as the most dietary 
fat sources contain abundant free fatty acids (FFAs). 
Liver and adipose tissue are the major organs of lipid 
metabolism and take part in modulating lipid oxidative 
capacity and energy demands (Xu et al., 2015). A surplus 
of FFAs in non-adipose cells, especially hepatocytes, may 
activate deleterious pathways leading to a cell dysfunc-
tion (Xu et al., 2016b). Furthermore, high levels of FFAs 
could contribute to mitochondrial dysfunction on the 

level of production of reactive oxygen species and acti-
vation of endoplasmic reticulum stress-associated mecha-
nisms (Perla et al., 2017). Oleic acid (OA) is a unique un-
saturated fatty acid which plays a key role in cellular ac-
tivity, metabolism, and nuclear events (Imai et al., 2003). 
It is synthesized de novo from palmitic acid or dietary pal-
mitic acid by palmitoyl-CoA elongation, or from stearic 
acid by stearoyl-CoA desaturation (Cinti et al., 1992). OA 
is widely used in pathological studies of hepatic lipido-
sis. In in vitro studies, the various solvents for dissolving 
OA are used (Cairns et al., 2017, Li et al., 2015, Weng et 
al., 2017), but the effect of these solvents on hepatocytes 
are unclear, thus, identifying the effects of OA in differ-
ent solvents on hepatocytes would be beneficial. In this 
study, OA was dissolved in distilled water (H2O), potas-
sium hydroxide (KOH), alcohol, phosphate-buffered sa-
line (PBS), bovine serum albumin (BSA), and dimethyl 
sulfoxide (DMSO) to evaluate the effect of different sol-
vents on OA-induced hepatic lipidosis, viability, oxida-
tive stress and endoplasmic reticulum stress.

MATERIALS AND METHODS

Cell cultures and treatment. The BRL3A rat liver 
cell line was purchased from Stem Cell Bank, Chinese 
Academy of Sciences (Shanghai, China) and cultured in 
DMEM (GIBCO, Life Technologies, USA) containing 
10% FBS (GIBCO, Life Technologies) with 1% Penicil-
lin-Streptomycin Solution (Solarbio Life Sciences, Beijing, 
China) in a humidified incubator at 37ºC with 5% CO2. 
Stock solutions of 158.5 µl OA were prepared in 10 ml 
of 0.1 mM KOH (Liu et al., 2014, Wang et al., 2015), 0.1 
mM PBS, alcohol (absolute ethyl ethanol; Lagrutta et al., 
2017, Chen et al., 2014, Liao et al., 2014), BSA (0.4%, 
0.8%, 1.2%) (Moravcova et al., 2015, Seo et al., 2014) and 
DMSO (0.1%, 0.4%, 0.8%) (Rogue et al., 2014, Zhang 
et al., 2004), respectively, and diluted in DMEM cul-
ture medium to a final concentration of OA at 1.2 mM. 
About 5×104 BRL 3A cells per well were seeded on the 
six-well culture plates and treated with different solvents 
and OA in different solvents. The cells were harvested 
after 12 hours.

Assessment of BRL 3A cell viability. BRL 3A cells 
were seeded in 96-well culture plates at about 3000 cells 
per well. To determine cell viability, cells were treated 
for 6, 12, 24 or 48 h. A final concentration of 5 mg/
ml methylthiazolyldiphenyl-tetrazolium bromide (MTT) 
was added for the last 4 h of the incubation time. Then 
the medium was removed carefully and added to 150 μl 
DMSO for 0.5 h and which was next used for cell viabil-
ity analysis using spectrophotometer at 492 nm. Four in-
dependent experiments were performed for each group.
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TG and TC concentration determination. After the 
incubation, the cells were lysed by brief sonication in 
2% Triton X-100 in an ice bath. The lysates were cen-
trifuged at 10 000×g at 4ºC for 10 min. The supernatants 
were collected for TG and TC analysis using commer-
cial enzymatic kits (Pulilai Biotechnology, Beijing, China). 
Four independent experiments were performed for each 
group.

Measurement of ROS production. After collecting 
cells according to ROS kit (Applygen, Beijing, China) 
instructions, cells were treated with 10 µM DCFH-DA 
in PBS for 40 min at 37ºC and photographed using a 
fluorescence microscope for ROS analysis.

Lipid synthesis activity and endoplasmic reticu-
lum stress determination. Expression of sterol regu-
latory element binding protein (SREBP-1C) and fatty 
acid synthase (FAS) were used for determination of 
lipid synthesis activity of the cells, and expression of 
glucose regulated protein (GRP78) was used for en-
doplasmic reticulum stress determination. Total RNA 
was extracted using TRIZOL reagent (Invitrogen, 

USA). RNA was reverse transcribed 
into cDNA using high-capacity cDNA 
reverse transcription kits (Invitrogen, 
Switzerland) according to the manufac-
turer’s instructions. mRNA levels for 
GRP78, SREBP-1C and FAS were ana-
lyzed using Applied Biosystems 7300 
real-time polymerase chain reaction 
(PCR) system and SYBR Premix Ex 
TaqI (TaKaRa, Dalian, China). Primers 
were designed using Primer Express 

software from Applied Biosystems and synthesized 
(Table 1). 

Statistical analysis. Data are provided as means 
± S.E.M. All data were tested for significance using 
unpaired Student t-test or ANOVA. Only results with 
p<0.05 were considered statistically significant.

RESULTS

Cell viability assays

For a 12 h stimulation, the surviving fractions 
of the 0.8% BSA+OA, 1.2% BSA and the 1.2% 
BSA+OA treated cells were significantly higher than 
in the control groups (p<0.05, Table 2). Also for a 
24 h stimulation, the survival rates of the 0.8% BSA 
group, the 0.8% BSA+OA group, the 1.2% BSA 
group and the 1.2% BSA+OA group, were signifi-
cantly higher than in the control groups (p<0.05). On 

Table 1. Primer sets used in PCR

Gene Forward (5’-3’) Reverse (5’-3’)

Tbp ACTCCTGCCACACCAGCC GGTCAAGTTTACAGCCAAGATTCA

Grp-78 AACCCAGATGAGGCTGTAGCATA CACAGTGTTCCTCGGAATCAGTT

Srebp-1c GACGACGGAGCCATGGATT GGGAAGTCACTGTCTTGGTTGTT

Fas CTATTGTGGACGGAGGTATC TGCTGTAGCCCAGAAGAG

Table 2. Cell viability assays in BRL 3A cells with OA in different solvents

6 h 12 h 24 h

OD Count Fraction Surviving OD Count Fraction Surviving OD Count Fraction Surviving

Control 0.673 ± 0.02 100% 0.697 ± 0.015 100% 0.655 ± 0.001 100%

H2O 0.653 ± 0.003 96.93% 0.663 ± 0.038 95.17% 0.626 ± 0.02 95.57%

H2O+OA 0.622 ± 0.021 98.33% 0.680 ± 0.016 97.56% 0.727 ± 0.014 101.00%

KOH 0.673 ± 0.04 99.90% 0.695 ± 0.007 99.71% 0.639 ± 0.03 97.61%

KOH+OA 0.696  ± 0.043 103.32% 0.712 ± 0.008 102.15% 0.709 ± 0.091 108.35%

Alcohol 0.607 ± 0.03 90.10% 0.644 ± 0.005 92.35% 0.541 ± 0.02* 82.59%

Alcohol+OA 0.556 ± 0.012 92.57% 0.671 ± 0.030 96.27% 0.530 ± 0.022* 89.96%

PBS 0.644 ± 0.007 95.59% 0.650 ± 0.007 93.26% 0.617 ± 0.005 94.20%

PBS+OA 0.697 ± 0.018 103.47% 0.641 ± 0.053 91.97% 0.607 ± 0.004 92.63%

0.4% BSA 0.611 ± 0.01 95.69% 0.728 ± 0.051 104.50% 0.668 ± 0.03 101.99%

0.4% BSA+OA 0.701 ± 0.023 104.06% 0.745 ± 0.063 106.89% 0.731 ± 0.013 111.61%

0.8% BSA 0.651 ± 0.03 96.68% 0.782 ± 0.017 112.15% 0.759 ± 0.01* 115.94%

0.8% BSA+OA 0.764 ± 0.018 113.51% 0.795 ± 0.026* 114.06.% 0.776 ± 0.023 * 118.58%

1.2% BSA 0.756 ± 0.02 112.33% 0.869 ± 0.063* 124.73% 0.997 ± 0.08* 152.29%

1.2% BSA+OA 0.690 ± 0.041 102.48% 0.829 ± 0.012* 118.94% 0.791 ± 0.018 * 120.88%

0.1% DMSO 0.632 ± 0.01 93.91% 0.674 ± 0.002 96.75% 0.625 ± 0.07 95.42%

0.1% DMSO+OA 0.657 ± 0.015 97.52% 0.632 ± 0.108 94.70% 0.527 ± 0.047 95.45%

0.4% DMSO 0.638 ± 0.02 94.75% 0.686 ± 0.043 98.37% 0.636 ± 0.01 97.20%

0.4% DMSO+OA 0.612 ± 0.077 90.89% 0.782 ± 0.039 90.67% 0.627 ± 0.032 95.82%

0.8% DMSO 0.595 ± 0.01 88.32% 0.604 ± 0.045 86.66% 0.517 ± 0.03* 78.93%

0.8% DMSO+OA 0.488 ± 0.018* 82.48% 0.604 ± 0.038 86.66% 0.517 ± 0.014* 78.92%

Fraction Surviving: OD of treated samples/OD of control samples*100. Statistical significance: *p<0.05 vs. control at the same time point; **p<0.01 
vs. control at the same time point.



Vol. 65       445Influence of oleic acid in different solvent media on BRL 3A cell growth and viability

the other hand, the surviving fractions in the alcohol 
group, alcohol+OA group, 0.8% DMSO group and 
the 0.8% DMSO+OA group were significantly low-
er than in the control groups (p<0.05) after 24 hour 
stimulation.

Effect of OA in different solvents on BRL-3A induction 
of TG and TC counts

TG counts for the alcohol, 1.2% BSA, KOH+OA, 
alcohol+OA, 0.8% BSA+OA and 1.2% BSA+OA 
groups were significantly higher than in the control 
group (p<0.05) (Fig. 1). TG count for the KOH+OA 
group, alcohol+OA group and 1.2% BSA+OA group 
were significantly higher than in the corresponding sol-
vents group. No significant difference was seen in TC 
counts among different solvent groups and normal con-
trol groups (Fig. 1).

Intracellular ROS

As showed in Fig. 2, the observations were fur-
ther corroborated by an increased ROS production 

in the alcohol and DMSO groups. ROS production in 
the KOH+OA and alcohol+OA groups was signifi-
cantly increased compared to the corresponding solvent 
groups. ROS production in the PBS+OA, BSA+OA and 
DMSO+OA groups was increased compared to the cor-
responding solvent groups. No significant difference in 
ROS production was observed between H2O+OA and 
H2O groups. 

Effect of OA in different solvents on GRP78, SREBP-1C 
and FAS mRNA in BRL 3A cells

GRP78 mRNA levels were significantly higher in the 
alcohol, KOH+OA, alcohol+OA and 1.2 % BSA+OA 
groups compared to the control groups (p<0.05, Fig. 3). 
GRP78 mRNA was significantly higher in the KOH+OA 
and alcohol+OA groups compared to corresponding sol-
vent groups (p<0.05). Other groups had higher GRP78 
expression than the control groups, but the differences 
were not significant.

SREBP-1C mRNA levels were significantly lower in 
the alcohol, KOH+OA, alcohol+OA, 1.2% BSA+OA, 
0.8% BSA+OA and 0.8% DMSO+OA groups com-
pared to the control group (p<0.05). SREBP-1C mRNA 
in the KOH+OA, 0.8% DMSO and 0.8% BSA groups 
was significantly lower than in the corresponding solvent 
groups (p<0.05). FAS mRNA levels were significantly 
lower in the H2O+OA, KOH+OA, alcohol+OA, 0.4% 
BSA, 0.8% DMSO and 0.8% DMSO+OA groups com-
pared to the control group (p<0.05). FAS mRNA levels 
in the KOH+OA groups were significantly lower than in 
the corresponding solvent groups (p<0.05). 

DISCUSSION

NAFLD becomes increasingly prevalent due to the 
worldwide obesity epidemic and currently affects about 
one billion people worldwide (Webster, 2017). Steatosis 
is the earliest and most common stage of NAFLD and 
is often referred to as the “first hit”. During this stage, 
FFAs accumulate in the cells, which is followed by the 
production of ROS and lipid peroxidation. It has been 
proposed that the lipotoxicity of FFAs increases the 
liver’s vulnerability to a “second hit” involving environ-
mental and/or genetic factors, which ultimately can lead 

Figure 1. TG and TC counts in BRL 3A cells treated with OA in 
different solvents or solvents only
TG and TC counts in BRL 3A cell which treated with solvent or OA 
in different solvents for 12 h. (a) BRL 3Acells were seeded in six-
well culture plates and treated with OA in different solvents or 
the solvents only for 12 h. The supernatants were collected for TG 
analysis using commercial enzymatic kits and a microplate mul-
tifunction reader. (b) BRL 3Acells were seeded in six-well culture 
plates and treated with with OA in different solvents or the sol-
vents only for 12 h. The supernatants were collected for TC analy-
sis using commercial enzymatic kits and a microplate multifunc-
tion reader. *indicates a significant difference (p<0.05) between 
solvent and control groups; † indicates a significant difference 
(p<0.05) between solvent+OA and corresponding solvent group; 
neither *, nor †, indicates no significant difference (p>0.05).

Figure 2. ROS analysis using a fluorescence microscope. 
The intensity of fluorescence corresponds to the amount of ROS. 
The stronger the fluorescence intensity in the picture, the more 
ROS in the BRL 3A cells. The weaker the fluorescence intensity in 
the picture, the less ROS in the BRL 3A cells. Figures a, b, c, d, 
e, f, g, h, i, j, k, l and m correspond to control H2O, H2O+OA, 
KOH, KOH+OA, Alcohol, Alcohol+OA, PBS, PBS+OA, BSA, BSA+OA, 
DMSO and DMSO+OA groups, respectively.
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to end-stage liver disease (Periasamy et al., 2014). Grow-
ing evidence suggests that endoplasmic reticulum (ER) 
stress may link saturated fatty acids to NAFLD (Mota 
et al., 2016). ER stress causes the activation of the un-
folded protein response (UPR) and the sterol regula-
tory element-binding protein (SREBP) pathway (Zhao 
& Ackerman 2006). Once activated, the UPR increases 
the expression of intraluminal ER chaperones, espe-
cially GRP78, in order to cope with the accumulation 
of unfolded or misfolded proteins. Hence GRP78 is a 
marker of endoplasmic reticulum stress (Moslehi et al., 
2017). In contrast, SREBP-1 acts as a transcription fac-
tor that regulates the genes that control the synthesis of 
fatty acids and the cellular uptake of lipoproteins (Zhang 
et al., 2014). SREBP-1c regulates hepatic lipogenic gene 
transcription and insulin-induced lipogenesis, and its tar-
get genes include FAS, acetyl coenzyme A carboxylase 
(ACC), and low-density lipoprotein receptor (Liao et al., 
2010). SREBP-1c is involved in almost all hepatic fatty 
acid and TG synthesis, gene transcription and TG syn-
thesis, gene transcription and transformation. FAS is a 

fatty acid synthase. Both SREBP-1C and FAS are regula-
tors of de novo fat synthesis (Zhou et al., 2017).

In previous work (Muller et al., 2010) have demon-
strated that non-esterified fatty acid (NEFA) caused NA-
FLD-like changes within hepatocytes, including lipid ac-
cumulation, oxidative stress and cell death (Muller et al., 
2012). High concentrations of NEFAs can induce oxida-
tive stress in hepatocytes by increasing the levels of ROS 
(Shi et al., 2015; Song et al., 2016; Du et al., 2017). To 
study the pathogenesis mechanism of NAFLD in vitro, 
fatty acids were used to induce hepatic lipid deposition. 
But the effects of the use of the different solvents for 
fatty acids remained unclear. Alcohol has been used in 
many studies (Lagrutta et al., 2017; Chen et al., 2014; Liao 
et al., 2014) as a solvent of oleic acid. Some experiments 
have proved that low concentration of DMSO (Rogue 
et al., 2014; Zhang et al., 2004) exerted little damage to 
the cells, so we chose 0.8% 0.4% 0.1% concentration of 
DMSO for our experimentation. KOH was chosen as 
the solvent for oleic acid because many NEFA models 
of non-alcoholic fatty liver were dissolved in KOH (Liu 
et al., 2014; Wang et al., 2015). For an overall evaluation 
of the influence of oleic acid in different solvent media 
on the cells, PBS and H2O were also used as solvents in 
this research. In the present study, BRL 3A cells were 
treated with OA in different solvents to explore the in-
fluence of these solvents on hepatic lipid deposition. We 
screened the mild solvents of oleic acid to see the ef-
fects of different solvents on cell viability, toxicity and 
the degree of oxidative stress and hepatocyte lipid depo-
sition. It was found that the OA dissolved in H2O and 
PBS had no significant effect on hepatocytes’ response, 
which did not differ from the control group,. This was 
probably because H2O and PBS are disadvantageous to 
the dissolution of OA. Alcohol is commonly used in the 
study of alcoholic fatty liver disease (Zhu et al., 2014; 
Zhang et al., 2014). OA dissolves in high concentration 
of alcohol, but high alcohol concentration is also tox-
ic to the cells, resulting in oxidative and endoplasmic 
reticulum stress (Caires et al., 2012). In this study, cells 
treated with alcohol+OA had significantly increased and 
severe ER stress, oxidative stress and hepatic fat depo-
sition, compared to the other groups. However, as the 
alcohol also leads to liver injury, it was considered not 
appropriate as a solvent to the study of fatty acid in fat-
ty liver, but remains suitable for the research on liver 
cell degeneration. DMSO is a universal solvent routinely 
used in experimental and biological disciplines. It is of-
ten used to solubilize drug molecules that are otherwise 
poorly soluble at concentrations of a 10% (v/v) range 
(Galvao et al., 2014). In this study we observed that al-
though when the concentration of DMSO is low, it has 
little effect on the cell, it is cytotoxic at higher DMSO 
concentration, causing oxidative stress and endoplasmic 
reticulum stress. The survival rates of the 1.2% BSA 
group and the 1.2% BSA+OA group were significant-
ly higher than in the control groups. That was probably 
because BSA can promote cell growth as a nutrient. The 
cells treated with BSA showed a lower grade TG and 
endoplasmic reticulum stress compared with KOH+OA 
and Alcohol+OA groups. In addition, 1.2% BSA+OA 
treated cells showed a significantly increased fat depo-
sition compared to the control and BSA groups. KOH 
was usually used as the solvent for fatty acids (Song et 
al., 2016). In this study, KOH group had no significant 
influence on cell viability, lipid deposition and oxidative 
stress as compared the control group, while KOH+OA 
group exhibited a typical hepatocyte damage. In summa-

Figure 3. GRP78, SREBP-1C and FAS mRNA counts in BRL 3A 
cells 
Figures a, b and c correspond to GRP78, SREBP-1C and FAS mRNA 
counts, respectively. *indicates a significant difference (p<0.05) 
between solvent and control groups; † indicates a significant dif-
ference (p<0.05) between solvent+OA and corresponding solvent 
groups; neither *nor †, indicates no significant difference (p>0.05).
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ry, we consider KOH to be the most suitable choice for 
an OA solvent to be used for BRL 3A cells.
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