

Regular paper

## A search for the *in trans* role of GraL, an *Escherichia coli* small RNA\*

Maciej Dylewski, Monika Ćwiklińska# and Katarzyna Potrykus

Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdańsk, Poland

Small RNA are very important post-transcriptional requlators in both, bacteria and eukaryotes. One of such sRNA is GraL, encoded in the greA leader region and conserved among enteric bacteria. Here, we conducted a bioinformatics search for GraL's targets in trans and validated our findings in vivo by constructing fusions of probable targets with *lacZ* and measuring their activity when GraL was overexpressed. Only one target's activity (nudE) decreased under those conditions and was thus selected for further analysis. In the absence of GraL and *greA*, the *nudE::lacZ* fusion's β-galactosidase activity was increased. However, a similar effect was also visible in the strain deleted only for greA. Furthermore, overproduction of GreA alone increased the nudE::lacZ fusion's activity as well. This suggests existence of complex regulatory loop-like interactions between GreA, GraL and nudE mRNA. To further dissect this relationship, we performed in vitro EMSA experiments employing GraL and nudE mRNA. However, stable GraL-nudE complexes were not detected, even though the detectable amount of unbound GraL decreased as increasing amounts of nudE mRNA were added. Interestingly, GraL is being bound by Hfq, but nudE easily displaces it. We also conducted a search for genes that are synthetic lethal when deleted along with GraL. This revealed 40 genes that are rendered essential by GraL deletion, however, they are involved in many different cellular processes and no clear correlation was found. The obtained data suggest that GraL's mechanism of action is non-canonical, unique and requires further research.

Key words: GraL, GreA, sRNA, sRNA targets, synthetic lethal genes Received: 01 February, 2018; revised: 26 February, 2018; accepted: 03 March, 2018; available on-line: 12 March, 2018

e-mail: katarzyna.potrykus@biol.ug.edu.pl

\*Present address: Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

<sup>\*</sup>A preliminary report on this subject has been presented at the Molecular Genetics of Bacteria and Phages Meeting, Madison, Wisconsin, USA (2016)

Abbreviations: EMSA, electrophoretic mobility shift assay; IPTG, isopropyl  $\beta$ -D-1-thiogalactopyranoside; ppGpp, guanosine-3',5'-bis-diphosphate; ppGpp<sup>0</sup> strain, strain devoid of ppGpp; sRNA, small RNA; X-gal, 5-bromo-4-chloro-3-indolyl  $\beta$ -D-galactopyranoside

| Table \$ | S1. | Strains | used | in | this | study. |  |
|----------|-----|---------|------|----|------|--------|--|
|----------|-----|---------|------|----|------|--------|--|

| Strain   | Genotype                                                         | Source / Reference   |
|----------|------------------------------------------------------------------|----------------------|
| MG1655   | F- λ- ilvG- rfb-50 rph-1                                         | Guyer et al., 1981   |
| CF15615  | MG1655 $\Delta lacZ\Delta relA\Delta spoT$ (ppGpp <sup>0</sup> ) | Vinella et al., 2012 |
| CF15617  | MG1655 Δ <i>lacZ</i>                                             | Vinella et al., 2012 |
| ECMZ1501 | CF15615 <i>∆greA</i> ::cat                                       | This work            |
| ECMZ1502 | CF15615 <i>ΔgreA</i> ::cat/ pRC7                                 | This work            |
| ECMZ1503 | CF15615 <i>AgreA</i> ::cat / pRC-GraL                            | This work            |
| ECMZ1504 | CF15615 ΔGraL ΔgreA::cat                                         | This work            |
| ECMZ1505 | CF15615 ΔGraL ΔgreA::cat/ pRC7                                   | This work            |
| ECMZ1506 | CF15615 ΔGraL ΔgreA::cat/ pRC-GraL                               | This work            |
| ECMZ1507 | CF15615 <i>AgreA</i> ::cat /pRC7 pHM1873                         | This work            |
| ECMZ1508 | CF15615 <i>AgreA</i> ::cat /pRC-GraL pHM1873                     | This work            |
| ECMZ1509 | CF15615ΔGraL ΔgreA::cat/ pRC7 pHM1873                            | This work            |
| ECMZ1510 | CF15615Δ <i>GraL ΔgreA</i> ::cat/ pRC-GraL pHM1873               | This work            |
| ECMZ1601 | CF15617 ΔgreA::cat                                               | This work            |
| ECMZ1602 | CF15617 <i>ΔgreA</i> ::cat / pRC7                                | This work            |
| ECMZ1603 | CF15617 ΔgreA::cat / pGraL                                       | This work            |
| ECMZ1604 | CF15617 ΔGraL ΔgreA::cat                                         | This work            |
| ECMZ1605 | CF15617ΔGraL ΔgreA::cat / pRC7                                   | This work            |
| ECMZ1606 | CF15617ΔGraL ΔgreA::cat / pRC-GraL                               | This work            |
| ECMZ1607 | CF15617 <i>ДgreA</i> ::cat/ pRC7 pHM1873                         | This work            |
| ECMZ1608 | CF15617 <i>∆greA</i> ::cat / pRC-GraL pHM1873                    | This work            |
| ECMZ1609 | CF15617ΔGraL ΔgreA::cat / pRC7 pHM1873                           | This work            |
| ECMZ1610 | CF15617ΔGraL ΔgreA::cat / pRC-GraL pHM1873                       | This work            |
| MD98     | CF15617 / pGraL pRS414-PrpoS::lacZ                               | This work            |
| MD99     | CF15617 / pScr pRS414-PrpoS::lacZ                                | This work            |
| MD102    | CF15617 / pGraL pRS414- <i>PgadB::lacZ</i>                       | This work            |
| MD103    | CF15617 / pScr_pRS414- <i>PgadB::lacZ</i>                        | This work            |
| MD107    | CF15617 / pHM1883 pRS414-PrpoS::lacZ                             | This work            |
| MD108    | CF15617 / pHM1883 pRS414-PgadB::lacZ                             | This work            |
| MD112    | CF15617 / pGraL pRS414-PpanD::lacZ                               | This work            |
| MD113    | CF15617 / pScr pRS414-PpanD::lacZ                                | This work            |
| MD114    | CF15617 / pHM1883 pRS414-PpanD::lacZ                             | This work            |
| MD115    | CF15617 / pGraL pRS414-PyhdV::lacZ                               | This work            |
| MD116    | CF15617 / pScr pRS414-PyhdV::lacZ                                | This work            |
| MD117    | CF15617 / pHM1883 pRS414-PyhdV::lacZ                             | This work            |
| MD118    | CF15617 / pGraL pRS414- <i>PydcC::lacZ</i>                       | This work            |
| MD119    | CF15617 / pScr pRS414-PydcC::lacZ                                | This work            |
| MD120    | CF15617 / pHM1883 pRS414- <i>PydcC::lacZ</i>                     | This work            |
| MD121    | CF15617 / pGraL pRS414-PnudE::lacZ                               | This work            |
| MD122    | CF15617 / pScr pRS414-PnudE::lacZ                                | This work            |
| MD123    | CF15617 / pHM1883 pRS414-PnudE::lacZ                             | This work            |
| MD124    | CF15617 / pGraL pRS414- <i>PflgA::lacZ</i>                       | This work            |

| MD125 | CF15617 / pScr_pRS414- <i>PflgA::lacZ</i>    | This work |
|-------|----------------------------------------------|-----------|
| MD126 | CF15617 / pHM1883 pRS414- <i>PflgA::lacZ</i> | This work |
| MD127 | CF15617 / pGraL pRS414- <i>PykgR::lacZ</i>   | This work |
| MD128 | CF15617 / pScr_pRS414- <i>PykgR::lacZ</i>    | This work |
| MD129 | CF15617 / pHM1883 pRS414- <i>PykgR::lacZ</i> | This work |
| MD130 | CF15617 / pGraL pRS414- <i>PyjfP::lacZ</i>   | This work |
| MD131 | CF15617 / pScr pRS414- <i>PyjfP::lacZ</i>    | This work |
| MD132 | CF15617 / pHM1883 pRS414- <i>PyjfP::lacZ</i> | This work |
| MD133 | CF15617 / pGraL pRS414-PxanP::lacZ           | This work |
| MD134 | CF15617 / pScr pRS414-PxanP::lacZ            | This work |
| MD135 | CF15617 / pHM1883 pRS414-PxanP::lacZ         | This work |
| MD136 | CF15617 / pGraL pRS414-PrsxC::lacZ           | This work |
| MD137 | CF15617 / pScr pRS414- <i>PrsxC::lacZ</i>    | This work |
| MD138 | CF15617 / pHM1883 pRS414-PrsxC::lacZ         | This work |
| MD139 | CF15617 / pGraL pRS414-PrzoQ::lacZ           | This work |
| MD140 | CF15617 / pScrpRS414-PrzoQ::lacZ             | This work |
| MD141 | CF15617 / pHM1883 pRS414- <i>PrzoQ::lacZ</i> | This work |
| MD142 | CF15617 / pGraL pRS414- <i>PyjiX::lacZ</i>   | This work |
| MD143 | CF15617 / pScr pRS414- <i>PyjiX::lacZ</i>    | This work |
| MD144 | CF15617 / pHM1883 pRS414- <i>PyjiX::lacZ</i> | This work |
| MD150 | CF15615 / pGraL pRS414 PpanD::lacZ           | This work |
| MD151 | CF15615 / pHM1883 pRS414 PpanD::lacZ         | This work |
| MD152 | CF15615 / pGraL pRS414-PydcC::lacZ           | This work |
| MD153 | CF15615 / pHM1883 pRS414- <i>PydcC::lacZ</i> | This work |
| MD154 | CF15615 / pGraL pRS414-PnudE::lacZ           | This work |
| MD155 | CF15615 / pHM1883 pRS414-PnudE::lacZ         | This work |
| MD156 | CF15615 / pGraL pRS414- <i>PflgA::lacZ</i>   | This work |
| MD157 | CF15615 / pHM1883 pRS414- <i>PflgA::lacZ</i> | This work |
| MD158 | CF15615 / pGraL pRS414-PykgR::lacZ           | This work |
| MD159 | CF15615 / pHM1883 pRS414-PflgA::lacZ         | This work |
| MD160 | CF15615 / pGraL pRS414-PxanP::lacZ           | This work |
| MD161 | CF15615 / pHM1883 pRS414- <i>PxanP::lacZ</i> | This work |
| MD162 | CF15615 / pGraL pRS414- <i>PgadB::lacZ</i>   | This work |
| MD163 | CF15615 / pHM1883 pRS414- <i>PgadB::lacZ</i> | This work |
| MD164 | CF15615 / pGraL pRS414- <i>PyjfP::lacZ</i>   | This work |
| MD165 | CF15615 / pHM1883 pRS414- <i>PyjfP::lacZ</i> | This work |
| MD169 | CF15615 / pGraL pRS414-PrpoS::lacZ           | This work |
| MD170 | CF15615 / pHM1883 pRS414-PrpoS::lacZ         | This work |
| MD171 | CF15615 / pGraL pRS414-PrsxC::lacZ           | This work |
| MD172 | CF15615 / pHM1883 pRS414-PrsxC::lacZ         | This work |
| MD173 | CF15615 / pGraL pRS414- <i>PrzoQ::lacZ</i>   | This work |
| MD174 | CF15615 / pHM1883 pRS414-PrzoQ::lacZ         | This work |
| MD175 | CF15615 / pGraL pRS414- <i>PyjiX::lacZ</i>   | This work |
| MD176 | CF15615 / pHM1883 pRS414-PyjiX::lacZ         | This work |
| MD177 | CF15615 / pGraL pRS414-PyhdV::lacZ           | This work |
| MD178 | CF15615 / pHM1883 pRS414-PyhdV::lacZ         | This work |

| MD186 | CF15615 / pScr pRS414-PrpoS::lacZ                          | This work |
|-------|------------------------------------------------------------|-----------|
| MD189 | CF15615 / pScr pRS414-PnudE::lacZ                          | This work |
| MD192 | CF15615 / pScr_pRS414- <i>PgadB::lacZ</i>                  | This work |
| MD223 | CF15617 (λ PnudE::lacZ)/ pGraL                             | This work |
| MD224 | CF15617 (λ PnudE::lacZ)/ pScr                              | This work |
| MD226 | CF15617 (λ PnudE::lacZ)/ pHM 1883                          | This work |
| MD241 | CF15615 (λ PnudE::lacZ)/ pGraL                             | This work |
| MD242 | CF15615 (λ PnudE::lacZ)/ pScr                              | This work |
| MD244 | CF15615 (λ PnudE::lacZ)/ pHM 1883                          | This work |
| MD245 | CF15615 ΔGraL ΔgreA::cat / pRS414- <i>PnudE::lacZ</i>      | This work |
| MD246 | CF15615 ΔgreA::cat / pRS414- <i>PnudE::lacZ</i>            | This work |
| MD247 | CF15615 / pRS414-PnudE::lacZ                               | This work |
| MD248 | CF15615 (λ PnudE::lacZ)                                    | This work |
| MD251 | CF15615 ΔGraL ΔgreA::cat (λPnudE::lacZ)                    | This work |
| MD253 | CF15615 ΔgreA::cat (λPnudE::lacZ)                          | This work |
| MD254 | CF15617 ΔGraL ΔgreA::cat / pRS414- <i>PnudE::lacZ</i>      | This work |
| MD255 | CF15617 ∆greA::cat / pRS414- <i>PnudE::lacZ</i>            | This work |
| MD256 | CF15617 / pRS414-PnudE::lacZ                               | This work |
| MD278 | CF15615 (λ <i>PnudE::lacZ</i> ) / pGraL                    | This work |
| MD279 | CF15615 (λ <i>PnudE::lacZ</i> ) / pHM1873                  | This work |
| MD280 | CF15615 ΔGraLΔgreA::cat (λ <i>PnudE::lacZ</i> ) / pGraL    | This work |
| MD281 | CF15615 ΔGraL ΔgreA::cat (λ <i>PnudE::lacZ</i> ) / pHM1873 | This work |
| MD282 | CF15615 ΔgreA::cat ( <i>λPnudE::lacZ</i> ) / pGraL         | This work |
| MD283 | CF15615 ΔgreA::cat (λ <i>PnudE::lacZ</i> ) / pHM1873       | This work |

## References:

Guyer MS, Reed RR, Steitz JA, and Low KB. (1981) Identification of a sex-factor-affinity site in E. coli as gamma delta. Cold Spring Harb. Symp. Quant. Biol. 45 Pt 1 135-40. https://10.1101/SQB.1981.045.01.022

Vinella D, Potrykus K, Murphy H, and Cashel M. (2012) Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in *Escherichia coli*. *J Bacteriol*. 194:261-73. https://doi.org/10.1128/JB.06238-11

## Table S2. Oligonucleotides used in this study

| Name     | Sequence (5' to 3')                                                                | Use                                                                                                                                                                                                                                                                                                                                                           |
|----------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KPr67    | ACCTGGAATCGAGCCGTCATACTACGGCGCAACGCCCT<br>ATAAAGTAAACG <u>TGTGACGGAAGATCACTTCG</u> | Deletion of <i>greA</i> and GraL from the chromosome<br>by lambda Red recombination; in bold –<br>sequence complementary to chromosomal region<br>just upstream of GraL; underlined – sequence<br>complementary to <i>cat</i> (chloramphenicol<br>resistance gene); to be used together with KPr68                                                            |
| KPr68    | CCTTTTTCCTTTCTTTACAATACATCAACATCTTGAGTATT<br>GGGTAATTC <u>ACCAGCAATAGACATAAGCG</u> | Deletion of <i>greA</i> alone and deletion of <i>greA</i> and<br>GraL from the chromosome by lambda Red<br>recombination; in bold - sequence<br>complementary to chromosomal region just<br>downstream of <i>greA</i> ; underlined – sequence<br>complementary to <i>cat</i> (chloramphenicol<br>resistance gene); to be used together with KPr67<br>or KPr69 |
| KPr69    | CGGGGTGGGTGAAGACTTGCCCTATCAGGAATATTCAAG<br>AGGTATAACAA <u>TGTGACGGAAGATCACTTCG</u> | Deletion of <i>greA</i> alone from the chromosome by<br>lambda Red recombination; in bold – sequence<br>complementary to chromosomal region just<br>upstream of <i>greA</i> ; underlined – sequence<br>complementary to <i>cat</i> (chloramphenicol<br>resistance gene); to be used together with KPr68                                                       |
| KPr81    | GCAATGTAACATCAGAGATTTTGAG                                                          | Primer used for sequencing of PCR fragments<br>obtained with KPr83                                                                                                                                                                                                                                                                                            |
| KPr83    | ATGGCTCATAACACCCCTTGTATTA                                                          | Primer used for RATE-PCR to amplify DNA<br>fragments encompassing kan transposon<br>insertion sites                                                                                                                                                                                                                                                           |
| MDGLUP   | ATGAATTCATCAAAATGTGAATTGTAGCTGACCTGGGACT<br>TGTACCCG                               | pGraL and pRC-GraL plasmid construction;<br>forward primer                                                                                                                                                                                                                                                                                                    |
| MDGLDWN  | ATCAAGCTTAAGCAAAAAAATACCGACCCGGGTACAAGTC<br>CCAGGTCAG                              | pGraL and pRC-GraL plasmid construction;<br>reverse primer                                                                                                                                                                                                                                                                                                    |
| MDGLSUP  | ATGAATTCATAAGATATATGTACTAGTGGCTGGGCCCATG<br>TTCAGGGT                               | pScrplasmid construction; forward primer                                                                                                                                                                                                                                                                                                                      |
| MDGLSDWN | ATCAAGCTTAAGCAAAAAAATCGACTGGACCCTGAACATG<br>GGCCCAGCC                              | pScrplasmid construction; reverse primer                                                                                                                                                                                                                                                                                                                      |
| MDNDUP   | TGCGAATTCCATCTTACTTAGTCTGTCAGGCGT                                                  | nudE::lacZ fusion, forward primer                                                                                                                                                                                                                                                                                                                             |
| MDNDDOWN | TCGGATCC ATGGTGGGTTTTTGTAATGATTTGCT                                                | nudE::lacZ fusion, reverse primer                                                                                                                                                                                                                                                                                                                             |
| MDFAUP1  | GTCGAATTCCGTCCACGTTGCATGACTT                                                       | <i>flgA::lacZ</i> fusion, forward primer                                                                                                                                                                                                                                                                                                                      |
| MDFAUDOW | CTGGGATCCATCGCCACGCTACGTTTTATTATC                                                  | flgA::lacZ fusion, reverse primer                                                                                                                                                                                                                                                                                                                             |
| MDRCUP3  | TCCGAATTCCAGTTGCTGTTTACT TTGTTGGCA                                                 | rsxC::lacZ fusion, forward primer                                                                                                                                                                                                                                                                                                                             |
| MDRCDOWN | AGGGATCCGCAGAGAATAACTTAAGCATGGTGTTC                                                | <i>rsxC::lacZ</i> fusion, reverse primer                                                                                                                                                                                                                                                                                                                      |
| MDRSUP1  | GCGAATTCTGGACGAAGGCGGGATT                                                          | rpoS::lacZ fusion, forward primer                                                                                                                                                                                                                                                                                                                             |
| MDRSDWN4 | CGTGGATCCTTCATATCGTCATCTTGCGTGGTAT                                                 | <i>rpoS::lacZ</i> fusion, reverse primer                                                                                                                                                                                                                                                                                                                      |
| MDXPDOWN | CAGGATCC TTTTCTGACTCGAGGGTGGAAA                                                    | xanP::lacZ fusion, reverse primer                                                                                                                                                                                                                                                                                                                             |
| MDXPUP   | GAGAATTCAGCAGCAACGTCAGCG                                                           | xanP::lacZ fusion, forward primer                                                                                                                                                                                                                                                                                                                             |
| MDGBUP   | CCTGGAATTCTCAATATGACGATCCTGCAGCAT                                                  | gadB::lacZ fusion, forward primer                                                                                                                                                                                                                                                                                                                             |
| MDGBDOWN | GAGGATCCGATTCTGCGATAGTGGAAATAGACTTCG                                               | gadB::lacZ fusion, reverse primer                                                                                                                                                                                                                                                                                                                             |

| MDYPUP   | GCTGGAATTCTTCGCTTTGATTTCTGCTAATGCG       | <i>yjfP::lacZ</i> fusion, forward primer                |
|----------|------------------------------------------|---------------------------------------------------------|
| MDYPDOWN | CAGGATCCGCAAAATAGCTATACACCAGACTGGA       | <i>yjfP::lacZ</i> fusion, reverse primer                |
| MDYRUP   | GCGGAATTCAGGTCACCAACAACGATATCTTGTATAAC   | <i>ykgR::lacZ</i> fusion, forward primer                |
| MDYRDOWN | TCGGATCCCTGATTTGCTGTACTTTATTCTCTTTCATTGG | <i>ykgR::lacZ</i> fusion, reverse primer                |
| MDRQUP   | GCCGAATTCCTCTTGAAAAACTGTGTTCTGACTCTTG    | rzoQ::lacZ fusion, forward primer                       |
| MDRQDOWN | TAGGATCCATGCTTCGCTGCGTCAAG               | <i>rzoQ::lacZ</i> fusion, reverse primer                |
| MDPDUP   | GCCGAATTCTTTACCGAGCAGCGTTCA              | <i>panD::lacZ</i> fusion, forward primer                |
| MDPDDWN2 | CATGGATCCTTCACGCGGTGGAGTTTG              | <i>panD::lacZ</i> tusion, reverse primer                |
| MDYCUP   | AGCGAATTCCTGGAATAAAGAAGATGGCAC           | ydcC::lacZ fusion, forward primer                       |
| MDYCDOWN | CGAGGATCCGGGATAATAGAAATATGTCCCATC        | <i>ydcC::lacZ</i> fusion, reverse primer                |
| MDYVUP   | GCTGAATTCCGTTGCTGGCAATCTTCTT             | <i>yhdV::lacZ</i> fusion, forward primer                |
| MDYVDOWN | GAC GGATCC AATCTTTTCATGGTGTTACCTCAG      | <i>yhdV::lacZ</i> fusion, reverse primer                |
| MDYXUP   | ATCGAATTCCCGCAGATGGAAGGCTTC              | <i>yjiX::lacZ</i> fusion, forward primer                |
| MDYXDOWN | CTGGATCCTTGTCGTAGTCTGGAATGCCAAT          | <i>yjiX::lacZ</i> fusion, reverse primer                |
| MDPr15   | TTTAATACGACTCACTATAGGGCTTACTTAGTCTGTCAGG | nudE "long" forward primer, template generation         |
| MD1113   | CGTGG                                    | for MAXISCRIPT                                          |
| MDPr16   | TTTAATACGACTCACTATAGGGAACCCTCTGAAGGCGGAA | nudE "medium" forward primer, template                  |
| MDTTTO   | ТАТСА                                    | generation for MAXISCRIPT                               |
| MDPr17   | TTTAATACGACTCACTATAGGGCGTGTCCGATATCGCACA | nudE " short" forward primer, template generation       |
|          | ATAACC                                   | for MAXISCRIPT                                          |
|          |                                          | nudE reverse primer, template generation for            |
| MDT 113  |                                          | MAXISCRIPT                                              |
| MDPr20   | TAATACGACTCACTATAGGGGCGTTACCCAACTTAATCGC | control <i>lacZ</i> forward primer, template generation |
|          | СТТС                                     | for MAXISCRIPT                                          |
| MDPr21   | GGCATCAGAGCAGATTGTACTGAGAGTGCACCA        | control lacZ reverse primer, template generation        |
|          |                                          | for MAXISCRIPT                                          |
|          |                                          |                                                         |

**Table S3.**  $\beta$ -galactosidase activities (expressed as Miller units), calculated for data presented in Figure 1 A&B. These specific activities were calculated for curve regions where absolute activities increase linearly with OD<sub>600</sub>. At least 3 points from each curve where included in the calculations. S.D. is given in parenthesis.

| Plasmid/Fusion   | Multicopy fusion  | Single copy fusion |
|------------------|-------------------|--------------------|
| Vector control   | 850.29 (+/-58.72) | 19.32 (+/-3.59)    |
| pGraL            | 600.55 (+/-39.74) | 16.75 (+/-5.07)    |
| pGraL + 1mM IPTG | 585.42 (+/-40.03) | 16.76 (+/-2.43)    |
| pScr             | 764.33 (+/-64.52) | 18.07 (+/-3.03)    |
| pScr+1mM IPTG    | 794.59 (+/-76.29) | 18.24 (+/-3.84)    |

**Table S4.**  $\beta$ -galactosidase activities (expressed as Miller units), calculated for data presented in Figure 1 C&D. These specific activities were calculated for curve regions where absolute activities increase linearly with OD<sub>600</sub>. At least 3 points from each curve where included in the calculations. S.D. is given in parenthesis.

| Strain/Fusion                | Multicopyfusion    | Single copyfusion |
|------------------------------|--------------------|-------------------|
| ppGpp <sup>0</sup> (control) | 635.22 (+/-17.96)  | 34.15 (+/-2.18)   |
| ppGpp⁰ <i>∆greA</i>          | 1131.65 (+/-33.99) | 42.91 (+/-6.30)   |
| ppGpp⁰ <i>∆greA∆graL</i>     | 913.16 (+/-20.62)  | 42.31 (+/-3.12)   |

**Table S5.**  $\beta$ -galactosidase activities (expressed as Miller units), calculated for data presented in Figure 1 E&F. These specific activities were calculated for curve regions where absolute activities increase linearly with OD<sub>600</sub>. At least 3 points from each curve where included in the calculations. S.D. is given in parenthesis.

| Plasmid/Strain   | ppGpp <sup>0</sup> (control) | ppGpp⁰ <i>∆greA</i> | ppGpp⁰ <i>∆greA∆graL</i> |
|------------------|------------------------------|---------------------|--------------------------|
| pGraL            | 18.46 (+/-1.17)              | 28.20 (+/-0.90)     | 27.31 (+/-0.96)          |
| pGraL + 1mM IPTG | 19.29 (+/-0.56)              | 29.99 (+/-2.36)     | 29.26 (+/-2.38)          |
| pGreA            | 19.16 (+/-0.42)              | 19.23 (+/-1.32)     | 20.10 (+/-2.15)          |
| pGreA + 1mM IPTG | 26.42 (+/-3.23)              | 26.43 (+/-1.22)     | 26.74 (+/-1.65)          |



## Β.

AUCAAAAUGUGAAUUGUAGCUGACCUGGGACUUGUACCCGGGUCGGUAUUUUUUUGCUU





**Figure S1.** GraL location, sequence and predicted structure. (A) Location of GraL within the *greA* leader region. P1 and P2 promoter start sites are indicated relative to the first AUG codon of *greA*. Termination takes place within the -100 to -90 region of the leader sequence, indicated here with a T. (B) GraL sequence. P1 and P2 transcription start sites are indicated in purple and green, respectively. (C) GraL structure predicted with the Mfold software [M. Zuker (2003) Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res.* **31:** 3406-3415 ].

| ц.                          | <mark>dacB_</mark> b3182 D-alanyl-D-alanine carboxypeptidase<br>Probability = 1                                                                                                                                                                                                                          | <pre>6. nudE_b3397 ADP-ribose diphosphatase</pre>                                                                                                                                                                               |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6-                          | GraL- AUCAAAAUGUGAAUUGUAGCUGGGACUUGUACCCGGGUCGGUAUUUUUUGCUU59                                                                                                                                                                                                                                            | GraL 1 aucaa-AAUGUGAAUUGUAG 19<br>GraL 1             <br>Target( <mark>nudE</mark> _b3397) -53 aagccgUUACACUUAACGUa -72                                                                                                         |
|                             | <pre>panD_b0131 aspartate 1-decarboxylase Probability = 1 GraL 7 aUGUGAAUUGUAGCU9accugggacuuguacccgggucgg 46 GraL   .      .     .     .   Target(panD_b0131) 11 cACGCUUAGUAUUGAagauggaaagauggga-cagca -25</pre>                                                                                         | <pre>7. flgA_b1072 assembly protein for flagellar basal-<br/>body periplasmic P ring<br/>Probability = 0.997 1 aucaa-AAUGUGAAUUGUAg 19<br/>GraL 1                         Target(flgA_b1072) -17 aagaugUUGCACUUAACAUg -36</pre> |
| •<br>•                      | <pre>ydcc_b1460 conserved protein Probability = 0.999 GraL 3 cAAAAUGUGAAUUGUa 18 GraL 3 cAAAAUGUGAAUUGUa 18 Target(ydcc_b1460) -93 aUUUUACGCUUAACAa -108</pre>                                                                                                                                           | <pre>8. rsxC_b162 predicted 4Fe-4S ferredoxin-type</pre>                                                                                                                                                                        |
| <b>4</b> .                  | <pre>rpos_b2741 RNA polymerase, sigma S (sigma 38) factor Probability = 0.999 GraL 1 aUCAAAUGUGAau-uguagcuggacuugu-acccg-ggucgguauuuuuuugcu 58 1 aUCAAAUGUGAau-uguagcugggacuugu-acccg-ggucgguauuuuuuugcu 58 1 aUCAAAUGUCGcacaacuugaccaaggccacgguggguaccaggcggauaaaaaa-cgg -175 Target(rpos b2741) </pre> | <pre>9. xanP_b3654 predicted transporter Probability = 0.97 44 cGGUAUUUUUGCUU 59 GraL</pre>                                                                                                                                     |
| ى<br>•                      | <pre>yhdv_b3267 predicted outer membrane protein Probability = 0.998 GraL 6 aAUGUGAAUUGUAg 19</pre>                                                                                                                                                                                                      | <pre>10. gadB_b1493 glutamate decarboxylase B,</pre>                                                                                                                                                                            |
| <b>Figu</b><br>have<br>Prob | • S2. Full-length GraL mRNA targets predicted with the sTarPicker software. (Ying et al., 2 upstream untranslated regions within the region predicted to interact with GraL. For examp bility score is based on 1000 classifiers (for e.g. if a given interaction gives 700 positive cla                 | 011) Top 10 results are presented. All of the targets were confirmed to le, <i>rpoS</i> has a long 5'UTR of 567 nucleotides.<br>ssifier predictions, the score is 0.7; generally a score above 0.5 is                           |

considered as sRNA is interacting with mRNA). Numbers in mRNA refer to the nucleotide position relative to the first AUG codon. \* Please note that the region that was attributed the highest overall score and annotated as *dacB*, lies in the intergenic region between *greA* and *dacB*, and thus corresponds to GraL itself.

```
dacB_b3182
                  D-alanyl-D-alanine carboxypeptidase
1.
    Probability = 1
                    1 -AAUUGUAGCUGACCUGGGACUUGUACCCGGGUCGGUAUUUUuuugcuu
    P2-GraL
                                                                  48
                       Target(dacB_b3182) -109 cUUAACAUCGACUGGACCCUGAACAUGGGCCCAGCCAUAAAAaaacgaag -158
2.
    xanP b3654
                predicted transporter
    Probability = 0.998
                       33 cGGUAUUUUUUUGCUU
    P2-GraL
                                          48
                          Target(xanP_b3654) -121 aCCAUAAAAAGACGAAu -137
    yjfP_b4190
                predicted hydrolase
3.
    Probability = 0.984
    P2-GraL
                     33 cGGUAUUUUUUUGCu 47
                         Target(yjfP_b4190) 76 cCCAUAGAAAAACGg 62
4.
    yjiX b4353
                conserved protein
    Probability = 0.689
             33 cGGUAUUUUUUGCUU 48
    P2-GraL
                         |.||||||||||||
    Target(yjiX_b4353) 35 uCUAUAAAAAAACGGAc 19
    rzoQ_b4689 hypothetical protein
5.
    Probability = 0.587
    P2-GraL
                     34 ggUAUUUUUUUGCUU 48
                         .....
    Target(rzoQ_b4689) 90 guAUAAAAAAACGAAg 75
    ykgR_b4671
6.
                expressed protein
    Probability = 0.545
            33 cGGUAUUUUUUUGCUU 48
    P2-GraL
                        Target(ykgR_b4671) -1 aCCAUGAAGGAGCGAAa -17
```

**Figure S3.** P2 promoter originating GraL mRNA targets predicted with the sTarPicker software (Ying et al., 2011). Similarly to Figure S1, probability score is based on 1000 classifiers. Numbers in mRNA refer to the nucleotide position relative to the first AUG codon.

\* Please note that the region that was attributed the highest overall score and annotated as *dacB*, lies in the intergenic region between *greA* and *dacB*, and thus corresponds to GraL itself.



**Figure S4**. pRC7 and pRC-GraL plasmid maintenance in the ppGpp<sup>+</sup> strains. Bacteria were inoculated into 50ml LB and cultured without any antibiotic pressure. Every 30 min, a sample was withdrawn and cells were plated on LB plates with X-gal. The number of completely blue ("blue"), completely white ("white") or sectioned colonies ("sectioned") was being monitored. When present, GreA was overproduced from the pHM1873 (pGreA) plasimd. Relevant strain numbers are listed in Table S1. Experiments were done in duplicate. Error bars represent S.E.M.



**Figure S5**. pRC7 and pRC-GraL plasmid maintenance in the ppGpp<sup>0</sup> strains. Bacteria were inoculated into 50ml LB and cultured without any antibiotic pressure. Every 30 min, a sample was withdrawn and cells were plated on LB plates with X-gal. The number of completely blue ("blue"), completely white ("white") or sectioned colonies ("sectioned") was being monitored. When present, GreA was overproduced from the pHM1873 (pGreA) plasmid. Relevant strain numbers are listed in Table S1. Experiments were done in duplicate. Error bars represent S.E.M.