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Two winter triticale (x Triticosecale Wittmack) model cul-
tivars: Hewo (tolerant to pink snow mould) and Magnat 
(sensitive) were used to test the effect of cold-hardening 
(4 weeks at 4°C) on soluble ≤50 kDa protein profiles of 
the seedling leaves. The presence and abundance of in-
dividual proteins were analysed via two-dimensional 
gel electrophoresis (2-DE) and Surface-Enhanced Laser 
Desorption/Ionization Time-of-Flight (SELDI-TOF). Up 
to now, no proteomics analysis of triticale response to 
hardening has been performed. Thus, the present paper 
is the first in the series describing the obtained results. 
In our experiments, the exposure to the low tempera-
ture-induced only quantitative changes in the leaves of 
both cultivars, causing either an increase or decrease 
of 4–50 kDa protein abundance. Among proteins which 
were cold-accumulated in cv. Hewo’s leaves, we iden-
tified two thioredoxin peroxidases (chloroplastic thi-
ol-specific antioxidant proteins) as well as mitochondrial- 
β-ATP synthase subunit and ADP-binding resistance pro-
tein. On the contrary, in hardened seedlings of this gen-
otype, we observed the decreased level of chloroplastic 
RuBisCO small subunit PW9 and epidermal peroxidase 
10. Simultaneous SELDI-TOF analysis revealed several 
low mass proteins better represented in cold-hardened 
plants of tolerant genotype in comparison to the sensi-
tive one and the impact of both genotype and tempera-
ture on their level. Based on those results, we suggest 
that indicated proteins might be potential candidates for 
molecular markers of cold-induced snow mould resist-
ance of winter triticale and their role is worth to be in-
vestigated in the further inoculation experiments.
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INTRODUCTION

According to the regular reports, pink snow mould 
resulting from Microdochium nivale (Samuels & Hallett) 
infection is one of the most serious diseases of winter 
cereals and grasses in temperate and cold climatic areas 
(Tronsmo et al., 2001; Prończuk et al., 2003, Ren et al., 
2015, Stricker et al., 2017). M. nivale infects also winter 
triticale (x Triticosecale Wittmack), the man-made hybrid 
cereal, lowering the quality and quantity of its yield. Vari-
able levels of triticale pink snow mould infection were 
reported from field experiments and from tests under 
control conditions (Cichy & Maćkowiak, 1993; Hudec & 
Bokor, 2002; Sliesaravičius et al., 2006; Gołębiowska & 
Wędzony, 2009; Zhukovsky & Ilyuk, 2010; Szechyńska et 
al., 2011; 2013; Arseniuk & Góral, 2015).

In response to fungal attack and other stresses, higher 
plants can produce special proteins belonging to Patho-
genesis-Related proteins (PR-proteins), which are classi-
fied into PR1-17 families (Okushima et al., 2000). They 
are expressed mainly in leaves, but also in other plant or-
gans (Van Loon, 1997; Van Loon, 2006). Among others, 
glucanases (PR2) and chitinases (PR3, 4, 8 and 11) are 
suggested to decompose fungal cell wall, while PR1, per-
oxidases (PR11) and thaumatins function as antibiotics, 
membrane permeabilizers of the invaders and inhibitors 
of fungal proteases. Their activity can inhibit pathogen-
esis/infection progress (Van Loon & Van Strien, 1999). 
PR-proteins can be a part of the first defensive barrier 
since they are produced in cell wall appositions at the 
early stage of pathogenesis before concise host-pathogen 
contact. They are also suggested to play a role in System-
ic Acquired Resistance SAR (Tuzun & Somanchi, 2006). 
A potential role in defensive response to M. nivale infec-
tion was proposed for catalase and peroxidase (Gołębio-
wska et al., 2011), chitinase (Żur et al., 2013) and thi-
ol-specific antioxidant protein (Gołębiowska-Pikania & 
Golemiec, 2015) in winter triticale; chitinase, endochiti-
nase, 1,3-β glucanase in winter rye (Hiilovaara-Teijo et 
al., 1999; Yeh et al., 2000); chitinase, endochitinase, 1,3-β 
glucanase, PR1-a protein and peroxidase in winter wheat 
(Ergon et al., 1998) and thaumatin-like proteins in winter 
wheat (Kuwabara et al., 2002). The predicted molecular 
mass of those proteins ranges from 13 to 50 kDa. De-
spite the above studies, the 2-DE analysis of cereal PR 
protein profiles has not been performed so far.

As many authors proved, cold-hardening is the most 
important factor activating cereal defense responses to 
M. nivale infection (Laroche 1997; Ergon et al., 1998; 
Browne et al., 2008; Gołębiowska & Wędzony, 2009; 
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Dubas et al., 2011; Szechyńska et al., 2011, 2013, 2015). 
The maximal resistance was detected exclusively in 
cold-hardened plants but genotypes differ in their ability 
to obtain cold-induced resistance (Hömmo, 1994; Ergon 
et al., 1998; Gołębiowska & Wędzony, 2009; Gołębiows-
ka & Golemiec, 2015). The relationship between frost 
resistance and snow mould resistance remains indistinct 
(Ergon et al., 1998; Ergon & Tronsmo, 2006). Cold-hard-
ening enhances snow mould resistance since stronger 
and more rapid transcription of genes encoding different 
PR-proteins were found in hardened compared to un-
hardened winter wheat plants after M. nivale inoculation 
(Ergon et al., 1998; Hiilovaara-Teijo et al., 1999; Gaudet 
et al., 2000; Kuwabara et al., 2002; Gaudet et al., 2003a,b). 
However, the complete influence of cold on PR activity 
is prominent especially in inoculated plants (Ergon et al., 
1998; Gaudet et al., 2000). PR-proteins accumulating in 
the apoplast of winter rye during cold acclimation were 
shown to exhibit glucanase and chitinase activity in ad-
dition to antifreeze activity (Hiilovaara-Teijo et al., 1999; 
Yeh et al., 2000) unlike PR proteins produced at warmer 
temperatures. Additionally, winter rye AFPs (Anti-Freeze 
Proteins) were apparently isoforms of PR-proteins spe-
cifically induced at low temperature (Yeh et al., 2000). 
Moreover, in winter wheat experiments, a thaumatin-like 
protein was induced by cold (Kuwabara et al., 2002). 
Gene transcription of defensin, purothionine, and LTPs 
(Lipid-Transfer Proteins) was maximal after 2-3 weeks 
of cold-hardening and remained constant for 7 days of 
dehardening (Gaudet et al., 2003a). Expression of LTPs 
mentioned above was observed in non-hardened plants 
neither in laboratory nor under the field conditions.

Our previous investigations documented genotype-de-
pendent, increased resistance of triticale after 4 weeks of 
cold-hardening at 4°C (Gołębiowska & Wędzony, 2009) 
and antioxidative enzyme involvement in the mecha-
nisms of cold-induced snow mould resistance (Gołębio-
wska et al., 2011; Gołębiowska & Golemiec, 2015; Gaw-
rońska & Gołębiowska, 2016). However, no proteomic 
analysis of the reaction of triticale to cold-hardening has 
been done so far. Thus, extensive studies at the molec-
ular level were performed and the present paper is the 
first in the series describing the obtained results. For that 
purpose, two winter triticale cultivars selected in the pre-
vious research (Gołębiowska & Wędzony, 2009): snow 
mould-tolerant cv. Hewo and sensitive cv. Magnat were 
used as the plant model to test the effect of cold-hard-
ening on soluble protein patterns in seedling leaves. In 
this paper, we proposed the hypothesis that the protein 
expression profiles of those two genotypes differ after 
cold treatment and that some of the changes caused by 
hardening might be significant under snow cover and 
pathogen infection. The presence and amount of indi-
vidual proteins were analyzed via 2-DE in fully-hard-
ened plants in comparison to the control non-hardened 
seedlings. Parallel analyses were also performed via Sur-
face-Enhanced Laser Desorption/Ionization Time-of-
Flight (SELDI-TOF).

MATERIALS AND METHODS

Plant material. Two winter hexaploid triticale (x 
Triticosecale Wittmack, 2n=6x=42) cultivars, significant-
ly different in respect to their cold-induced resistance 
to M. nivale infection in the field and under controlled 
conditions (Gołębiowska & Wędzony, 2009) were used 
in the study: tolerant cv. Hewo (Strzelce Plant Breed-
ing – IHAR Group Ltd., Poland) and sensitive cv. Mag-

nat (Danko Plant Breeders Ltd., Poland). Plants were 
surface-sterilized and grown as described previously 
(Gołębiowska & Wędzony, 2009) in the climatic cham-
ber at 8h/16h (day/night) photoperiod, at 16°C/12°C, 
RH=60–67%, for 7 days. On the 7th day, plants were 
supplemented once with Hoagland & Arnon’s (1938) 
sterile medium, 0.05 m3 per pot.

Starting from the 8th day after potting, half of the 
plants were subjected to the prehardening for 14 days 
at 12°C/12°C, with 8h/16h (day/night) photoperiod. 
Then, they were hardened at 4°C/4°C for 28 days in the 
same light regime. The remaining control, non-hardened 
plants were grown constantly at 16°C/12°C, 8h/16h 
(day/night) photoperiod, until achieving the same stage 
of seedling development according to the Zadok’s scale 
(Zadok et al., 1974) as the fully cold-hardened plants, i.e. 
for the next 14 days (21 days from potting in total).

Plant sampling. The protein analysis was conduct-
ed on fully-expanded leaves (2nd in appearance) of 5 
different seedlings of each genotype from the control 
non-hardened and the cold-hardened plants. Freshly 
cut samples were immediately frozen in liquid nitrogen 
and stored at -80°C until protein extraction. Analyses 
were performed in 3 biological replicates consisting of 5 
leaves each, in a single growth experiment.

Protein isolation and purification. Leaf samples (ca 
1 g fresh weight) were ground to a fine powder in liquid 
nitrogen using mortar and pestle. Then proteins were ex-
tracted according to Giavialisco and others (Giavialisco 
et al., 2003, modified) protocol, in 5:1, v/w portions of 
extraction buffer consisted of 8 M Urea, 2 M Thiourea, 
2%, w/v C7BzO (Sigma), 2%, v/v IPG Buffer (Amer-
sham), 50 mM DTT and 1%, v/v proteinase inhibitors 
cocktail (Sigma, P 9599). After samples centrifugation at 
4°C and 18 000 rpm for 10 min, protein concentration 
in the obtained supernatant was determined by the Brad-
ford method (Bradford, 1976). Protein quantification was 
performed in triplicates against a standard curve of bo-
vine serum albumin (BSA). Aliquots of proteins (500 µg) 
were stored at –80°C until further assay. Before analy-
sis, each portion was purified via unspecific precipitation 
with Proteo Precipitation Kit (Sigma) according to the 
given protocol. Obtained pellet was resuspended in 0.5% 
IPG Buffer NL 3-10 (Amersham).

Two-dimensional gel electrophoresis. Protein 
samples were analyzed in triplicates. The aliquots were 
thawed, mixed with 3.2 µl of ampholytes (pH 3–10), ad-
justed to the final volume of 315 µl with the Isoelec-
trofocusing (IEF) sample solution and then loaded 
onto immobilized pH gradient (IPG) strips (pH 4–7, 
18 cm, non-linear gradient, Amersham Biosciences) 
in an isoelectric focusing unit (EttanTM IPGphor IITM, 
Amersham Biosciences). IEF was performed according 
to Berkelman & Stendstedt (2004) protocol at 20°C for 
20 h. After the first dimension IPG strips were equili-
brated for 15 min in 5 ml of SDS equilibration buffer 
(1.5 M Tris-HCl pH 6.8, 6 M Urea, 30% (v/v) glycerol, 
5% (w/v) SDS) with 2% (w/v) DTT followed by 15 min 
with the same buffer but containing 2.5% (w/v) iodo-
acetamide (IAA) instead of DTT. The strips were then 
transferred onto 12.5% SDS-polyacrylamide gels and 
overlayed with 0.5% (w/v) agarose in SDS running buf-
fer with some addition of bromophenol blue as tracking 
dye. The second dimension electrophoresis was conduct-
ed according to Berkelman & Stendstedt (2004) at 10°C 
at 10 mA/gel until the dye front reached the bottom of 
the gel (approx. 16 h) by using Ettan Dalt Six electro-
phoresis unit (Amersham Biosciences). Simultaneously, 
molecular mass marker 10–200 kDa (PageRuler™ Pro-
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tein Lader, Fermentas) was run. Gels were stained over-
night in Colloidal Coomassie Brilliant Blue (CBB G-250) 
(Sigma) according to given protocol and digitalized using 
Image Scanner (Amersham Biosciences).

Analysis of protein expression. Image analyses 
(normalization, spot matching, expression analyses and 
statistics) were performed with PDQuest 8.0 software 
(Bio-Rad). First, images of gels were inverted, centralized 
and cropped using the same anchor spot, then the cor-
relation coefficient between replicates was checked. The 
Master Gel was selected automatically and used for all 
bioinformatics analysis. The spot relative intensities were 
normalized to the total density in the gel images. Based 
on the MW of PR proteins reported in the literature, 
soluble proteins in the range of 13 kDa to 50 kDa were 
analysed using the software. One-way ANOVA statistical 
analysis was performed with a 95% significance level to 
determine which protein species were differentially abun-
dant between the samples collected from control and 
cold-hardened plants of both genotypes. On the basis of 
the above calculations, spots showing a statistically sig-
nificant (p<0.05) increase or decrease in abundance (at 
least 2-fold) were selected and manually picked for di-
gestion and identification.

Mass spectrometric identification of the protein 
species. Proteins were in-gel digested with trypsin ac-
cording to the protocol described by Shevchenko  and 
others (Shevchenko et al., 1996). The extracts of the 
obtained tryptic peptides were then spotted onto an 
AnchorChip target plate (MTP AnchorChip 384 T F, 
Bruker) and left to dry at ambient temperature. The 
anchors were subsequently covered with a solution of 
α-cyano-4-hydroxycinnamic acid (0.7 mg CHCA in 85% 
ACN, 15% H2O, 0.1% TFA and 1 mM NH4H2PO4) and 
again left to dry. All spectra were collected using ultra-
fleXtreme MALDI-TOF/TOF mass spectrometer and 
Compass 1.3 software for instrument control and data 
processing (both from Bruker Daltonik, Bremen, Ger-
many). MS spectra were acquired in positive reflectron 
mode and externally calibrated using Peptide Calibration 
Standard II (Bruker). Fragment spectra were obtained 
by post-source decay (PSD) and internally calibrated on 
immonium ions. Protein identification was based on the 
peptide mass fingerprint confirmed by fragment spec-
tra (PMF + MS/MS). MS and PSD spectra were peak-
picked in flexAnalysis 3.3, sent to BioTools 3.2 (both 
Bruker software packages) and submitted to database 
search with the use of Mascot 2.4 (Matrix Science, Lon-
don, England, http://www.matrixscience.com) in-house 
server. Five custom databases were created for this pur-
pose based on the protein databases for Triticosecale (120 
entries), Secale (945 entries), Triticum (50 862 entries), Ae-
gilops (39 589 entries) and Hordeum (38 447 entries), taken 
from NCBI Taxonomy Browser. MS and MS/MS mass 
tolerance was 50 ppm and 0.5 Da, respectively. The 

identification results obtained were examined in terms 
of the score level (greater than 64) and the number of 
matched peptides (more than 2).

Surface-Enhanced Laser Desorption/Ionization 
(SELDI) and data analysis. The protocol for protein 
pattern analysis was performed according to Tang and 
others (Tang et al., 2004, modified), using different pro-
tein chips (microcolumns): NP20 (neutral), HP50 (hy-
drophobic), CM10 (exchanging weak cations) and Q10 
(exchanging strong anions). Samples (1–10 μl) of crude 
leaf extracts prepared in 10 mM Tris/HCl pH=7.0 
buffer were analysed in 5 replicates for both control 
non-hardened and cold-hardened plants in the Protein 
Biological System II mass spectrometer reader (Cipher-
gen Biosystems, Fremont, CA). Peak detection accurate 
to the second decimal place was performed using Pro-
teinChip Software 3.1 (Ciphergen Biosystems, Fremont, 
CA). The molecular mass below 2000 Da was elimi-
nated from analysis because this area contains adducts 
and artifacts of the Energy Absorbing Molecule (EAM) 
and possibly other chemical contaminants. The spectra 
of samples generated under the same condition were 
grouped together and baseline subtracted then normal-
ized to the total ion current of m/z starting from 1500 
Da. Peak information was exported into MS Excel and 
peak intensity was calculated for each spectrum. Differ-
ences among the means were statistically examined with 
a Student’s t-test using STATISTICA® version 13.0 
software at p<0.05.

RESULTS

In the 2-DE electrophoregrams of winter triticale 
seedling leaves, the mean total number of 470 soluble 
proteins ranged from 13 kDa to 200 kDa was found. 
In the present analysis, 2-DE profiles of 360 soluble 
proteins sized from 13 kDa to 50 kDa were compared 
between biological replicates and between different gen-
otypes/treatments. Within this protein group, quantita-
tive differences in protein abundance were observed for 
proteins of different MW (14 kDa to 50 kDa) and pI 
(4.6 to 7.0) (Table 1). No qualitative changes were noted 
between the experimental objects.

In cold-hardened seedling leaves of the snow mould 
tolerant cv. Hewo, increased mean content of twelve 
proteins and decreased mean content of ten proteins 
were observed in comparison to the non-hardened con-
trol plants of this genotype (Table 1). Among cold-accu-
mulated proteins, two chloroplastic enzymes 2-Cys per-
oxiredoxin BAS1 and Thioredoxin peroxidase, as well as 
ADP-binding resistance protein, were identified (Table 2, 
Fig. 1A). Proteins with the lowered concentration after 
exposure to the low temperature were identified as chlo-
roplastic Ribulose bisphosphate carboxylase small chain 

Table 1. The number of spots showing quantitative changes in abundance in leaves of model winter triticale seedlings.

Comparison Differential 
spots*

≥2-fold up-regulated
spots* (%)

≥2-fold down-regulated
spots* (%)

MW
[kDa] pI

A: Hewo cold-hardened vs. control 22 12 (55%) 10 (45%) 15–50 4.6–6.8

B: Magnat cold-hardened vs. control 34 29 (85%) 5 (15%) 16–50 4.6–6.5

C: Control: Hewo vs. Magnat 10 7 (70%) 3 (30%) 16–50 4.9–6.7

D: Cold-hardened: Hewo vs. Magnat 12 6 (50%) 6 (50%) 14–49 4.9–7.0

Total 78 54 (69%) 24 (31%) 14–50 4.6–7.0

*Change in abundance was calculated by dividing the mean %vol of a spot in leaves of plants of the first object to mean %vol of that spot in 
leaves of plants of the second one.

http://www.matrixscience.com
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PW9, extracellular/secreted Peroxidase 10 and mi-
tochondrial β-ATP synthase subunit (Table 2, Fig. 
1A).

After hardening of the sensitive cv. Magnat seed-
lings, the increased accumulation of twenty-nine 
proteins and decreased accumulation of five pro-
teins were noted in comparison to the control 
plants of this genotype (Table 1). Among identified 
proteins, only peroxidase 10 showed increased lev-
el after cold-hardening, while five remaining: chlo-
roplastic Ribulose bisphosphate carboxylase small 
chain PW9, 2-Cys peroxiredoxin BAS1 and Thiore-
doxin peroxidase, as well as mitochondrial β-ATP 
synthase subunit and ADP-binding resistance pro-
tein, revealed decreased concentration in compari-
son to the control plants (Table 2, Fig. 1B).

Differences between cv. Hewo and cv. Mag-
nat control seedlings involved seven proteins with 
the increased concentration as well as other three 
proteins with the decreased abundance (Table 1). 
Leaves of the control cv. Hewo seedlings showed 
a higher concentration of peroxidase 10, Ribulose 
bisphosphate carboxylase small chain PW9, 2-Cys 
peroxiredoxin BAS1, Thioredoxin peroxidase as 
well as β-ATP synthase subunit when compared to 
cv. Magnat non-hardened plants (Table 2, Fig. 1C).

In cold-hardened plants, differences between the 
model genotypes included six proteins with the in-
creased and six proteins with the decreased expres-
sion level (Table 1). Among them, four proteins 
with the higher abundance in cv. Hewo leaves were 
identified as

2-Cys peroxiredoxin BAS1, Thioredoxin perox-
idase, ADP-binding resistance protein and β-ATP 
synthase subunit (Table 1, Fig. 1D). Proteins with 
the decreased level after cold-hardening in tolerant 
genotype in comparison to sensitive one were iden-
tified as Ribulose bisphosphate carboxylase small 
chain PW9 and Peroxidase 10 (Table 2, Fig. 1D).

SELDI-TOF analysis of the same plant samples 
revealed the presence of twenty-one low molecular 
weight proteins (4.3–10.7 kDa) with the majority 
of them visible on CM10 columns (Table 3). Af-
ter cold-hardening, only quantitative changes in 
the concentration of those molecules were noted 
in both triticale cultivars (Table 3). Cold-hardened 
seedling leaves of tolerant cv. Hewo showed the in-
creased mean concentration of seven proteins (ST2-
3, ST6-7, ST13-14 and ST21) and the decreased 
mean concentration of four proteins (ST1, ST12, 
ST15 and ST20), when compared to the non-hard-
ened control plants of this genotype (Table 3A). In 
sensitive cv. Magnat plants those changes involved 
twelve (ST1-3, ST5-6, ST11, ST13-17 and ST21) 
and three (ST8, ST12 and ST20) proteins, accord-
ingly (Table 3B). In control plants of cv. Hewo the 
concentration of ten proteins (ST1, ST3-4, ST6, ST8 
and ST13-17) was increased whereas the concentra-
tion of three proteins (ST10-12) was decreased in 
relation to the control plants of cv. Magnat (Table 
3C). After cold hardening, four proteins (ST3, ST6 
and ST13-14) had higher and seven (ST5, ST11-12, 
ST15-17 and ST21) had a lower level in cv. Hewo 
leaves in comparison to cv. Magnat cold-hardened 
plants (Table 3D). After exposure to the low tem-
perature, the maximal experimental differences be-
tween cv. Hewo and cv. Magnat leaf profiles were 
found for ST6 protein (6.8 kDa, 203%) as well as 
ST15 protein (8.9 kDa, 32%). The concentration of 

http://www.ebi.ac.uk/QuickGO
http://www.uniprot.org
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ST4, ST9, ST10, ST18-19 was not changed by hardening 
in leaves of both genotypes, additionally, ST9, ST18-19 
proteins had equal level in all experimental objects (Ta-
ble 3).

DISCUSSION

In our experiments, the exposure to the low tempera-
ture (4 weeks at 4°C) caused only quantitative changes in 
the protein patterns of seedling leaves of the two model 
winter triticale cultivars. Those changes included either 
increase or decrease of 4.3–10.7 kDa and 14-50 kDa 
soluble protein concentration, detected via SELDI-TOF 
and 2-DE analysis, accordingly (Tables 1 and 3).

The group of proteins with the cold-caused abun-
dance drop was better represented in 2-DE profiles of 
snow mould tolerant cv. Hewo seedling leaves, while 
in sensitive cv. Magnat plants many proteins revealed 
increased abundance after hardening (Table 1). A sim-
ilar effect was observed by Golebiowska-Pikania et al. 
(2017) in winter barley seedlings: the maximal number 
of up-regulated proteins in hardened (20 days at 4/2°C) 
plants was observed for the most freezing-sensitive DH 
line while the minimal for the freezing-tolerant one. This 
may suggest the strong low-temperature stress occurring 
in sensitive genotypes. Additionally, in present experi-
ments, after exposure to the low temperature, changes of 
Peroxidase 10, 2-Cys peroxiredoxin BAS1, Thioredoxin 
peroxidase and ADP-binding resistance level in tolerant 

cv. Hewo plants had the opposite direction in compari-
son to the sensitive cv. Magnat (Table 2).

Even without hardening, Ribulose bisphosphate car-
boxylase small chain PW9, Peroxidase 10, 2-Cys per-
oxiredoxin BAS1, Thioredoxin peroxidase, and β-ATP 
synthase subunit had different (higher) abundance in 
cv. Hewo leaves in comparison to cv. Magnat ones (Ta-
ble 2). Among identified proteins, only 38 kDa protein 
with homology to ADP-binding 18 kDa resistance pro-
tein showed no difference in abundance between model 
cultivars without hardening (Table 2). On the contrary, 
after cold treatment, its content increased in cv. Hewo 
seedlings leaves and it had a higher level in relation to 
cv. Magnat plants growing under the same conditions. 
This protein with an unknown function was described 
by Bertioli and others (Bertioli et al., 2003) in peanut 
(Arachis stenosperma) young leaves. In our experiment its 
increase was cold-specific.

The other protein cold-accumulated in plants of toler-
ant winter triticale genotype, 2-Cys peroxiredoxin BAS1 
is homologous to a chloroplastic thiol-specific antioxi-
dant 23 kDa protein found in wheat leaves by Tsunoya-
ma and others (Tsunoyama et al., 1996). The Cys-64-SH 
group of this enzyme was indicated as the primary site 
of oxidation by hydrogen peroxide, and the oxidized 
Cys-64 rapidly reacts with Cys-185-SH of the other sub-
unit to form an intermolecular disulfide, which might 
subsequently be reduced by thioredoxin (Tsunoyama et 
al., 1996). In our work, we also identified the second thi-
oredoxin peroxidase, with increased accumulation in cv. 

Figure 1. The comparison of soluble 14–50 kDa leaf protein 2-DE profiles between winter triticale (xTriticosecale Wittmack) seedlings 
of: 
(A) snow mould tolerant cv. Hewo, cold-hardened vs. non-hardened control; (B) snow mould sensitive cv. Magnat, cold-hardened vs. 
non-hardened control; (C) cv. Hewo vs. cv. Magnat non-hardened control; (D) cv. Hewo vs. cv. Magnat cold-hardened plants. Circles indi-
cate the position of identified protein species differentially abundant in compared objects. Spot details are described in Table 2. Abbre-
viations: ATP2 – β-ATP synthase subunit, mitochondrial; POX10 – peroxidase 10, extracellular/secreted; RCA – Ribulose bisphosphate car-
boxylase small chain PW9, chloroplastic; RP – 38 kDa ADP-binding resistance protein; TSA1/1 – 2-Cys peroxiredoxin BAS1, chloroplastic; 
TSA1/2 – Thioredoxin peroxidase, chloroplastic.
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Hewo hardened seedling leaves, with homology to 28 
kDa rye protein (Berberich et al., 1998). Cold-enhanced 
Tsa gene expression of the foliar thiol-specific antiox-
idant protein in M. nivale tolerant winter triticale seed-
lings after 4 weeks of chamber culture at 4°C was also 
previously documented in our qPCR analysis (Gołębio-
wska-Pikania & Golemiec, 2015). In seedling leaves of 
cv. Hewo growing in the same hardening conditions we 
showed lower cold-mediated accumulation of hydrogen 
peroxide as well as a higher increase in the total un-
specific peroxidase activity in comparison to cv. Magnat 
plants (Gołębiowska et al., 2011). Other authors reported 
a protective role of 2-Cys peroxiredoxins in photosyn-
thesis (Baier & Dietz, 1999; Horling et al., 2002) and in 
oxidative stress-dependent switching from the peroxidase 
to molecular chaperone function (Jang et al., 2004), in-
cluding the plant cellular defensive signaling mechanisms 
against oxidative stress (Jang et al., 2006). 2-Cys PRXs 
can interact with at least 18 other proteins and regulate 
them by their redox state as described in Rhee & Woo 
review (Rhee & Woo, 2011). On the basis of the above 
results, it can be assumed that in the tolerant cv. Hewo 
seedlings the cold-caused increased production of hydro-
gen peroxide is balanced by the thioredoxin peroxidases 
activity which we confirmed by spectrophotometric, 
qPCR and proteomic analyses.

In cv. Hewo leaves, the β-ATP synthase subunit had 
also higher level in cold-hardened plants, and it is ho-
mologous to wheat mitochondrial 59 kDa chain with 
the molecular function of creating ATP from ADP in 

the presence of a proton gradient across the membrane 
(Abulafia et al., 1996). Such a result may suggest in-
creased energy production at low temperature in snow 
mould tolerant genotypes.

On the contrary, in hardened cv. Hewo plants we 
showed a decreased level of RuBisCO small subunit 
PW9 and peroxidase 10 in comparison to cv. Magnat 
ones (Table 1). The first protein was discovered in wheat 
chloroplast by Broglie and others (Broglie et al., 1993) as 
a 19 kDa transit protein, belonging to RuBisCO small 
chain family. It was reported that protein expression of 
this subunit decreases in leaves of winter rape moved to 
cold-hardening conditions but increases in young leaves 
expanding at the low temperature (Singh & Johnson-Fla-
nagan, 1994). Similarly to our results, other authors also 
observed in 2-DE profiles a decreased accumulation of 
several photosynthesis-related proteins in winter wheat 
subjected to 63 day-long hardening at 4°C (Rinalducci 
et al., 2011). The decrease in susceptibility to photoinhi-
bition exhibited following cold-hardening of winter and 
spring cultivars of wheat was not due to an increased 
capacity of repair of photoinhibitory damage at 5°C 
but reflected intrinsic properties of the cold-hardened 
photosynthetic apparatus (Hurry & Huner, 1992). The 
down-accumulated peroxidase 10 identified by us was 
homologous to 37 kDa class III peroxidase extracted 
from the powdery mildew-attacked epidermis of einkorn 
wheat (Triticum monococcum), involved in response to oxi-
dative stress (Liu et al., 2005).

Table 3. The comparison of SELDI-TOF protein profiles of the winter triticale seedling leaves.
 ↑ – increased accumulation; ↓ – decreased accumulation of individual protein; n/c – not changed.

Protein Abundance in plant leaves

Symbol Properties A)
Hewo:
hardened
vs. control

B)
Magnat:
hardened
vs. control

C)
control:
Hewo
vs. Magnat

D)
hardened:
Hewo
vs. Magnat

MW
[Da] Affinity

ST 1 4.3 Q10/CM10 ↓ 75% ↑ 135% ↑ 164% n/c

ST 2 4.4 CM10 ↑ 156% ↑ 163% n/c n/c

ST 3 6.4 CM10 ↑ 599% ↑ 546% ↑ 461% ↑ 130%

ST 4 6.6 CM10 n/c n/c ↑ 142% n/c

ST 5 6.7 CM10 n/c ↑ 232% n/c ↓ 131%

ST 6 6.8 CM10 ↑ 854% ↑ 383% ↑ 450% ↑ 203%

ST 7 6.9 Q10/CM10 ↑ 145% n/c n/c n/c

ST 8 7.0 CM10 n/c ↓ 70% ↑ 138% n/c

ST 9 7.5 CM10 n/c n/c n/c n/c

ST 10 7.6 CM10 n/c n/c ↓ 180% n/c

ST 11 8.4 Q10 n/c ↑ 120% ↓ 125% ↓ 148%

ST 12 8.6 Q10 ↓ 62% ↓ 66% ↓ 135% ↓ 178%

ST 13 8.7 CM10 ↑ 295% ↑ 144% ↑ 203% ↑ 145%

ST 14 8.8 CM10 ↑ 194% ↑ 206% ↑ 159% ↑ 144%

ST 15 8.9 CM10 ↓ 49% ↑ 457% ↑ 168% ↓ 312%

ST 16 9.0 CM10 n/c ↑ 242% ↑ 160% ↓ 139%

ST 17 9.1 CM10 n/c ↑ 266% ↑ 154% ↓ 177%

ST 18 9.4 CM10 n/c n/c n/c n/c

ST 19 9.5 CM10 n/c n/c n/c n/c

ST 20 10.2 Q10 ↓ 53% ↓ 52% n/c n/c

ST 21 10.7 Q10 ↑ 180% ↑ 290% n/c ↓ 162%
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Similarly to the results described above, only quanti-
tative changes caused by the low temperature on pro-
tein concentration were noted in SELDI-TOF analysis 
(Table 3). Like in 2-DE profiles, more proteins with 
the increased concentration were present in leaves of 
cold-hardened plants of cv. Magnat in comparison to 
non-hardened control of this genotype than in the simi-
lar comparison performed for cv. Hewo seedlings, while 
the number of proteins with the decreased level was al-
most equal (Table 3A, B). In leaves of both genotypes, 
the concentration of ST2-3, ST6, ST13-14 and ST21 
increased and the concentration of ST12 and ST20 de-
creased after cold-hardening (Table 3A,B). Among those 
proteins, ST3 (6.4 kDa), ST6 (6.8 kDa), ST13 (8.7 kDa) 
and ST14 (8.8 kDa) had a higher concentration and 
ST12 had a lower concentration in cv. Hewo both in 
cold-hardened and non-hardened plants in relation to 
similarly treated cv. Magnat ones (Table 3C, D). Addi-
tionally, ST5, ST11, ST15-17 and ST21 revealed lower 
level in cold-hardened cv. Hewo plants in comparison 
to cold-hardened plants of cv. Magnat (Table 3D). Even 
without hardening - in control plants of cv. Hewo pro-
teins: ST1, ST4, ST8 and ST15-17 had higher level and 
ST10-11 had lower level in relation to control cv. Mag-
nat plants (Table 3C). It can be assumed, that several 
low mass proteins were better represented in cold-hard-
ened cv. Hewo plants in comparison to cv. Magnat ones 
and the impact of both genotype and temperature on 
their concentration was detected in our experiment.

Based on the above results we conclude that genotype 
and cold treatment significantly influenced the quantity 
of the small proteins in winter triticale seedling leaves. 
The pattern of these proteins could be correlated with 
the level of the resistance to pink snow mould infec-
tion. Four cold-accumulated proteins: ADP-binding 38 
kDa resistant protein, β-ATP synthase subunit, as well 
as 25 kDa and 49 kDa thioredoxin peroxidases, may 
possibly play a role in the plant preparation before fun-
gal pathogen attack in tolerant winter triticale cultivar by 
maintaining the red/ox balance and energy pathway in 
seedling leaves. Present studies may indicate molecules 
for the further analysis of M. nivale pathogenesis process 
in winter cereals.
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