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Mesenchymal Stem/Stromal Cells (MSCs) have been wide-
ly considered as a promising source of cells for tissue 
regeneration. Among other stem cells, they are charac-
terized by a high osteogenic potential. Intensive studies 
in this field had shown that even if basic osteogenic dif-
ferentiation is relatively simple, its clinical application re-
quires more sophisticated approaches to prepare effective 
and safe cell therapy products. The aim of this review is to 
underline biological, physical and chemical factors which 
play a crucial role in osteogenic differentiation of MSCs. 
Existence of two distinct mechanisms of ossification (in-
tramembranous and endochondral) indicate that choos-
ing a proper source of MSCs may be critical for successful 
regeneration of a particular bone type. In this context, 
Dental Pulp Stem Cells representing a group of MSCs and 
originating from neural crest ( a structure responsible for 
development of cranial bones) are considered as the most 
promising for skull bone defect repair. Factors which fa-
cilitate osteogenic differentiation of MSCs include chang-
es in forces exerted on cells during development. Thus, 
culturing of cells in hydrogels or on biocompatible three-
dimensional scaffolds improves osteogenic differentiation 
of MSCs by both, the mechanotransductive and chemical 
impact on cells. Moreover, atmospheric oxygen concentra-
tion routinely used for cell cultures in vitro does not cor-
respond to lower oxygen concentration present in stem 
cell niches. A decrease in oxygen concentration allows to 
create more physiological cell culture conditions, mimick-
ing the ones in stem cell niches, which promote the MSCs 
stemness. Altogether, factors discussed in this review pro-
vide exciting opportunities to boost MSCs propagation 
and osteogenic differentiation which is crucial for success-
ful clinical applications.
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STEM CELL TYPES AND PERSPECTIVES OF THEIR USE 
IN REGENERATIVE MEDICINE

Nowadays, stem cells (SCs) represent one of the most 
intensely studied subjects in cell biology. Their basic 
features include the ability to proliferate and differenti-
ate into more specialized cells (Reya et al., 2001). These 
properties make SCs an attractive biological material 
with a wide application potential for its further use in 
regeneration of injured tissues. Various SC fractions may 
be distinguished based on their origin and potential for 
differentiation. SCs of an embryonic origin are the most 
primitive cells, and therefore they have the widest dif-
ferentiation potential. Cells arising after zygote divisions 
(up to the 8-cell stage) are classified as totipotent cells 
and are able to give rise to all cell types of a developing 
embryo, along with placental tissues (Zychowicz, 2012). 
Embryonic stem cells (ESCs) isolated from the blasto-
cyst inner cell mass also represent pluripotent cells ca-
pable of differentiation into cells derived from the three 
germ layers (Murray et al., 2006). Although human ESCs 
may potentially represent a rich source of somatic cells 
for transplantation, the research conducted on these 
cells is associated with an ethical controversy. Therefore, 
scientists have been looking for other methods of ob-
taining primary SCs with a wide differentiation poten-
tial, alternative to ESCs (Zychowicz, 2012). The second 
largest group of SCs are adult stem cells (ASCs). Several 
cell fractions can be distinguished among ASCs, includ-
ing multipotent cells (able to differentiate into a specific 
pool of cells derived from a given germ cell) and uni-
potent or progenitor cells capable of differentiating into 
a specific type of more specialized cells (Fortier, 2005). 
Mesenchymal Stem/Stromal Cells (MSCs) of various ori-
gin represent one of the most intensely studied popula-
tions of ASCs, which have been also widely employed in 
several clinical trials in humans.

MSCs were described in the 70s of the last century as 
cells isolated by adhesion to a plastic surface, which are 
characterized by high in vitro proliferation potential and 
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the ability to differentiate into a wide range of tissues - 
mainly of the mesodermal origin (Bajek et al., 2011).

The main advantages of using MSCs in regenerative 
therapies include their effective isolation and culture, 
low immunogenicity and safety of transplantation (Reya 
et al., 2001; Afzal et al., 2015). These cells exhibit im-
munomodulatory properties which include secretion of 
immunomodulatory factors, such as interleukin 6 (IL-
6) that may play a dual function in regulating the pro-
cess of inflammation, hepatocyte growth factor (HGF), 
prostaglandin E2 and many others (Williams & Hare, 
2011). Importantly, it has been shown that MSCs ex-
hibit predominantly anti-inflammatory properties, favor-
ing processes accompanying tissue repair. Moreover, they 
exhibit low immunogenicity following allogenic trans-
plantations. Therefore, they are an attractive material for 
allogenic transplantations (Zhang et al., 2015). Nowadays, 
999 clinical trials using MSCs in human patients are reg-
istered in the worldwide ClinicalTrials.gov database and 
that number has significantly increased over the last 9 
months (Fig. 1).

A large number of studies conducted on MSCs, with 
sometimes conflicting results, e.g. regarding the potential 
of MSCs to differentiate into neuronal tissues (Bianco et 
al., 2013), has led to the need to harmonize guidelines 
on MSCs characteristics. For human MSCs, the minimal 
criteria for defining MSCs include:

– ability to adhere to plastic surfaces when maintained 
under standard culture conditions in vitro,

– ability to differentiate into three mesodermal lines in 
vitro: osteoblasts, chondroblasts and adipocytes,

– specific expression profile of surface antigens: ex-
pression of CD73, CD90, CD105 and lack of expres-

sion of CD34, CD45, CD14 or CD11b, CD79 or CD19, 
HLA-DR (Dominici et al., 2006) as presented in Fig. 2.

MSCs can be isolated from various tissues, includ-
ing bone marrow, umbilical cord blood, umbilical cord 
Wharton’s Jelly, adipose tissue or peripheral blood (Kern 
et al., 2006), as presented in Fig. 2. However, the pres-
ence of cells with MSC characteristics has been also 
demonstrated in many other tissues, such as the heart 
(Carlson et al., 2011) or lungs (Foronjy & Majka, 2012).

In 2000, Gronthos and others (Gronthos et al., 2000) 
described a unique population of cells with mesenchymal 
characteristics (such as ability to adhere to plastic sur-
faces, fibroblast-like morphology, lack of expression of 
CD14, CD34 or CD45, potential to differentiate into os-
teoblast) and of ectomesenchymal origin, which were iso-
lated from dental pulp and called Dental Pulp Stem Cells 
(DPSCs). DPSCs have been subsequently compared with 
other MSC populations, including bone marrow-derived 
cells (BM-MSCs), indicating a similar phenotype of these 
two cell populations in terms of their antigenic pheno-
type (Alge et al., 2010). It has been shown that DPSCs 
express several markers typical for BM-MSCs, such as 
CD29, CD44, CD73, CD90, CD105, and do not pos-
sess CD34, CD45, CD14 or CD19 and HLA-DR sur-
face molecules (Luo et al., 2018). Interestingly, DPSCs 
have displayed a significantly higher clonogenic potential 
than BM-MSCs (Alge et al., 2010). Moreover, DPSCs 
were shown to produce more calcium deposits and al-
kaline phosphatase (ALP) during in vitro osteogenic dif-
ferentiation, when compared to BM-MSCs, suggesting 
their greater osteogenic capacity. The authors have also 
performed a functional comparison by in vivo evaluation 
of bone formation in a porcine critical-size bone defect 

Figure 1. World-wide clinical trials using MSCs. Source: ClinicalTrials.gov – provided by the U.S. National Library of Medicine.

http://ClinicalTrials.gov
http://ClinicalTrials.gov


Vol. 66       493Impact of stem cell niche on osteogenic differentiation of MSCs

model, where DPSCs and BM-MSCs were implanted on 
polycaprolactone – hyaluronic acid – tricalcium phos-
phate scaffolds. Similarly to the in vitro studies, DP-
SCs generated more bone tissue than BM-MSCs when 
seeded on the scaffold and transplanted in vivo (Jensen et 
al., 2016). In another study, employing a rabbit calvarial 
bone defect model in vivo, the animals implanted with 
DPSCs or BM-MSCs seeded on commercially available 
scaffolds, exhibited a similar bone mineral density and 
potential for new bone formation, as well as expression 
of osteogenesis-related proteins, confirming their osteo-
genic capacity (Lee et al., 2019). Herein, it is important 
to emphasize that the general characteristics and immu-
nophenotype define DPSCs as a population resembling 
“mesenchymal stem/stromal cells” (MSCs), as it was also 
postulated by Ledesma-Martinez et al. in 2016. However, 
some investigators have pointed out that the exact status 
of DPSCs as a MSC population is still not fully defined 
and requires further investigations (Lan et al., 2019). 
However, taking into consideration that stem/ stromal 
cells isolated from different tissues are today classified as 
MSCs when they fulfill the “MSC classification criteria” 
published by ISCT, we may consider DPSCs as a MSC 
population, but we should still consider their unique 
properties, including developmental origin.

Going back to the biological potential of DPSCs, 
when these cells were cultured ex vivo and implanted 
subcutaneously in immunodeficient mice, they showed 
the ability to form dentin-like structures (Gronthos et al., 
2000). An important feature of DPSCs is their ontoge-
netic origin, strictly related to the dental pulp tissue aris-
ing mainly from the ectodermal neural crest cells (Hall, 
2009). This feature means that many studies based on 
DPSCs are focused on their use in regeneration of the 
nervous system (Kern et al., 2006). This is favored by the 
fact that mesoderm-derived BM-MSCs are already being 
used in clinical trials to treat ischemic stroke (Steinberg 

et al., 2016), amyotrophic lateral sclerosis (Mazzini et al., 
2009) or mechanical brain damage (Zhang et al., 2008). 
Therefore, the use of MSCs derived from the ectomesen-
chyme, such as DPSCs, may be a very attractive perspec-
tive for the treatment of injuries of the nervous system. 
This has been envisioned by the fact that DPSCs are ca-
pable to give rise to neuron-like cells expressing a num-
ber of neuronal markers, as well as to some electrophysi-
ological activity as evidenced in both, the mouse (Ellis et 
al., 2014) and human models (Gervois et al., 2015), while 
the neural differentiation was more prominent in human 
DPSCs. Recently, Lan et al. reviewed the use of DPSCs 
in a rodent stroke model. In all publications considered 
by authors of that review, the use of DPSCs has led to a 
significant improvement of brain function or a decrease 
in the infract size after stroke (Lan et al., 2019).

ECTODERMAL ORIGIN OF DPSCS AND ITS IMPACT ON 
THEIR POTENTIAL – BIOLOGY OF THE NEURAL CREST 
DEVELOPMENT

The neural crest is formed in the course of embry-
onic development through interaction between the neu-
ral tube and the epidermal ectoderm (Hall, 2009). This 
structure has exceptional cellular plasticity. Neural crest 
stem cells (NCSCs) differentiate into a wide variety of 
cell types – these include the pigmented cells, peripheral 
neurons, Schwann cells, glial cells (Zhang et al., 2014; 
Hall, 2009), adrenal medullary cells, cranial chondrocytes 
and osteocytes, myofibroblasts, and smooth muscle cells 
of the neck and head (Dupin & Sommer, 2012), arterial 
pole, endocardial pads (Vincent & Buckingham, 2010) or 
dental pulp (Young et al., 2013). Particularly interesting is 
the ability of neural crest cells to differentiate into bone 
and cartilage-like cells. Cranial neural crest (CNC) cells 
correspond to a population that, at the relatively early 
stage of development (in mice between 9 and 10 days of 

Figure 2. Main sources of MSCs and characteristics of MSCs according to specific criteria provided by the International Society for 
Cellular Therapy (ISCT).



494           2019N. Bryniarska and others

embryonic development), expresses Sox10 resulting from 
binding of Sox9, Ets1 and cMyb transcription factors 
to one of the two enhancers for this gene – Sox10E2. 
The CNC cells migrate by well-defined pathways, colo-
nizing the corresponding skull fragments (Gong, 2014; 
Kaukua et al., 2014). Their targeted migration is ensured 
by chemoattraction to the Stromal cell-derived factor-1 
(SDF-1), as well as by mechanisms combining the stream 
of migrating cells – contact inhibition of locomotion 
(CIL), and preventing separation of individual neural 
crest cells from the stream – co-attraction (Theveneau 
& Mayor, 2012). As a result of this precise mechanism 
of migration, CNC cells originating in the forebrain and 
upper part of the interbrain, colonize the frontonasal 
and periocular region of the skull; CNC cells originat-
ing in the lower part of the interbrain inhabit the maxil-
lary part of the first branchial arch – corresponding to 
the mandible and jaw bones in humans; and CNC cells 
originating from the cerebellar area form the hyoid bone 
(Gong, 2014). Within the areas of the skull, which they 
inhabit, CNC cells differentiate into many tissues, such 
as the bones and cartilage of the neck or jaw, smooth 
muscles of the head or tooth elements – including den-
tal pulp (Gong, 2014). Irregularities in migration of CNC 
cells within individual skull structures may contribute to 
the occurrence of numerous diseases – e.g. the Treacher-
Collins syndrome, whose symptoms include malforma-
tions within the head (Kasat & Baldawa, 2011). Hence, 
the study of the biology of cells originating from the 
neural crest can contribute to a better understanding of 
the etiology of such diseases, as well as creation of future 
therapies (Gong, 2014; Trainor, 2010). A very important 
aspect related to participation of CNC in the formation 
of skull bones is the ossification mechanism. It should 
be emphasized that it differs from the mechanism of 
ossification of long bones (Kini & Nandeesh, 2012). A 
separate mechanism of bone formation makes the cells 
derived from the neural crest attractive in terms of their 
potential use in regeneration of the skull damage (Kini 

& Nandeesh, 2012; Laino et 
al., 2006; Laino et al., 2005; 
Javed et al., 2010).

OSTEOGENIC 
DIFFERENTIATION

SCs, with particular em-
phasis on MSCs, have been 
increasingly used in the treat-
ment of human skeletal sys-
tem damage (Saeed et al., 
2016). Nevertheless, despite 
the initial successes of clini-
cal trials, further optimization 
of methods is still required 
for both, the ex vivo prepa-
ration of these cells for cell 
therapy and the methodology 
of the cell therapy applica-
tions – including bone de-
fects (Veronesi et al., 2013). 
In this context, understand-
ing the mechanisms underly-
ing the ossification process, 
and thus osteogenic SCs dif-
ferentiation, plays a particu-
larly important role. Due to 
the bone type, two separate 
processes are responsible for 

bone formation during individual development.
The first process represents intramembranous ossifi-

cation, characterizing flat bones, with particular empha-
sis on flat bones of the skull, but also of the jaw bones 
(Kini & Nandeesh, 2012; Bartel, 2004). The second is 
endochondral ossification, which is characteristic for long 
bones, but in practice applies to most peripheral bones 
(Bartel, 2004). Ectomesenchymal tissue originating from 
the neural crest plays a key role during intramembranous 
ossification (Kaucka et al., 2016). MSCs residing within 
the neural crest specialize in actively proliferating osteo-
progenitor cells (Heino & Hentunen, 2008). These cells 
– expressing the Sox9 and Runx2 transcription factors, 
exhibit bipotent characteristics and can differentiate into 
both, the bone and the cartilage cells. At a later stage of 
osteogenic differentiation, progenitor cells differentiate 
towards osteoblasts, which is associated with an increase 
in the expression level of genes characterizing osteogenic 
differentiation, such as Runx2 and Osterix transcription 
factors, and extracellular matrix (ECM) proteins, such as 
type I collagen, fibronectin and growth factor Bone mor-
phogenetic protein 2 (BMP2) (Javed et al., 2010). Syn-
thesis of ECM proteins is particularly important at this 
stage of osteogenic differentiation. They form an osteoid 
– an organic bone matrix constituting about 20% of its 
mass and consisting in about 90-95% of collagen I (Kini 
& Nandeesh, 2012). ECM, which at this stage becomes 
enriched in collagen I, promotes activation of signal 
cascades affecting transcriptional activity of cells in the 
niche. The effects of these interactions are: maintenance 
of expression of genes responsible for the osteogenesis 
process, gradual inhibition of cell proliferation resulting 
from reduction in histone protein synthesis, and induc-
tion of synthesis of additional ECM proteins character-
istic for the bones, such as the osteopontin, osteocalcin, 
bone sialoprotein and osteonectin (Javed et al., 2010). 
The final stage of differentiation at the cellular level is 
formation of osteocytes – cells located in the bone cavi-

Figure 3. Cross section of a molar tooth and location of stem cell subpopulations identified in 
dental tissue structures.
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ties with a characteristic morphology determined by the 
network of tabs (Bartel, 2004). These tabs allow osteo-
cytes to contact each other with the help of gap joints. 
It is the osteocytes that are responsible for the synthesis 
of approximately 70% of bone mass inorganic matrix, 
consisting in 99% of hydroxyapatite (Kini & Nandeesh, 
2012). It should be emphasized that only about 15% of 
the initial osteoblast pool undergoes terminal differen-
tiation to osteocytes, the others undergo programmed 
death accompanied by high expression of proapoptotic 
genes from the Bax family and inhibited expression of 
the Bcl-2 gene (Javed et al., 2010).

The second mechanism of bone formation is endo-
chondral ossification, which is a complex process and 
consists of the following five successive stages:
1. development of the cartilaginous model,
2. growth of the cartilaginous model,
3. production of primary ossification centers,
4. production of secondary ossification centers,
5. final production of articular cartilage and epiphyseal 

plate.
In the first stage, the cartilaginous model develops 

from the mesenchyme. Built from vitreous cartilage, the 
model lengthens as a result of intensive proliferation of 
chondrocytes with simultaneous deposition of ECM. In 
the next stage of long bone formation, the cartilage sur-
rounding the bone model is transformed into the peri-
osteum (Kini & Nandeesh, 2012). It comes about as a 
result of blood vessels penetration into the cartilaginous 
tissue, which promotes the transformation of primitive 
cartilage cells into osteoblasts synthesizing components 
of the osteoid (Kini & Nandeesh, 2012; Bartel, 2004). 
This process begins in the central part of the cartilagi-
nous model, corresponding to the middle of the shaft of 
the future bone. The place where ossification is initiated 
is called the primary ossification center. Within it, chon-
drocyte overgrowth occurs – hypertrophic chondrocytes 
are formed (Kini & Nandeesh, 2012). They take part in 
the synthesis of the mineralized matrix and gradually un-
dergo apoptosis during bone formation, creating empty 
spaces inside which will be occupied by blood vessels 
at a later stage (Yang et al., 2016). Nevertheless, the lat-
est research with transgenic animal models indicates that 
a certain pool of hypertrophic chondrocytes is not ap-
optotic, but instead it is transdifferentiated into osteo-
blasts, showing progressive expression of both, the Os-
terix transcription factor and Collagen 1A1 (Yang et al., 
2016). Secretion of the vascular endothelial growth fac-
tor (VEGF) plays a very important role in hypertrophic 
chondrocytes during the ossification process (Yang et al., 
2012). It results in invasion of the blood vessels that are 
being transformed into perichondrial periosteum (Kini & 
Nandeesh, 2012). In this way, a vascular bud is created 
that allows osteoblast precursors to penetrate into the 
bone, which then colonize niches formed by dead hy-
pertrophic chondrocytes and undergo further osteogenic 
differentiation (Maes et al., 2010). Secondary ossification 
centers are formed within the epiphysis of the bones 
using an analogous mechanism as the primary centers, 
resulting in epiphyseal ossification (Kini & Nandeesh, 
2012). The epiphyseal cartilage is present between the 
bone shaft and its root until about 20 years of age, 
which allows continuous bone growth in length (Bartel, 
2004). It is worth mentioning that processes similar to 
those described above involve natural bone repair mech-
anisms (Kini & Nandeesh, 2012). Hence, the awareness 
of the existence of two separate ossification mechanisms 
is particularly important from the point of view of re-
generative medicine. Considering the ontogenetic origin 

of the skull bones, membranous ossification appears to 
be a natural process whose exact reconstruction is asso-
ciated with the possibility of the most perfect bone tis-
sue regeneration for the treatment of skull lesions (Kini 
& Nandeesh, 2012; Laino et al., 2005; Javed et al., 2010; 
Bartel, 2004; Kaucka et al., 2016).

THE INFLUENCE OF THREE-DIMENSIONAL CULTURE 
ON OSTEOGENIC DIFFERENTIATION OF STEM CELLS

The osteogenic differentiation of SCs described in the 
previous section, resulting in bone formation, is always a 
process embedded in the three-dimensional (3D) niche of a 
developing organism (Bartel, 2004; Mohyeldin et al., 2010). 
Despite this fact, many studies on SCs differentiation are 
carried out in a two-dimensional (2D) culture, directly on 
a culture plastic or on a surface protein-coated with ECM 
proteins (Kim et al., 2011). Such conditions will never 
be able to fully reflect the native conditions prevailing in 
the body, which may even be associated with the loss of 
the parenthood potential of cells grown ex vivo (Yang et 
al., 2014). Such a phenomenon was observed in the case 
of skeletal muscle SCs, which very quickly lose their na-
tive characteristics during standard ex vivo cultivation on a 
polystyrene cell culture surface. In contrast, those grown 
on a flexible hydrogel retain the features of SCs and are 
able to reconstitute in a niche after re-implantation within 
the muscles of the limbs of mice (Gilbert et al., 2011) The 
fate of SCs, and above all their behavior, is defined in vivo 
by their niche. The niche of SCs is not only their location, 
but a whole range of factors affecting these cells, such as: 
the spatial arrangement of different types of cells relative to 
each other, the interaction of cells with ECM proteins, and 
intercellular interactions resulting from their paracrine activ-
ity (Li & Xie, 2005). Therefore, in vitro reproducing of con-
ditions as close as possible to those in a native niche is very 
important from the point of view of tissue regeneration. 
3D cultures allow simulation of a number of environmental 
properties defined by the SCs niche, such as the physical 
properties (stiffness, deformation) (Yang et al., 2014; Hum-
phrey et al., 2014), or the presence of substances forming 
ECM (Lee et al., 2007). In the case of osteogenic differenti-
ation where niche-derived factors exert a great influence on 
its course, the use of 3D cultures brings beneficial in vitro 
effects. MSCs derived from the rat bone marrow, cultured 
in 3D constructs in the in vitro rotational system, showed 
significantly higher expression levels of osteogenic differen-
tiation markers (e.g. Osterix, Osteopontin, Collagen 1 A1) 
when compared to cells differentiated under 2D conditions. 
Also, cells derived from the 3D constructs differentiated in 
the rotational system showed significantly greater deposition 
capacity of the mineralized ECM when compared to cells 
derived from the 2D culture, as demonstrated by the Von 
Koss staining (Tang et al., 2017). Osteogenic differentiation 
of human MSCs derived from bone marrow also occurred 
more efficiently when grown in alginate beads. This pro-
cess was more successful than under 2D culture conditions, 
both when the 3D culture was supplemented with ALP, as 
well as when unmodified beads were used. An interesting 
finding from this study was that the beads in which ALP 
was immobilized under conditions of lower calcium con-
centration, were destabilized due to disintegration of calci-
um-alginate bonds used for the bead cross-linking. Such a 
phenomenon may contribute to the release of differentiated 
cells from beads after transplantation in vivo, when the avail-
ability of free calcium ions will decrease due to the ALP 
activity (Westhrin et al., 2015). The use of 3D scaffolds to 
regenerate skeletal tissues has been also used in vivo. Os-
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teoblasts obtained by differentiating mouse induced pluri-
potent SCs (iPS cells) were implanted in mice after placing 
them in gelatin scaffolds. After 12 weeks of implantation, 
cells within the 3D scaffolds retained osteoblast features, 
such as the ability to form a mineralized cell matrix, as well 
as expressing osteogenic markers, such as osteocalcin and 
bone sialoprotein (Bilousova et al., 2011). Another strategy 
used with 3D constructs is their independent (without cells) 
implantation within the damaged bone. After implantation 
into the damaged femur of the rabbit, ceramic – akermanite 
scaffolds produced by a 3D printing method allowed partial 
repair without causing an excessive immune response (Liu 
et al., 2016). This repair was confirmed by histological analy-
sis of the constructs, as well as by gene expression analysis 
(Col1, Runx, Osteopontin, Osterix) of cells colonizing the 
scaffolds after their implantation. For akermanite scaffolds, 
the level of transcript expression for all four genes associ-
ated with osteogenic differentiation had increased between 
6 and 12 weeks after implantation of the ceramic constructs 
(Liu et al., 2016). The examples of various applications of 
both, the 3D cell cultures and 3D scaffolds, show that they 
can serve as versatile tools in the field of research on re-
generation of bone defects and damages (Westhrin et al., 
2015; Bilousova et al., 2011; Liu et al., 2016; Vecchiatini et 
al., 2015). It is worth emphasizing that the authors of pub-
lications presenting the process of differentiating encapsu-
lated cells indicate that the big advantage of this method 
is the relatively small volume of capsules in which the cells 
are embedded, which allows maintaining an equal distribu-
tion of both, nutrients and oxygen in the culture medium 
(Westhrin et al., 2015), and this effect is compounded by 
the use of bioreactors (Vecchiatini et al., 2015). In this con-
text, an important issue is the effect of oxygen concentra-
tion alone on osteogenic differentiation of MSCs, as well 
as the impact of different oxygen concentrations on a 3D 
culture.

THE EFFECT OF OXYGEN CONCENTRATION ON STEM 
CELLS

An atmospheric oxygen concentration of 21% is 
now recognized as a standard in cell culture (Tiede et 
al., 2011). Nevertheless, it is known that many types of 
stem cells reside in a niche with a significantly lower 
oxygen concentration, oscillating within physiological 
level of 1–9% (Mohyeldin et al., 2010; Simon & Keith, 
2008). The hypoxic niche plays a very important role 
in the context of maintaining the SC behaviors, includ-
ing hematopoietic stem cells (HSCs) and MSCs. For in-
stance, in the bone marrow niche, the HSCs reside in 
a location distant from the blood vessels (Eliasson & 
Jönsson, 2010). This results in a lower oxygen concen-
tration surrounding HSCs than e.g. for pericytes directly 
adjacent to the blood vessels. It should be emphasized 
that despite the fact that the bone marrow is richly vas-
cularized, the partial oxygen concentration in the blood 
found in the bone marrow blood vessels is relatively low 
when compared to the other body tissues (comparable 
to oxygen concentration in the jugular vein). As a result, 
the oxygen concentration gradient in the bone marrow 
varies in the range of 1–6%, with the lowest concentra-
tion corresponding to the HSCs’ location (Mohyeldin et 
al., 2010). Under such conditions, the proliferation of 
HSC cells is inhibited, which allows them to be inactive 
in their proliferation (quiescent); this in turn reduces the 
risk of accumulation of harmful mutations, particularly 
dangerous for cells with parental characteristics (Zycho-
wicz, 2012). Inhibition of proliferation is associated with 

the action of hypoxia-inducible factor 1 (HIF-1), which 
inhibits activity of the proliferation promoting transcrip-
tion factor c-Myc (Eliasson & Jönsson, 2010). A similar 
role for HIF-1 has been demonstrated in case of MSCs, 
where 1% oxygen-induced HIF-1 activity (induced in an 
in vitro culture) resulted in increased expression of the 
p27 protein, and thus a blockade of DNA replication 
and proliferation (Kumar & Vaidya, 2016). This hypox-
ia-induced factor is a key element in regulation of the 
SCs behavior by the availability of oxygen. HIF-1 is a 
heterodimeric protein consisting of HIF-1α and HIF-1β 
subunits (Ito & Suda, 2014). Under conditions of lower 
oxygen concentration, HIF-1α is not degraded and is di-
merized with HIF-1β forming a transcription factor af-
fecting expression of a very large group of genes (Simon 
& Keith, 2008). However, in several studies on MSC be-
havior in hypoxia, it has been shown that the permanent 
exposure of these cells to a low oxygen concentration 
(1–5%), generally enhances their proliferative, as well 
as colony-forming potential, which may be utilized for 
their effective expansion in vitro (elegantly summarized in 
Burakova et al., 2014). Thus, the exact conditions regard-
ing duration of the MSC exposure to hypoxia should be 
considered depending on the required functional out-
come expected from these cells in an in vitro culture.

One of the most important effects of hypoxia is the 
switch of cellular metabolism from mitochondrial res-
piration to glycolysis. Under conditions of low oxygen 
concentration, activation of HIF-1α-dependent pyru-
vate dehydrogenase kinase (PDK) occurs (Murray et al., 
2006). As a result, oxidation of pyruvate to acetyl-CoA 
is significantly limited because PDK inhibits the pyruvate 
dehydrogenase activity (Ito & Suda, 2014), which in turn 
blocks the formation of acetyl-CoA and hence the Krebs 
cycle. Mitochondrial respiration - and especially the elec-
tron transport chain, are the main sites for the formation 
of reactive oxygen species in the cell. Under conditions 
where the cell metabolism is based on glycolysis, their 
quantity decreases (Murray et al., 2006), and thus the risk 
of DNA, RNA, lipid and protein damage is reduced. 
Proliferation is also inhibited, which prevents the uncon-
trolled growth of the population of the most primitive 
SCs, and also reduces the risk of mutation accumula-
tion resulting from random polymerase errors within the 
genome of these cells (Murray et al., 2006; Ito & Suda, 
2014). The location of the BM-MSCs within the niche 
they occupy is the subject of many debates (Bianco et al., 
2013), but it is known that they are located in the bone 
marrow regions richer in oxygen than HSCs cells. How-
ever, taking into account the range of oxygen concentra-
tion assumed for bone marrow (1–6%) and the condi-
tions necessary for HIF-1α activity (oxygen concentra-
tion approx. 5%), there is no doubt that in their native 
niche these cells are exposed to lower oxygen concentra-
tion than the one used in standard cultures (Mohyeldin 
et al., 2010; Simon & Keith, 2008).

The results of studies on the effect of hypoxia on 
the behavior of human MSCs derived from bone mar-
row do not provide unambiguous answers about its ef-
fect. A comparison of osteogenic differentiation of hu-
man MSCs at 21% and 1% oxygen concentrations shows 
conflicting observations, depending on the work being 
analyzed (Hsu et al., 2013; Hung et al., 2012). Depending 
on the analyzed work, hypoxia resulted in a significantly 
lower expression of genes associated with osteogenic dif-
ferentiation (e.g. Osteopontin, Osteocalcin) (Hsu et al., 
2013) or a higher level of expression of genes associated 
with osteogenic differentiation (e.g. Osteopontin, Osteo-
calcin, Collagen1a1) (Hung et al., 2012). The results of 
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studies on osteogenic differentiation of human MSCs 
were also characterized by large individual variability. 
This has manifested itself, among others, through a large 
diversity in the deposition ability of the mineralized ma-
trix, intra-group fluctuations in the proliferative index 
and the ability to form colonies for cells from different 
patients under both, the normoxia and hypoxia condi-
tions (Ciapetti et al., 2016). Interestingly, using an animal 
system in vivo, it was observed that a decrease in blood 
flow within the dental pulp results in increased minerali-
zation and differentiation of DPSCs in the rat odonto-
blast layer (Ito et al., 2015). On the other hand, human 
DPSCs grown at 3% oxygen concentration had exhib-
ited an essentially lower ALP activity and also a signifi-
cantly lower degree of mineralization when compared to 
DPSCs cultured at a 21% oxygen concentration (Iida et 
al., 2010). However, research in this area using DPSCs 
is still being optimized. Therefore, further research on 
the effect of hypoxia on the process of differentiation of 
MSCs, including DPSCs, as well as on their proliferative 
capacity as described above, is still required.

In this context, in order to elucidate a more complete 
and accurate mechanism of the impact of hypoxia and 
other factors on osteogenic differentiation of MSCs, with 
particular emphasis on future applications of these results 
in regenerative medicine, it is important to optimize the 
methods used for the cell isolation and ex vivo propaga-
tion. Discrepancies in the methodology often resulted in 
contradictory data obtained by different groups studying 
MSC potential (Kumar & Vaidya, 2016; Hsu et al., 2013; 
Hung et al., 2012; Ciapetti et al., 2016; Ito et al., 2015; 
Iida et al., 2010; Ahmed et al., 2016). Thus, further opti-
mization of the protocols for the effective harvesting and 
expansion of MSCs with high differentiation potential as 
well as strategies for examining their biological properties 
and proregenerative mechanisms, are still required to fully 
understand the application potential of these cells .
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