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Epithelial to mesenchymal transition (EMT) is a process 
where cancer cells lose their epithelial features, the cy-
toskeletal architecture is re-organized, the cell shape 
changes and cells activate genes that help to define a 
mesenchymal phenotype, which leads to an increased 
cell motility and dissemination of tumor to distant meta-
static sites. This review describes different signaling net-
works between microRNAs and proteins that regulate 
EMT in tumor growth. Activation of EMT is mediated via 
a series of paracrine signaling molecules. WNT, TGF-β, 
NOTCH and SHH signaling pathways play crucial roles 
in activation of EMT-related transcription factors, such 
as SNAIL, SLUG, ZEB1/2 or TWIST. Recent data provide 
evidence that crosstalk between microRNAs, long non-
coding RNAs and EMT-transcription factors is a crucial 
event in EMT regulation. MicroRNAs also affect the level 
of proteins responsible for cellular contact, adhesion 
and cytoskeletal proteins, which induces changes in the 
epithelial to mesenchymal phenotype transition. Under-
standing those signaling networks may help to identify 
novel biomarkers or develop new treatment strategies 
based on microRNA therapeutics in the future.
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INTRODUCTION

Cancer can be defined as a growth abnormality, char-
acterized by uncontrolled proliferation of abnormal cells 
that can invade normal tissues and organ boundaries and 
then eventually spread throughout the body. In the first 
step of the tumorigenesis process, called “tumor initia-

tion”, genetic alteration of a single cell causes abnormal 
proliferation, which consequently leads to the outgrowth 
of a population of clonally derived tumor cells. During 
tumor progression, successive genetic changes confer 
growth advances (hyperplasia), morphological and func-
tional deviation (dysplasia), altogether driving progressive 
transformation of the normal human cells into highly 
malignant derivatives, finally able to invade neighboring 
tissues and give distant metastases (Cooper, 2000; Hana-
han et al., 2000; Ryan & Faupel-Badger, 2016).

These mutations, driving to oncogenesis, are related to 
two opposing groups of genes: the oncogenes and tumor 
suppressor genes, mostly connected with regulation of 
proliferation and cell cycle. Oncogenes are created by a 
single, dominant mutation event, which has an activating 
capability and leads to gain of function, while a mutation 
in the tumor suppressor genes of both gene loci is need-
ed to drive a loss of gene function (Weinberg, 1994).

On the other hand, cancer cells are in some aspect 
liberated from dependence on signals derived from the 
normal tissue microenvironment, for example those con-
nected with acquiring the ability of tumor cells to ex-
pand in number. This capability can be achieved by an 
increased rate of cell proliferation: upregulation of signals 
promoting proliferation and decreased antigrowth signal-
ing, but also by cancer cells resistance to death, mainly 
apoptosis (Hanahan et al., 2000; Hanahan & Weinberg, 
2011).

In order to fuel growth and division of cancer cells 
more efficiency, tumor development is also connected 
with adjustment of the energy metabolism. Recent re-
ports claim that this reprograming can be related to a 
deregulated uptake of glucose and amino acids, oppor-
tunistic modes of nutrient acquisition, utility of glycoly-
sis and TCA cycle intermediates, increased nitrogen de-
mand, alterations in metabolite-driven gene regulation, 
and metabolic interactions with the microenvironment 
(Pavlova & Thompson, 2016).

To access the unlimited possibility of cell divisions, 
cancer cells also need to overcome a progressive short-
ening of telomeres, i.e. sequences responsible for pro-
tecting the ends of chromosomal DNA during succes-
sive cycles of replication (Hanahan et al., 2000).

When the tumor size is larger than 2–3 mm3 (Sher-
wood & Parris, 1971), it requires a new system of blood 
vessels to provide nutrients and other factors required 
for further growth. Therefore, tumors appear to activate 
the process of angiogenesis by changing the balance of 
expression between angiogenesis inducers and the coun-
tervailing inhibitors (Hanahan & Weinberg, 2011).

Another, worth mentioning aspect of cancer progres-
sion, is interaction of tumor with the immune system. 
During the early stages of tumor development, the ef-
fector immune cells eliminate immunogenic cancer cells 
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which leads to a continuous selection and promotion 
of more aggressive clones with reduced immunogenic-
ity or those able to secrete immunosuppressive factors 
(Fouad & Aanei, 2017). Most tumors progress to a state 
of chronic inflammation, stimulating cancer cell prolif-
eration and metastasis by: genomic instability, epigenetic 
modification, induction of cancer cell proliferation, en-
hancement of cancer anti-apoptotic pathways, stimula-
tion of angiogenesis, and eventually, cancer dissemina-
tion (Gonzalez et al., 2018).

Taken together, we can describe essential alterations 
in the cell physiology that collectively dictate the ma-
lignant growth in eight “hallmarks”, described previ-
ously in influential reviews of Hanahan and Weinberg, 
which include: sustaining proliferative signaling, evading 
growth suppressors, resisting cell death, inducing angio-
genesis, enabling replicative immortality, inducing angio-
genesis, and activating invasion and metastasis (Hanahan 
et al., 2000), reprogramming of energy metabolism, and 
evading the immune destruction (Hanahan & Weinberg, 
2011).

Despite the described pre-invasive cancer features, an 
ability to spread throughout the body is inherently con-
nected with cancer. The abilities of invasion and metas-
tasis of cancer cells can be achieved by the epithelial to 
mesenchymal transition. Understanding the signaling net-
works and cross-talks between proteins and microRNAs 
in that process may enable to develop new treatment 
strategies in the future and may help to identify novel 
biomarkers of malignant tumors. This review discusses 
different signaling networks regulating the epithelial to 
mesenchymal transition (EMT) process.

REGULATION OF EMT BY PROTEIN SIGNALING 
PATHWAYS

Epithelial to mesenchymal transition is a process re-
sponsible for tumor metastasis during which epithelial 
cells gradually transform into mesenchymal-like cells, and 
lose their epithelial functionality and characteristic mo-
lecular features. The first observations of EMT pheno-
type changes were described with a primitive streak of 
chick embryos by Elizabeth Hay in the early 1980s (Hay 
ED., 1995). These findings have opened an entire field 
of research, which associates EMT’s role in both, the 
physiological and pathological processes. Based on the 
biological/physiological context, it can be classified into 
three subtypes: 1) embryogenesis, organogenesis, 2) tis-
sue homeostasis, repairing and fibrosis or 3) cancer pro-
gression and metastasis (Pei et al., 2019; Prieto-García et 
al., 2017; Stone et al., 2016). The transition of epithelial 
cells into mesenchymal cells follows a common and con-
served program with several hallmarks. The key events 
in EMT are the loss of polarized organization of the 
epithelial tissue, the dissolution of the epithelial cell-cell 
junctions, reorganization of the cytoskeletal architecture 
and changes in cell shape, downregulation of signature 
epithelial gene expression, and activation of genes that 
help to define the mesenchymal phenotype, increased 
cell motility and ability to degrade extracellular matrix 
(ECM) proteins to enable invasive behavior (Lamouille 
et al., 2014). Triggering of the EMT process allows can-
cer cells to disseminate from the primary tumor site, in-
vade adjacent tissues and generate metastasis by coloniz-
ing distant sites through the bloodstream and lymphatic 
system. Once a new metastatic niche has been reached, 
cells can revert through an opposite process called MET, 
to re-acquire the initial epithelial characteristics, similar 

to those in the primary tumor. This step is necessary to 
allow metastatic colonization (Prieto-García et al., 2017).

The earliest event in EMT is the loss of cell polar-
ity, following dissolution of tight junctions between the 
cells. It is caused by the loss of epithelial markers, such 
as the E-cadherin. Downregulation of the E-cadherin 
level causes breakdown of adherent junctions between 
cells and loss of cell polarity, leading to acquisition of 
the mesenchymal phenotype with migratory abilities. 
This dynamic process can be caused by a complex inter-
play of several inducers, such as the transforming growth 
factor (TGF-β) or fibroblast growth factor (FGF), sev-
eral receptor tyrosine kinases (RTKs), WNT/β-catenin, 
NOTCH, activation of EMT-inducing transcription fac-
tors (TFs), microRNAs, epigenetic and post-translational 
modifications (Ghahhari & Babashah, 2015; Serrano-
Gomez et al., 2016). These signals regulate the E-cad-
herin activity and morphogenetic changes. Moreover, 
loss of the E-cadherin protein expression at the cancer 
cell surface can be caused by mutations in the E-cadherin 
gene (Petrova et al., 2016).

Under normal, physiological conditions, the EMT pro-
gram is activated in epithelial cells through signals that 
they receive from their neighborhood. In case of carci-
noma pathogenesis, these signals are acquired from the 
recruited cells that form the stroma of tumors, known 
as the tumor microenvironment. This process is medi-
ated via a series of paracrine cell-cell signaling molecules, 
among which WNT, TGF-β and NOTCH ligands play 
the main role (Gonzalez & Medici, 2014).

The WNT signaling pathway (Fig. 1) involves a lot 
of components, but a major effector is the transcrip-
tion factor (TF) β-catenin. WNT signals are trans-
duced across the plasma membrane by the Friz-
zled and low-density lipoprotein receptor–related 
protein (LRP) receptors. In the absence of signal-
ing, β-catenin is phosphorylated by a complex of 
GSK-3β, axin and the tumor suppressor adenoma-
tous polyposis coli (APC), which sequesters β-catenin 
in the cytoplasm and marks it for proteaso-
mal degradation. Binding of the WNT ligand 
to a Frizzled/LRP-5/6 receptor complex causes inhibi-

Figure 1. The WNT signaling pathway.
In the absence of the WNT ligand, β-catenin is phosphorylated by 
a complex of GSK-3β, axin and the tumor suppressor adenoma-
tous polyposis coli (APC), which marks β-catenin for proteasomal 
degradation. Binding of the WNT ligand to a Frizzled/LRP-5/6 re-
ceptor complex causes inhibition the APC/Axin/GSK-3β destruc-
tion complex, which leads to stabilization of β-catenin and its 
translocation to the nucleus for transcription activation.
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tion the APC/Axin/ GSK-3β destruction complex, lead-
ing to stabilization of β-catenin and its translocation to 
the nucleus to activate transcription (Eisenmann, 2005). 
In the past years the role of WNT signaling has been 
described in many research papers, mostly in colorectal 
cancer (Bienz & Clevers, 2000; Li et al., 2019; Qi et al., 
2016; Schwab et al., 2018). Nevertheless, WNT signaling 
is observed in many other cancers, such as the breast 
cancer (Green et al., 2013), liver cancer (Takigawa & 
Brown, 2008), head and neck squamous cancer (Le et al., 
2019), and renal cell carcinoma (Xu et al., 2016; Zhan et 
al., 2017). Mutations of the WNT signaling components 
are the major cause of various cancer types. In numer-
ous cancers, WNT signaling is inappropriately active and 
directly induces SNAIL (SNAI1) and SLUG (SNAI2) 
transcription factors expression (Behrens, 2005). It was 
recently shown that upregulation of Axin2 by WNT 
signaling increases SNAIL levels, leading to EMT (Yook 
et al., 2006). SNAIL can also activate WNT signaling by 
binding to β-catenin, establishing a positive feedback 
loop for WNT-dependent transcription (Stemmer et al., 
2008). SLUG is also stabilized by inhibiting the GSK-
3β kinase activity and initiates EMT transcriptional pro-
grams in different tumor types, including breast cancer 
cells (Wu et al., 2012). WNT-mediated induction of EMT 
through SLUG is consistent with other reports of de-
creased E-cadherin and increased fibronectin levels, after 
accumulation of β-catenin in the nucleus (Brabletz et al., 
2001). WNT has been also linked to an increased ex-
pression of the TWIST transcription factor in mammary 
epithelial cells (Howe et al., 1906).

The NOTCH signaling pathway consists of NOTCH 
receptors, NOTCH ligands and intracellular proteins that 
function to transmit the NOTCH signal to the nucleus. 
NOTCH receptors are transmembrane proteins that are 
composed of an extracellular (NECD), a transmembrane 
(TM) and an intracellular (NICD) domain. NOTCH li-
gands are also transmembrane proteins. By binding to 
the NOTCH NECD they induce proteolytic cleavage 
and release of NICD, which then enters the cell nucleus 
to active transcription and modify gene expression (Ehe-
bauer et al., 2006; Kopan & Ilagan, 2009). NOTCH is a 
key regulator in the induction of EMT in several differ-
ent types of carcinoma, such as the breast cancer, lung 
and squamous cell carcinoma (Natsuizaka et al., 2017; 
Yuan et al., 2014b). Components of the NOTCH path-
way are expressed at high levels in the invasive regions 
of tumors, which typically express vimentin, a mesenchy-
mal marker, which suggests a crucial role for this path-
way in EMT regulation (Saad et al., 2010). SNAIL and 
SLUG are mediators of NOTCH-mediated repression 
of E-cadherin and β-catenin activation (Saad et al., 2010). 
Interestingly, NOTCH signaling can also cooperate with 
other pathways, such as TGF-β, to induce the EMT pro-
gram. The crosstalk between these pathways occurs via 
SMADs, which associate with other transcription factors 
to regulate expression of genes required for acquisition 
of the mesenchymal fate. For example, silencing compo-
nents of the NOTCH pathway prevent TGF-β-induced 
EMT in keratinocytes (Blokzijl et al., 2003).

The Hedgehog family includes the Sonic Hedgehog 
(SHH), Desert Hedgehog (DHH) and Indian Hedge-
hog (IHH) proteins. Hedgehog ligands bind to patched 
homolog 1/2 (PTCH1/2), which inhibits activity of 
Smoothened (SMO) in the absence of ligand binding. 
Activation of PTCH1/2 releases SMO and initiates an 
intracellular cascade that activates the GLI family tran-
scription factors, which promote transcription of the tar-
get genes, such as PTCH, WNT and SNAIL (Gonzalez 

& Medici, 2014). The Hedgehog (HH) pathway signal-
ing can be involved in various stages of carcinogenesis 
in different tumors. For example, in pancreatic and es-
ophageal cancer, activation of this signaling pathway is 
found at the early stages of tumor, as well as in the met-
astatic tumor (Ma et al., 2006). In other tumors, such as 
the gastric cancer and prostate cancer, activation of the 
HH signaling pathway is associated with tissue invasion 
and increased metastatic potential (Sheng et al., 2004). 
In context of the EMT regulation, the Farhart’s group 
described that TGF-β-induced SHH may regulate EMT 
and tumorigenicity in bladder cancer (Islam et al., 2016). 
Moreover, they also observed an elevated expression of 
N-cadherin and SHH in high grade and stage tumor sam-
ples, and conversely, downregulation of these genes was 
observed in the low grade and stage tumor samples. Re-
cent results also support the hypothesis that SHH pro-
mote EMT by suppressing E-cadherin and enhancing  
N-cadherin and vimentin (Kitagawa et al., 2019).

The EMT process is mediated by several EMT-relat-
ed transcription factors (EMT-TFs), such as the SNAIL 
(SNAI1) and SLUG (SNAI2), TWIST1/2, ZEB1/2. 
Briefly, they repress genes associated with the epithelial 
phenotype (such as E-cadherin, etc.) and induce the ex-
pression of the mesenchymal genes (such as vimentin, fi-
bronectin) (Lu & Kang, 2019; Tsai & Yang, 2013).

Both, SNAIL and SLUG play critical roles in induc-
tion of EMT during embryonic development and cancer 
progression (Aybar et al., 2003). In cancer, their expres-
sion leads to a decreased E-cadherin level, enhanced tu-
mor cell invasion and metastatic phenotypes in mouse 
tumor models and cell line studies, which is associated 
with poor prognosis in patients with the breast, colorec-
tal, and hepatocellular carcinoma (Blanco et al., 2002; De 
Craene et al., 2005; Shioiri et al., 2006; Tran et al., 2014; 
Yook et al., 2006). For example, using multiple genetic 
breast cancer models with inducible SNAIL transgene or 
SNAIL conditional knockout, it was demonstrated that 
the SNAIL expression is required for breast tumor me-
tastasis to the lung (Tran et al., 2014). SNAIL and SLUG 
can promote breakdown of the extracellular matrix via 
upregulation of various matrix metalloproteases (MMPs) 
(Tsai & Yang, 2013). The TGF-β, WNT, and NOTCH 
pathways, as well as growth factors, can activate SNAIL 
expression depending on the physiological context (Pei-
nado et al., 2007). Moreover, SNAIL and SLUG can also 
cooperate with other transcription regulators to control 
gene expression (Lamouille et al., 2014).

Similarly to SNAIL and SLUG, TWIST1/2 belongs 
to the bHLH (basic helix-loop-helix) transcription fam-
ily that functions as master regulators of a wide array of 
developmental and pathological processes. In particular, 
TWIST-induced suppression of E-cadherin transcription is 
indirect and is mediated by its transcriptional activation 
of SLUG, as SLUG knockdown blocks the ability of 
TWIST to activate EMT in mammary cells (Casas et al., 
2011). TWIST expression can be activated by hypoxia-
inducible factor 1-alpha (HIF-1a) transcription factor un-
der hypoxia conditions to promote EMT and metastasis 
(Yang et al., 2008). Using xenograft and transgenic tumor 
models, it has been shown that TWIST1 is essential for 
tumor cell dissemination and metastasis in breast cancer 
and squamous cell carcinoma (SCC), although turning 
off its expression is required for formation of metasta-
sis in distant organs (Tsai et al., 2012; Xu et al., 2017). 
TWIST overexpression also correlates with cancer inva-
siveness and metastasis in patients (Lee et al., 2006; Yang 
et al., 2004).
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Similarly to SNAIL, ZEB1 and ZEB2, two members 
of the ZEB transcription factor family, directly bind to 
the E-box elements and repress expression of E-cadherin 
(Comijn et al., 2001). They also increase the level of mes-
enchymal proteins, i.e. vimentin and N-cadherin (Bindels 
et al., 2006; Vandewalle et al., 2005). Expression of the 
ZEB proteins can be induced by TGF-β, WNT signaling 
and other growth factors (Lamouille et al., 2014). It has 
been shown experimentally in the cancer context, that 
ZEB1/2 promoted cell migration and invasion in breast 
cancer and colorectal cancer (Comijn et al., 2001; Vande-
walle et al., 2005).

The EMT process is also activated by epigenetic 
modifications. Epigenetic modifications, such as DNA 
methylation, histone modification, or nucleosome posi-
tioning, alter the structure of chromatin, thereby regu-
lating gene expression. Among epigenetic mechanisms, 
it is important to highlight modification of the histone 
tails, global hypomethylation of the genome, and specific 
hypermethylation of cytosine residues in CpG islands in 
the DNA promoter regions, for their role in gene re-
pression and heterochromatin formation (Kouzarides, 
2007). Inactivation of a promoter by hypermethylation is 
common event in several human carcinomas (Tamura et 
al., 2000.; Wijnhoven et al., 2000; Yoshiura et al., 1995). 
These modifications cause gene inactivation due to tran-
scriptional silencing, as a consequence of impaired TFs 
binding to their promoters. On the other hand, differ-
ent types of modifications in the histone core and tails 
have been described which can affect the chromatin dy-
namics and gene expression. Hypermethylation of CDH1 
has been reported and associated with EMT and inva-
siveness (Tamura et al., 2000). Several histone and DNA 
methyltransferases, and chromatin modifying enzymes 
related to EMT, have been described. Among them, 
KDM1A, KDM4B, and KDM6B, causing histone H3 
demethylation at the SNAIL promoter; MMSET, which 
binds to the TWIST promoter increasing its activation 
by methylation; LSD1 and SUV39H1, which act by sup-
pressing the CDH1 transcription; SET8 which interacts 
with TWIST acting both, as a repressor or inducer of 
gene expression, and also mediates transcriptional acti-
vation of WNT target genes; G9A and PRMT5, inter-
acting with both, CDH1 and SNAIL (McDonald et al., 
2011; Serrano-Gomez et al., 2016). Taken together, the 

epigenetic modifications described in cancer suggest that 
aberrant methylation might be triggered by EMT-related 
transcription factors or epigenetic regulators associated 
with them. Moreover, epigenetic modifications may be 
interdependent and successive, and work in different 
combinations to induce activation of the EMT program. 
On the other hand, reversibility of the methylation/dem-
ethylation state can mediate the shift between EMT and 
MET. These findings open new fields of research using 
methylation inhibitors, as targeting epigenetic regulators 
of EMT could be a promising therapeutic option. How-
ever, these treatments, as some authors have indicated, 
could also have negative effects, since just as they would 
reactivate the tumor suppressor gene expression, they 
could also involuntarily activate oncogenes (Prieto-García 
et al., 2017).

To summarize, EMT is regulated by different signaling 
pathways which lead to acquisition of the mesenchymal 
phenotype by epithelial cancer cell. The EMT regulatory 
network is schematically described in Fig. 2.

THE ROLE OF MICRORNA IN CANCER

As mentioned above, EMT is a dynamic process that 
can be caused by lots of inducers, among which micro-
RNAs seem to be interesting regulators (Serrano-Gomez 
et al., 2016). MicroRNA (miRNAs) are small non-coding 
RNAs, with an average length of 22 nucleotides. Most 
miRNAs are transcribed from DNA sequences into pri-
mary miRNAs (pri-miRNAs) and processed into pre-
cursor miRNAs (pre-mRNAs), and then into mature  
miRNAs (Mohr & Mott, 2015).

There are different types (classes) of small regulatory 
RNAs: 1) small interfering RNAs (siRNAs), and 2) mi-
croRNAs (miRNAs), which are generated by the cleav-
age of double-stranded (ds) RNA precursor molecules by 
type III ribonuclease Dicer. Although they share some 
common biogenesis factors, they are very different in 
terms of their biological role in the cell (Creugny et al., 
2018). MicroRNAs can directly repress target genes by 
inducing cleavage and degradation of their mRNA tar-
gets through a high degree of complementarity match-
ing with their 3’ untranslated regions (3’UTR). Lower 
complementarity causes translational repression (Mohr & 
Mott, 2015).

MicroRNAs were found to downregulate gene expres-
sion by base-pairing with 3’UTRs of the target messen-
ger RNA (mRNAs) (Reinhart et al, 2000). Each miRNA 
may regulate many target genes and more than just one 
miRNA may bind to the same 3’ UTR (Ciesla et al., 
2011). These discoveries indicated that this class of non-
coding RNA molecules may be a new regulatory factor 
that controls gene expression.

As described previously, cancers are caused by mu-
tations and deregulation of signaling pathways in the 
cells. The link between microRNA deregulation and can-
cer was described for the first time by Calin et al.’s re-
search results. They found that the miR15a/16-1 cluster 
(between exon 2 and exon 5 in the Leu2 gene) is fre-
quently deleted in chronic lymphocytic leukemia (CLL), 
which suggests that these two microRNAs have a tumor 
suppressor activity (Calin et al., 2002). Another mecha-
nism leading to an aberrant expression of microRNAs, 
and thus to cancer progression, is the altered expression 
and function of enzymes involved in the biogenesis of 
miRNA, like Drosha and Dicer. Their decreased expres-
sion has been found in 39% of ovarian cancer patients 
(Merritt et al., 2008). Transcriptional control is another 

Figure 2. Regulatory network in EMT.
The EMT process can be regulated by many signaling pathways, 
transcription factors and microRNAs.
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important and complex regulation mechanism of miR-
NA expression. Upregulation of the miR-17/92 cluster 
modulates an anti-apoptotic action of E2F1, which me-
diates the MYC proliferative effect (Acunzo et al., 2015; 
O’Donnell et al., 2005).

Furthermore, some miRNAs may function as on-
cogenes or tumor suppressors. miRNAs that are over-
expressed in cancer may function as oncogenes and 
promote tumor development by negative regulation of 
tumor suppressor genes and genes that control cell dif-
ferentiation and apoptosis. Underexpressed miRNAs 
may function as suppressor genes and they inhibit cancer 
development by regulation of oncogenes and genes that 
control cell differentiation and apoptosis (Shenouda & 
Alahari, 2009; Zhang et al., 2007).

MICRORNAS AS THE KEY REGULATORS OF EMT

miRNAs may act as regulators of both, EMT facilitat-
ing tumor dissemination and its reverse process MET, 
which promotes metastatic colonization (Tsai & Yang, 
2013). Interestingly, attenuation of global biogenesis of 
miRNAs by miR-103/107 targeting DICER was demon-
strated to induce EMT and metastasis in breast cancer 
(Martello et al., 2010). Global miRNA downregulation 
was shown previously to be a common trait in tumors 
(Lu et al., 2005), whereas poor prognosis of different 
cancer types is associated with a diminished expression 
of miRNA processing factors (Sandberg et al., 2008).

miRNAs regulate EMT mostly by targeting the main 
transcription factors involved in this process, such as 
SNAIL, SLUG, TWIST, ZEB1 and ZEB2. Neverthe-
less, those factors may also function as regulators of the 
miRNAs level. Another type of miRNA’s role is regu-
lation of the cellular contact, adhesion and cytoskeletal 
proteins, which induces changes in the epithelial to mes-
enchymal phenotype (Expósito-Villén et al., 2018). Ex-
amples of those interactions are described below.

Expression of SNAIL transcription factor may 
be regulated by different miRNAs with implications 
in the EMT process. The SNAIL 3′UTR acts as a 
sponge for multiple metastasis-related miRNAs, such as  
miR-153, miR-199a-5p, miR-203, miR-204, miR-22, and  
miR-34c (Li et al., 2015). The miR-30 family is one of 
the most widely described SNAIL regulators in several 
tumor types, including non-small cell lung carcinoma 
(Kumarswamy et al., 2012) or breast cancer (Xiao et al., 
2018), which leads to EMT regulation in epithelial tu-
mors, or is responsible for non-canonical mechanism of 
SNAIL effects in the mesenchymal tumors, including 
rhabdomyosarcoma (Skrzypek et al., 2018).

miRNAs can also regulate the SLUG level, such as 
for example miR-203 in glioblastoma (Liao et al., 2015) 
or breast cancer (Zhang et al., 2011).

The TWIST1 level is also affected by several miRNAs, 
including miR-26b-5p in hepatocellular carcinoma (Wang 
et al., 2016), miR-106b in endometrial cancer (Dong et 
al., 2014), miR-361-5p in glioma cells (Zhang et al., 2017) 
or miR-720 (Li et al., 2014b) in breast cancer or miR-300 
in gastric cancer (Yu et al., 2014).

ZEB1 and ZEB2 expression during EMT is regulated 
by the largest number of miRNAs. For example, ZEB1 
it is targeted by miR-33 in adenocarcinoma (QU et al., 
2015), miR-128 in esophageal squamous cell cancer, and 
miR-200 (Zhao et al., 2018) in breast cancer (Bai et al., 
2014).

Some of the crucial regulators of the ZEB2 level are 
members of the miR-200 family. They were shown as 

regulators in different tumor types, including glioma (Li et 
al., 2016), lung cancer (Jiao et al., 2016), and gastric carci-
noma (Li et al., 2014a). ZEB2 is targeted in lung cancer by  
miR-132 (You et al., 2014) and miR-154 (Lin et al., 2016), 
or in colorectal cancer by miR-132 (Zheng et al., 2014).

Nevertheless, besides examples of single miRNAs 
targeting different transcription factors in EMT, the 
most interesting are cross-talks between distinct tran-
scription factors and miRNAs. One miRNA may 
have plenty of targets in different genes to regu-
late EMT. Therefore, transcription factors may be 
co-regulated by one miRNA. miR-200 was shown 
to regulate both SLUG and ZEB1 (Zhang et al., 2014), 
as well as the ZEB1 and SNAIL levels (Díaz-López et 
al., 2015) (Shan et al., 2013), miR-218 affects the level 
of SLUG and ZEB2 (Shi et al., 2017), and miR-129 co-
regulates TWIST and SNAIL (Yu et al., 2015b). These 
types of regulation demonstrate key roles of miRNAs in 
regulation of the EMT process.

On the other hand, there are also examples of mi-
RNAs regulated by more than one EMT-associated 
transcription factor. An interesting example is miR-375, 
which is regulated by direct binding of SNAIL (Xu et 
al., 2014b) and ZEB1 to its promoter (Selth et al., 2017). 
During EMT, both SNAIL and ZEB1 engage miR-200f 
epigenetic and transcriptional regulation (Díaz-López et 
al., 2015).

The EMT-related transcription factors may be in-
volved in cross-talks based on their regulation of miRNA 
expression, with implications in epithelial tumor progres-
sion and the role of EMT in this process. SNAIL and 
SLUG repress miR-101 expression, which is essential for 
malignant phenotypes and EMT induction of squamous 
cell carcinoma of the oral tongue (Zheng et al., 2015), 
whereas miR-101 acts as a tumor suppressor by direct 
ZEB1 targeting in various cancers, including colorectal 
cancer (Xiong et al., 2018), so there are cross-talks be-
tween EMT-related transcription factors via miRNAs.

Double negative or positive feedback loops between 
miRNAs and transcription factors are also described 
in the literature. Those loops are made of two interac-
tions, so that the EMT-related transcription factors and 
miRNAs regulate each other. That regulation may either 
induce or repress expression. The mechanism may in-
volve direct binding of transcription factors to miRNA 
promoters or direct binding of miRNAs to 3’UTR re-
gions of transcription factors or can be indirect through 
mediators. Below, several examples of that regulation are 
described. Positive feed-forward regulatory loop was de-
scribed for miR-373 that induces the TWIST level, and 
subsequently TWIST induces miR-373 expression by 
binding to its promoter (Chen et al., 2015). miR-1 and 
miR-200 can regulate SLUG, and SLUG is also a direct 
repressor of their action, which forms an interesting neg-
ative regulatory loop (Liu et al., 2013a). EMT has been 
also shown to be regulated by the miR-34 and SNAIL 
double negative feedback loop. miR-34 binds to 3’UTR 
region of SNAIL and thereby represses its expression, 
whereas SNAIL binds to miR-34 promoter to diminish 
its level (Siemens et al., 2011). That loop regulates EMT 
in human colon and breast cancer (Hahn et al., 2013). 
That mechanism is dependent on the p53 function. 
Without the wild-type p53 function, decreased levels 
of miR-34 result in a SNAIL-dependent EMT (Kim et 
al., 2011), whereas activation of p53 down-regulates the 
EMT-inducing transcription factor SNAIL via induction 
of the miR-34 genes (Siemens et al., 2011).

An interesting negative feedback loop also exists be-
tween miR-203 and SLUG (Ding et al., 2013), and be-
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tween miR-203 and SNAIL that acts as a regulator of 
the miR-200 expression and its targets, ZEB1 and ZEB2 
(Moes et al., 2012).

Certain miRNAs may induce EMT because they act 
as additional blockers of E-cadherin, besides SNAIL and 
SLUG. miR-221, which is regulated by SLUG, suppress-
es the E-cadherin level and thereby promotes breast can-
cer metastasis (Pan et al., 2016). In breast cancer, miR-
210 suppresses E-cadherin expression by targeting the 
open reading frame region of E-cadherin mRNA (Tang et 
al., 2018). Another example is pro-metastatic miR-9 – it 
also targets mRNA encoding E-cadherin (Ma et al., 2010). 
miR-10b and miR-214 also directly regulate E-cadherin by 
targeting its 3´UTR (Zhang et al., 2015) (Liu et al., 2018). 
Moreover, multiple miRNAs regulate E-cadherin level 
indirectly, such as for example members of the miR-200 
family (Korpal et al., 2008).

MiRNAs acting as EMT inducers may not be equal 
functionally. From the set of EMT-associated miRNAs, 
the most commonly upregulated miRNAs, miR-22 and 
miR-100, and the most significantly downregulated miR-
NAs, are capable of inducing EMT in mammary epithe-
lial cells (Martello et al., 2010). MiRNAs inducing EMT 
may have different functions which depend on their spe-
cific target genes.

MiRNAs may regulate not only the epithelial, but also 
mesenchymal markers, such as vimentin. MiR-22 was 
shown to affect its level (Xu et al., 2018). What is more, 
miR-199a modulates the N-cadherin level (Suzuki et al., 
2014), whereas miR-27a directly regulates vascular en-
dothelial (VE)-cadherin (Zhao et al., 2016).

The RhoA protein plays a crucial role in re-organiza-
tion of the actin cytoskeleton and its level is affected by 
several miRNAs, including miR-122 (Wang et al., 2014), 
miR-24 (Papadimitriou et al., 2012), and miR-1291 (Xu et 
al., 2017a).

miR-29b inhibits metastasis by regulating the level 
of proteins involved in epithelial plasticity and differen-
tiation in breast cancer, such as TGFB1, ITGA6, and 
ITGB1. Moreover, miR-29b also affects several pro-met-
astatic proteins levels, such as VEGF, MMP2, MMP9 or 
PDGF (Chou et al., 2013).

MiRNAs may be also regulated by long non-coding 
RNAs in the EMT process. In colorectal cancer, long 
noncoding RNA XIST modulates EMT by compet-
ing for miR-200b-3p to modulate the ZEB1 expression 
(Chen et al., 2017a). Another example is long non-coding 
RNA UICLM which promotes colorectal cancer liver 
metastasis by acting as a competitive endogenous RNA 
for microRNA-215 to regulate the ZEB2 level (Chen et 
al., 2017b). What is more, the SLUG level was demon-
strated to be regulated by lncRNA UCA1 by interaction 
with miR-203 (Xiao et al., 2017). Another interesting ex-
ample is lncRNA CAR10, which directly binds two miR-
NAs: miR-30 and miR-203, and in that way regulates 
the level of both, SNAIL and SLUG in EMT (Ge et 
al., 2019). MALAT1 lncRNA acts as a sponge for miR-
126-5p that directly targets TWIST, SLUG and VEGF 
in colorectal cancer, which regulates both metastasis and 
angiogenesis (Sun et al., 2019). An increasing number of 
research papers shows several lncRNAs involved in reg-
ulation of EMT by modification of the TGF-β (Yuan et 
al., 2014a) or WNT pathways (Jiang et al., 2018). Usually, 
lncRNAs act as sponges for miRNAs involved in EMT. 
Examples of interactions between lncRNAs, miRNAs 
and EMT-related factors are shown in Fig. 3.

MiRNAs may be also affected by epigenetic modifi-
cations. miRNAs’ promoters may be hypermethylated 
or demethylated, which affects their expression. This 

mechanism was described in different cell types for sev-
eral miRNAs regulating EMT, such as for example miR-
200 (Pieraccioli et al., 2013) and miR-203 (Taube et al., 
2013). On the other hand, an opposite mechanism also 
regulates EMT. Impaired EMT process may be a result 
of targeting epigenetic modulators, such as DNMT by  
miR-152 (Yu et al., 2015a).

MiRNAs associated with EMT-related transcription 
factors in epithelial tumors may also play crucial roles 
in progression of the mesenchymal tumors. An interest-
ing example is regulation of rhabdomyosarcoma growth 
– in that tumor, SNAIL regulates expression of myo-
genic associated miRNAs, such as miR-1, miR-206, and 
miR-378, to affect tumor growth involving other mecha-
nisms than EMT (Skrzypek et al., 2018). miR-1 was pre-
viously shown to inhibit EMT via SLUG-dependent and 
via SLUG-independent mechanisms (Liu et al., 2013b). 
Moreover, tumor suppressor miR-1 restrains the epithe-
lial-mesenchymal transition and metastasis of colorec-
tal carcinoma via the MAPK and PI3K/AKT pathways 
(Xu et al., 2014a). miR-206 is a regulator of SLUG and 
MET in different tumor types. For example, in epithe-
lial tumors, miR-206 regulates EMT in human lung ad-
enocarcinoma cells partly by targeting MET (Chen et al., 
2016). That mechanism of regulation is also important in 
metastasis of mesenchymal tumors, such as rhabdomyo-
sarcoma (Yan et al., 2009; Szewczyk et al., 2017). Those 
results suggest that miRNAs identified to regulate EMT 
in epithelial tumors may be also significant in metastasis 
of the mesenchymal tumor types.

MICRORNAS AS BIOMARKERS AND THERAPEUTICS IN 
CANCER

The main cause of death in cancer patients is metas-
tasis of tumor cells to distant organs from the primary 
epithelial tumor. For this reason, understanding the cel-
lular mechanisms that lead to metastasis is critical in the 
fight against cancer.

miRNAs may have clinical relevance as biomarkers. 
These biomarkers can be used to indicate presence of 
a given cancer and predict its stage, progression or drug 
efficiency (Armand-Labit & Pradines, 2017; Ciesla et al., 
2011).

The use of circulating miRNAs as biomarkers in dif-
ferent cancer types is a rapidly developing field. Tumor 
cells can release miRNAs that can be stabilized by incor-
poration into microvesicles which have shown stability in 
the circulation, following multiple freeze-thaw cycles and 
prolonged exposure to room temperature. miRNAs have 
also shown stability in other body fluids, but most of the 
studies focused on serum miRNAs as biomarkers. More-
over, the circulating miRNAs show constant level in the 
blood of healthy individuals. In cancer patients, most of 

Figure 3. Selected examples of crosstalks between lncRNAs, 
miRNAs and EMT-related factors.
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the circulating miRNAs are directly delivered from the 
tumor tissue (Armand-Labit and Pradines, 2017). On the 
other hand, circulating miRNAs can occur as a result 
of treatment, diet or other factors, which increases the 
noise level in these assays (Hayes et al., 2014). The most 
current clinical trials for the use of miRNAs as biomark-
ers for cancer prognosis and drug efficacy studies were 
described in Table 1.

Deregulation of miRNA expression plays a key role in 
cancer development. Modulating of miRNA levels or re-
storing their function may be a new strategy in the can-
cer treatment. There are two ways to modulate the level 
of a particular miRNA: restoration of tumor suppressor 
miRNA by a straightforward transfection of synthetic 
mimics or transduction of cells with vectors express-
ing miRNAs (Miroshnichenko & Patutina, 2019). On 
the other hand, new technologies have been developed 
to inhibit functions of oncogenic miRNAs. Such com-
pounds may target the miRNA sequence or interrupt the 
miRNA regulatory activity through interaction with their 
mRNA targets (Miroshnichenko & Patutina, 2019). Mod-
ulation of the miRNAs’ level may be used to directly tar-
get tumor cells or it may also enhance other therapies, 
which has been shown in small cell lung cancer for miR-
100 that regulated chemo-resistant properties of cancer 
cells (Xiao et al., 2014). Another example is the epigenet-
ic silencing of miR-199b-5p in a chemoresistant ovarian 
cancer (Liu et al., 2014).

The miRNA treatment and therapies are challenged 
by several obstacles. One is associated with off-target ef-
fects, which can lead to unwanted responses in tissues 
other than the intended ones (Broderick & Zamore, 
2011; Chakraborty et al., 2017). Another obstacle is the 
successful delivery of the therapeutic agent to the target 
tissues. Therapeutics must overcome problems associated 
with oligonucleotides, such as degradation by nucleases, 
renal clearance, failure to cross the capillary endotheli-
um, ineffective endocytosis by target cells, or ineffective 
endosome release (Kim & Rossi, 2007). Different de-

livery systems are used for better bioavailability, includ-
ing PEGylated liposomes, lipidoids, and biodegradable 
polymers. Vesicles with diameters between 50 and 500 
nm have been used to deliver therapeutic miRNAs and 
siRNAs. These vesicles prevent the drugs from being fil-
tered by the kidneys and improve intracellular delivery 
(Broderick & Zamore, 2011).

Furthermore, while local delivery into the eye or skin 
has been shown to improve bioavailability in the target-
ed sites, systemically delivered miRNA formulations and 
RNA-based miRNA targeting agents might be negatively 
impacted by the host immune system, since macrophages 
and monocytes can remove complexed RNAs from the 
extracellular spaces (Broderick & Zamore, 2011). For in-
stance, 21 base pair or longer dsRNAs can lead to a se-
quence-independent interferon response (Pai et al., 2006). 
An additional challenge is represented by the release of 
RNA-based therapeutics formulated in complexes larger 
than 5 nm in diameter, from the blood to the target 
tissue through the capillary endothelium (Whitehead et 
al., 2009). Another challenge is the safety evaluation of 
miRNA-based therapeutics, such as the mentioned above 
potential immune response against the delivery system, 
toxicity caused by the chemical modification or unex-
pected off-target effects that are likely to occur, because 
each miRNA can affect hundreds of target genes. An-
other obstacle for anti-miR therapeutics is the complexi-
ty of the assessment of anti-miR efficacy. This is because 
anti-miR treatment may not always reduce the miRNA 
expression levels. High throughput profiling of global 
mRNA and protein changes in samples could provide 
more comprehensive information regarding the specific-
ity and effectiveness of a particular anti-miR treatment 
(Chakraborty et al., 2017).

Clinical trials were established for miRNA mimics 
(to overexpress the transcript), as well as repressors (to 
silence the transcript function). The first recently com-
pleted phase I trial based on a new technology termed 
„TargomiR” exhibited encouraging results in patients 

Table 1. Examples of clinical trials with microRNA as clinical biomarkers in cancer (clinicaltrials.gov).

miRNA gene Trial Clinical trial num-
ber; phase status Cancer type investigated References

miR-31-3p 
miR-31-5p;

Expression of microRNA biomarkers as pro-
gnostic of patient outcomes or predictive of 
the benefit from anti-EGFR therapy in stage 
III colon cancer

NCT03362684; 
phase 3 (comple-
ted)

Colorectal cancer (CRC) (Taieb et al., 2014)

Numerous 
miRNAs

MicroRNA Profile in early-stage cervical 
cancer

NCT04087785 
(completed) Cervical cancer –

Numerous 
miRNAs

MicroRNA profile of early cardiotoxicity in 
breast cancer patients treated with anthra-
cyclines

NCT02065908 
(completed) Breast cancer –

miR-10b Expression levels as biomarkers of tumor 
grade, survival and genetic variation

NCT01849952;
(recruiting) Glioma –

miR-29a Exploration of prognostic value of miR-29b 
in tissue, blood and saliva NCT02009852 Oral Squamous cell car-

cinoma –

Numerous 
miRNAs

Identifying biomarkers for patient stratifica-
tion in tissue samples

NCT01828918 
(unknown) Colorectal cancer –

Numerous 
miRNAs

Analysis of microRNA expression in basal cell 
carcinoma

NCT01498250
(completed) Basal cell carcinoma –

miR-29 family Investigate the role of microRNA in Twist1-
-mediated cancer metastasis

NCT01927354; 
(unknown)

Head and neck squamous 
cell carcinoma –

Circulating 
secret miRNAs Biomarker of response to treatment NCT01391351; 

(completed) Breast cancer –

Numerous 
miRNAs

MicroRNAs Expression profiles in initiation, 
progression and treatment response

NCT01108159; 
(completed) Hematologic cancer –

http://clinicaltrials.gov
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with malignant pleural mesothelioma or non-small cell 
lung cancer. Briefly, TargomiR delivery vehicles contain 
a miRNA mimic, the drug delivery vehicle – EDVs that 
are nonliving bacterial minicells (nanoparticles), and a 
targeting moiety (i.e. a specific antibody that recognizes 
a protein on a target cells). In that first human trial of 
TargomiR drug, the miRNA mimic for miR-16 and a 
bispecific antibody to the epidermal growth factor recep-
tor (EGFR) were used (Reid et al., 2013; van Zandwijk 
et al., 2017). Other clinical studies of miRNAs are de-
scribed in Table 2. They give hope for an interesting fu-
ture for miRNA drugs in cancer.

CONCLUSIONS AND PERSPECTIVES

The level of different proteins regulating EMT may 
be affected by non-coding RNAs, such as miRNAs.  
MiRNAs may regulate EMT-related transcription factors 
by direct binding to the 3’UTR region of their mRNA 
or indirectly, as well as those transcription factors may 
regulate their level. Sometimes there are crosstalks be-
tween several miRNAs and more than one transcription 
factor, as well as feedback loops are described in the 
literature. MiRNAs regulate not only the EMT-related 
transcription factors, but they also affect the level of epi-
thelial and mesenchymal markers and proteins associated 
with reorganization of the cytoskeleton. Long non-cod-
ing RNAs usually act as sponges for miRNAs involved 
in EMT regulation. Understanding of the complicated 
signaling networks regulating EMT may help to identify 
novel biomarkers or develop new treatment strategies. 
Some of the miRNAs described above have already been 
enrolled in clinical trials as miRNA based therapeutics. 
For example miR-34 and miR-29 based therapeutics are 
under investigation in phase 1 clinical trials (Hanna et 
al., 2019). In the future, there are perspectives for more 
miRNAs to be used in the therapeutic approaches.
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