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Rsp5 is a conserved ubiquitin ligase involved in regulation of numerous cellular processes. A 
growing number of publications describing new functions of the ligase have appeared in recent 
years. Rsp5 was shown to be involved in the control of intracellular trafficking of proteins via 
endocytosis and multivesicular body sorting.  Moreover, nuclear functions of Rsp5 in response to 
various stresses have been discovered. Rsp5 is also involved in the regulation of unsaturated fat-
ty acid and sterol synthesis and phospholipid composition. Here, an overview of Rsp5 functions 

with emphasis on its involvement in the regulation of lipid biosynthesis will be presented.
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UbiqUiTinATion

Numerous cellular proteins are modified 
post-translationally by conjugation of the polypep-
tide ubiquitin. Among them are cell cycle regula-
tors, transcription activators, signaling proteins, and 
enzymes involved in metabolic pathways. Therefore, 
the ubiquitination system regulates a broad array of 
cellular processes. Aberrations in the system have 
been implicated in the pathogenesis of major diseas-
es such as cancer, diabetes, and neurodegenerative 
disorders (reviewed by Weissman, 2001).

Ubiquitination is a process of ubiquitin con-
jugation to the protein substrate (Hereshko & Ciech-
anover, 1998). The process is carried out by a multi-
enzyme cascade involving enzymes from different 
classes. First, ubiquitin is activated by E1 activating 
enzyme. In yeast cells there is only one E1 enzyme 
— Uba1, which is essential for growth. The activa-

tion is ATP-dependent and occurs with the forma-
tion of a thioester bond between a cysteine in the 
active center of E1 and the C-terminus of ubiquitin. 
The next step is the transfer of activated ubiquitin 
to a cysteine residue located in the active center of 
conjugating enzyme E2. Thirteen E2 enzymes have 
been identified in yeast. Ubiquitin is then trans-
ferred to the acceptor protein either directly from 
the E2 enzyme or indirectly with an involvement of 
a ubiquitin ligase, the E3 enzyme. Isopeptide bond is 
formed between the C-terminal glycine of ubiquitin 
and a lysine of the substrate protein or from another 
ubiquitin molecule. The E3 ligases play important 
roles in recognition and binding specific substrates 
in a particular moment and compartment of the cell. 
They are grouped in two classes: protein complexes 
with a RING-finger catalytic domain, such as APC 
(anaphase promoting complex) (Jackson et al., 2000), 
and ligases containing a Hect domain (homologus 
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to E6-AP carboxy terminus) (Huibregtse et al., 1995). 
Five ligases from the Hect class are known in yeast: 
Rsp5, Ufd4, Tom1, Hul4, and Hul5 (Wang et al., 
1999).

Ubiquitin is a 76 amino acid-long polypep-
tide that is highly evolutionarily conserved. It con-
tains seven lysine residues K6, K11, K27, K29, K33, 
K48, and K63 (Arnason & Elison, 1994), all of which 
can be used for conjugation with other ubiquitin 
molecules. There are three types of ubiquitination: 
monoubiquitination, the attachment of a single ubiq-
uitin, multiubiquitination — attachment of multiple 
ubiquitin molecules to a protein, and polyubiquiti-
nation, in which ubiquitin is attached to a lysine of 
another ubiquitin and a long polyubiquitin chain is 
formed on the protein. Mono- or polyubiquitination 
of proteins by K63-linked ubiquitins are signals for 
endocytosis, vacuolar degradation and chromatin 
remodeling (see a review by Hicke, 2001). Polyu-
biquitination affects also proteins involved in DNA 
repair, transcription, cell cycle, and endocytosis of 
plasma membrane proteins (Weissman, 2001; Lind-
sten et al., 2002). Polyubiquitination through K48 or 
K29 of ubiquitin is a signal for 26S proteasomal deg-
radation of short-lived or misfolded proteins (Hoch-
strasser, 1996; Hershko & Ciechanover, 1998).  The 
functions of the polyubiquitin chain linked by other 
lysines: K6, K11, K27, and K33 have not been dis-
covered yet. 

Rsp5 ubiquitin-protein ligase and its domain struc-
ture

The best-studied ubiquitin ligase in yeast, the 
eukaryotic model organism, is Rsp5 (Huibregtse et 
al., 1995). It belongs to the Nedd4 family of ubiqui-
tin ligases implicated in diverse cellular functions. 
Nedd4-like proteins are found in eukaryotes from 
yeasts to mammals and are defined by a similar 
domain organization (reviewed by Ingham et al., 
2004). In the baker’s yeast there is only one protein 
from the Nedd4 family (Rsp5), but this family has 
expanded further in higher eukaryotes, for exam-
ple there are nine paralogous proteins in humans 
(Fig. 1). The Nedd4 (neural cell-expressed develop-
mentally downregulated) (Kumar et al., 1992) ligase 
(also referred to as Nedd4-1) is the founding member 
of the Nedd4 family. Several substrates and binding 
partners of Nedd4 have been identified and its func-
tion in signal transduction, protein trafficking and 
oncogenesis is documented  (Shearwin-Whyatt et al., 
2006; Wang et al., 2007). Nedd4 is involved in the 
regulation of endocytosis of the plasma membrane 
sodium channel ENaC and implicated in pathogene-
sis of a hereditary hypertension in humans, the Lid-
dle syndrome (Hamilton & Butt, 2000; Rotin et al., 
2000). Besides that Nedd4 is also involved in bud-

ding of retroviruses (Segura-Morales et al., 2005). 
All proteins from the Nedd4 family possess a C2 
domain, several WW domains and a catalytic Hect 
domain. The C2 domain is located at the N-termi-
nus of the protein, multiple WW domains are in the 
middle, and the Hect domain is at the C-terminus 
(Harvey & Kumar, 1999).

The C2 domain, approximately 130 amino ac-
ids long, is a conserved lipid- and protein-interaction 
module that is often regulated by calcium (Nalefski 
& Falke, 1996; Hurley & Misra, 2000). Many C2 do-
mains bind to membranes through electrostatic in-
teractions between basic amino acids and negatively 
charged lipids (Cho, 2001). It has been shown that 
mutation of five lysine residues to glutamine within 
the C2 domain of Rsp5 abolishes its binding to the 
membranes. The C2 domain of Rsp5 interacts with 
phosphorylated phosphatidylinositols and is impor-
tant for localization of Rsp5 to endosomal mem-
branes (Dunn et al., 2004). The C2 domain of Rsp5 
is not necessary for  the essential function of Rsp5 
in standard conditions, but is implicated in Rsp5-
dependent sorting of biosynthetic cargo proteins in 
multivesicular bodies (MVB, late endosomes) (Dunn 
et al., 2004). Moreover, deletion of the Rsp5 C2 do-
main impairs internalization of Gap1, a general ami-
no acid permease, without detectably affecting its 
ubiquitination, suggesting that Rsp5 participates via 
its C2 domain in endocytosis of ubiquitinated per-
meases (Springael et al., 1999a).

The WW domains were first described by Su-
dol (1996) as small modules composed of about 40 
amino acids. The WW domains mediate protein–pro-
tein interactions and recognize proline-rich sequenc-
es called PY motifs. These domains are folded into 
three-stranded anti-parallel β-sheets forming a hy-
drophobic pocket (Macias et al., 1996). WW domains 
are divided into four groups according to their bind-
ing specificities (Bedford et al., 2000). Group I bind 
the PXY, LPXY and PPXY motifs. Group II bind to 
PPLP, group III recognize the PPR motif and group 
IV bind short sequences containing phosphoserine 
or phosphothreonine followed by proline (Lu et al., 
1999). Rsp5 contains three WW domains which be-
long to group I, but not all Rsp5 substrates known 
contain a PXY, PPXY or LPXY motif (Gupta et al., 
2007). These proteins may bind Rsp5 via other do-
mains than WW or use adaptor proteins which con-
tain Rsp5-binding motifs. One of these adaptor pro-
teins is Bsd2, which is crucial for Rsp5-dependent 
ubiqutination of Cps1, a vacuolar carboxypeptidase, 
and another Tre1, a protein important for ubiqutina-
tion and vacuolar degradation of the metal trans-
porter Smf1 (Sullivan et al., 2007).

The catalytic Hect domain of about 350 resi-
dues is situated at the C-terminus of Rsp5/Nedd4 
proteins. This domain is essential for the ubiquitina-
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tion activity of Rsp5. The conserved cysteine in the 
active center of the Hect domain forms a thioester 
bond with ubiquitin upon its transfer from E2 en-
zymes (Huibregtse et al., 1995). Mutation of this 
cysteine results in a complete loss of ubiquitination 
activity of Rsp5 that leads to a dominant negative 
effect on cell growth.

Roles of Rsp5

Rsp5 is a key regulatory protein in the cell, 
which ubiquitinates numerous proteins and is in-
volved in regulation of a broad array of cellular 
processes. It is capable of modifying proteins in dif-
ferent cellular compartments, for example on the 
plasma membrane and in the nucleus.

Intracellular trafficking of proteins

The involvement of Rsp5 in intracellular traf-
ficking of proteins, particularly in endocytosis and 
MVB (multi vesicular body) sorting, is well studied. 
Endocytosis is a process by which cells internalize 
portions of the plasma membrane with proteins and 
lipids and surrounded molecules from outside the 
cell. Endocytosis allows cells to remove no longer 
needed plasma membrane proteins (ion channels, 
receptors, etc.) but also to supply them with nutri-
ents from the environment. Moreover, it is impor-
tant for modulation of the cellular responses to ex-
ternal stimuli. Endocytosis starts with invagination 
of the plasma membrane which buds off and forms 
an internal vesicle which is later fused with a cellu-
lar compartment – early endosome. The early endo-
some is then converted into MVB. The MVB forms 
when portions of the late endosome membrane in-
vaginate and pinch off into the lumen, thus forming 
intralumenal vesicles (Katzmann et al., 2002; Raiborg 
et al., 2003). The cargo from MVB can be transported 

either to a vacuole or to the Golgi apparatus. Pro-
teins from endosomes may be also recycled back to 
the plasma membrane. It has been shown that Rsp5 
is important for ubiquitin-mediated endocytosis of 
several proteins, including the general amino acid 
permease Gap1 (Springael et al., 1999b), uracil per-
mease Fur4 (Galan et al., 1996, Hein & Andre, 1997), 
maltose permease Mal61 (Medintz et al., 1998), hex-
ose transporter Hxt6/7, tryptophan permease Tat2 
(Beck et al., 1999), zinc transporter Zrt1 (Gitan & 
Eide, 2000), and the pheromone receptor Ste2 (Dunn 
& Hicke,  2001). In addition, mutations in the RSP5 
gene cause defects in fluid phase endocytosis as 
monitored by uptake of the fluorescent dye Lucifer 
Yellow (Żołądek et al., 1997). The WW domains, but 
not C2, are important for internalization of Fur4 and 
Ste2 and for fluid phase endocytosis (Gajewska et 
al., 2001; Dunn & Hicke, 2001). Plasma membrane 
transporters and receptors are polydiubiquitinated 
and the ubiquitin chain is formed via lysine K63 (see 
a rewiev by Hicke, 2001).

The biosynthetic route is the main route for 
the delivery of resident vacuolar proteins and lipids 
from their site of synthesis in the ER, via Golgi and 
MVB, to their site of action in the vacuole. Sorting of 
biosynthetic and endocytic transmembrane proteins 
into MVB vesicles is controlled by the addition of a 
single ubiquitin moiety to a cytoplasmic domain of 
these proteins (Katzmann et al., 2001; Reggiori & Pel-
ham, 2001; Urbanowski & Piper 2001; Morvan et al., 
2004). Recent data indicate that Rsp5 is  essential for 
the MVB sorting of the biosynthetic cargo. A mutant 
lacking the Rsp5 C2 or with mutations in the WW1, 
2 or 3 domain was unable to ubiquitinate or properly 
sort Cps1 into MVB vesicles (Dunn et al., 2004). Oth-
er authors showed that Sna3 protein is also diverted 
from its route in case of Rsp5 deficiency (reviewed 
by Piper & Katzmann, 2007; Stawiecka-Mirota et al., 
2007). Sna3 carries a PPXY motif which mediates its 

Figure 1. The nedd4 family of E3 ubiquitin ligases.
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interaction with Rsp5 WW domains. Mutation of 
either the Sna3 PPXY motif or the Rsp5 WW3 do-
main or reduction in the amount of Rsp5 results in 
mistargeting of Sna3 to multiple mobile vesicles and 
prevents its sorting to the endosomal pathway. Sna3 
is polyubiquitinated on one target lysine, and a mu-
tant Sna3 lacking this lysine displays defective MVB 
sorting. Sna3 undergoes Rsp5-dependent polyubiq-
uitination with K63-linked ubiquitin chains (Staw-
iecka-Mirota et al., 2007). Rsp5-dependent ubiquiti-
nation is also involved in sorting of the amino acid 
permease Gap1 at the Golgi apparatus (Helliwell et 
al., 2001). 

Rsp5 is also implicated in activation of the 
plasma membrane H+-ATPase Pma1 by glucose (de 
la Fuente et al., 1997), but the mechanism of this 
regulation is not known. Pma1 is ubiquitinated, 
which does not affect its stability, but it does affect 
the stability of a mutant protein Pma1-7 (Pizzirusso 
& Chang, 2004). Moreover, the G(653)V substitution 
in the ATP-binding domain of Pma1 suppresses the 
temperature sensitivity phenotype of rsp5 mutations 
(Kamińska et al., 2000).

nuclear functions

The cell nucleus is delimited by a double 
membrane also called the nuclear envelope. This 
double membrane contains nuclear pores which are 
gates allowing active and selective transport of mac-
romolecules such as proteins and RNAs. Numerous 
highly regulated processes take place in the nuclear 
compartment, such as transcription, DNA replica-
tion, chromosome segregation, etc. In normal growth 
condition Rsp5 is localized to multiple cytoplasmic 
complexes (Gajewska et al., 2001; Katzmann et al., 
2004). However, many nuclear functions of Rsp5 
have been discovered, which implies that Rsp5 may 
be a shuttling protein.

Rsp5 affects transcription by regulation of 
the large subunit of RNA polymerase II (Rpb1 of 
RNAPII), which is ubiquitinated and targeted for 
degradation in 26S proteasome  in stress conditions. 
This regulation is mediated by interaction of Rsp5 
domains WW2 and WW3 with the C-terminus of 
Rpb1, CTD (C-terminal domain). CTD is composed 
of the sequence YSPTSPS repeated 26 times and a 
core including the PXY motif, which is essential for 
the interaction with the WW domains. Mutation in 
the Rsp5 WW2 domain abolishes its interaction with 
Rpb1 in vitro (Wang et al., 1999; Beaudenon et al., 
1999). It has been shown that phosphorylation of 
serine, threonine and tyrosine residues within CTD 
inhibits its interaction with Rsp5. Dephosphoryla-
tion of this domain could be a primary signal tar-
geting Rpb1 to proteasomal degradation (Chang et 
al., 2000). Def1, an RNAPII degradation factor, is 

required for the recruiting of Rsp5 to effect RNAPII 
ubiquitination and subsequent degradation (Reid & 
Svejstrup, 2004). There are two ubiquitination sites 
in the yeast Rbp1 and they both play an important 
role in the elongation step of transcription and the 
DNA-damage response (Somesh et al., 2007).

Nuclear accumulation of poly(A)+RNA was 
observed in a temperature sensitive rsp5-1 mutant 
strain (mutation in the Hect domain) at the non-per-
missive temperature (37°C) (Rodriguez et al., 2003). 
Then, Rsp5-dependent regulation of the nuclear ex-
port factor Hpr1 was discovered (Gwizdek et al., 
2005). Hpr1 is a member of the THO/TREX (tran-
scription/export) complex which has been implicated 
in transcription elongation, transcription-dependent 
recombination, and mRNA export (Zenklusen et al., 
2002; Strasser et al., 2002). The THO complex com-
ponent Hpr1 is ubiquitinated and degraded both in 
vitro and in vivo by Rsp5 in conjunction with the E1 
and Ubc4p as an E2 (Gwizdek et al., 2005).

Recent data indicate that Rsp5 can affect 
tRNA localization. Neuman and coworkers (2003) 
noticed nuclear accumulation of immature tRNA in 
the rsp5-3 mutant which contains three mutations of 
which one lies in the catalytic Hect domain of Rsp5. 
The rsp5-3 mutant not only shows strong nuclear ac-
cumulation of tRNAs at the restrictive temperature, 
but also is severely impaired in the nuclear export 
of mRNAs and 60S pre-ribosomal subunits. Strik-
ingly, the nuclear RNA export defects seen in the 
rsp5-3 strain are accompanied by a dramatic inhibi-
tion of both rRNA and tRNA processing. Thus, the 
ubiquitin ligase Rsp5 plays a role in controlling the 
major nuclear RNA biogenesis/export pathways in 
yeast. Other authors showed that the rsp5-19 muta-
tion (P418L substitution in WW3 domain) alters cell 
sensitivity to antibiotics that affect translation and 
that rsp5-19 also increases the fidelity of translation 
(Kwapisz et al., 2005). Nuclear accumulation of tRNA 
in this mutant was also observed. Moreover, an ad-
ditional copy of TEF2 gene encoding elongation fac-
tor eEF1A which delivers tRNAs to the ribosome, 
suppressed the rsp5-19 growth defects, translational 
phenotypes and nuclear accumulation of tRNA. This 
suggests that nuclear tRNA accumulation may be 
the primary reason for the altered translational de-
coding accuracy of rsp5-19 mutant cells (Kwapisz et 
al., 2005).

The Rsp5 ligase together with APC (ang. ana-
phase promoting complex), a ligase from the RING 
family, are both required for chromatin condensa-
tion (Altheim & Schultz, 1999; Harkness et al., 2002). 
Moreover, it has been shown recently that Rsp5 and 
Apc5, a subunit of the APC, interact genetically and 
that Rsp5 acts upstream of Apc5 (Arnason et al., 
2005). Those authors also identified an E2 enzyme, 
Ubc7, implicated in chromatin assembly. Further-
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more, they demonstrated that Ubc7 physically and 
genetically interacts with Rsp5, suggesting that Ubc7 
acts as an E2 for Rsp5 at least in this process.

Rsp5 functions in response to various stresses

Cells in nature are exposed to various envi-
ronmental stresses, for example changes in tempera-
ture, osmolarity, concentration of nutrients or toxic 
substances, etc. Stress induces protein denaturation, 
generates damaged proteins, and leads to growth 
inhibition or cell death. Two major transcription 
factors, Hsf1 and Msn2/4, appear to be responsible 
for stress-induced gene expression (Hashikawa & 
Sakurai, 2004; Ferguson et al., 2005). Hsf1 binds to 
heat shock elements (HSEs) and Msn2/4 binds to 
stress response elements (STREs) found in the pro-
moters of many heat-inducible genes encoding stress 
proteins. The transcription of genes encoding stress 
proteins: HSP42 (containing HSE), DDR2 (containing 
STRE) and HSP12 (containing both HSE and STRE) 
in the rsp5(A401E) mutant was significantly lower 
than that in the wild-type strain when exposed to 
a temperature up-shift or 9% ethanol (Haitani et al., 
2006). Moreover, the amounts of transcription fac-
tors Hsf1 and Msn4 were remarkably decreased in 
the rsp5(A401E) mutant in these stress conditions 
(Haitani et al., 2006) whereas the respective mRNA 
levels were only slightly lower than those in wild-
type cells (Haitani & Takagi, 2008). The mRNAs of 
HSF1 and MSN2/4 were accumulated in the nucleus 
of rsp5(A401E) cells after exposure to temperature 
up-shift or ethanol, suggesting that Rsp5 is required 
for the nuclear export of these mRNAs. Those results 
indicated that, in response to environmental stresses, 
Rsp5 primarily regulates the expression of HSF1 and 
MSN2/4 at a post-transcriptional level (Haitani & 
Takagi, 2008). 

Regulation of unsaturated fatty acid synthesis

The regulation of enzymes involved in lipid 
metabolism is an essential process that affects mem-
brane lipid composition and has an impact upon 
many cell processes, such as cell growth, organelle 
function and response to stress (Schneiter & Kohl-
wein, 1997; Carman & Henry, 1999). Therefore, eu-
karyotes have developed complex mechanisms to 
regulate lipid biosynthetic pathways. Deregulation 
of lipid metabolism has been reported in many hu-
man diseases, including obesity and atherosclerosis, 
one of the diseases with the highest morbidity in de-
veloped countries (Ntambi, 1999). The ratio of satu-
rated to monounsaturated fatty acids that are incor-
porated into cell membranes contributes to fluidity 
of the membrane. In the yeast Saccharomyces cerevi-
siae, this ratio also affects mitochondrial inheritance 

(Stewart  & Yaffe, 1991) and stress responses (Car-
ratu et al., 1996). The enzyme involved in fatty acid 
desaturation is the D-9 fatty acid desaturase encoded 
by the essential OLE1 gene (Stukey et al., 1989). Ole1 
protein converts saturated fatty acyl-CoA (palmityl- 
and stearyl-) to monounsaturated fatty acid species 
(palmitoleoyl- and oleoyl-) in an oxygen-dependent 
manner (Stukey et al., 1989). The regulation of OLE1 
expression is physiologically very important since 
unsaturated fatty acids contribute 70–80% of the fat-
ty acyl groups in membrane lipids. The expression 
of OLE1 is regulated by nutrient fatty acids and mo-
lecular oxygen (Vasconcelles et al., 2001) and other 
physiological conditions, both at the transcriptional 
and mRNA stability levels (Gonzalez & Martin, 1996; 
Choi et al., 1996). Unsaturated fatty acid-dependent 
repression is mediated by FAR (fatty acid-regulated) 
elements (Choi et al., 1996) and hypoxic activation is 
mediated by LORE (low-oxygen response elements) 
(Vasconcelles et al., 2001).

One essential function of Rsp5 is the regula-
tion of unsaturated fatty acid biosynthesis; the rsp5∆ 
strain is inviable unless the medium is supplement-
ed with oleic acid (Hoppe et al., 2000). Rsp5 controls 
the activation of two homologous ER-localized tran-
scriptional activators, Spt23 and Mga2 (Hoppe et 
al., 2000; Shcherbik et al., 2003; 2004), which play a 
role in the up-regulation of expression of OLE1 gene 
(Zhang et al., 1999). They are both functionally re-
dundant since neither of the two genes, SPT23 and 
MGA2, is essential for viability, whereas the double 
spt23∆ mga2∆ mutation is lethal (Zhang et al., 1999). 
This lethality is suppressed by the presence of oleic 
acid in the growth medium. Spt23 and Mga2 are 
produced as p120 precursors which are anchored 
as homodimers in the membrane of the ER via their 
C-terminal transmembrane domains (Hoppe et al., 
2000; Shcherbik et al., 2003). When unsaturated fatty 
acids become limiting, the Spt23 and Mga2 precur-
sors are ubiquitinated, and one of the dimer subunits 
is processed into a mature p90 form. Subsequently, 
with the assistance of the chaperone complex Cdc49/
Ufd1/Npl4 and the ubiquitin-proteasome pathway, 
p90 is released from the membrane-bound p120 sub-
unit and transported into the nucleus where it func-
tions as a transcriptional activator of OLE1 (Shcher-
bik et al., 2003). Mga2 is also essential for the hypox-
ic induction of OLE1 expression and is a component 
of the LORE-bound complex (Nakagawa et al., 2002). 
The WW2 or WW3 domain of Rsp5 binds Spt23 and 
Mga2 via the LPKY motif and ubiquitination takes 
place enabling release of these processed proteins 
from the ER (Shcherbik et al., 2003; Bhattacharya et 
al., 2008).  In the rsp5-19 temperature sensitive mu-
tant saturated fatty acid accumulation contributes to 
cell lethality at elevated temperatures (Kaliszewski 
et al., 2006).
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A recent study has revealed several classes of 
genes, including those for ribosomal proteins, mat-
ing-type and lipid metabolism genes, with which ac-
tivated Spt23 and Mga2 associate (Auld et al., 2006). 
Most of the lipid metabolism genes also bound pro-
teasome components suggesting that the ubiquitin-
proteasome pathway might have a role in regulation 
of these genes downstream of Spt23 and Mga2 acti-
vation. The list of lipid metabolism genes bound by 
Spt23 and Mga2 includes the OLE1 gene, other fatty 
acid biosynthesis genes (SUR4, FAS1, ELO1, FAA4, 
ACC1, FAA3, OAR1) and genes encoding enzymes of 
the mevalonate pathway (see below). This suggests 
that Rsp5 is not only involved in the regulation of 
unsaturated fatty acid content, but due to Spt23 and 
Mga2 regulation it is important for the maintenance 
of lipid homeostasis.

Effects on phospholipid and triacylglycerol synthesis

Phospholipids are the main components of 
cellular membranes. They play crucial roles in cell 
growth and metabolism. Phospholipids are impor-
tant for membrane-associated functions such as en-
zyme catalysis, receptor-mediated signaling, and sol-
ute transport (Dowhan, 1997; Dowhan et al., 2004). 
In addition, phospholipids are precursors for the 
synthesis of large molecules such as glycosylphos-
phatidylinositol membrane anchors (Fankhauser 
et al., 1993) and sphingolipids (Lester & Dickson, 
1993). They act as molecular chaperones (Bogdanov 
et al., 1996; 1999), participate in protein modification 
for membrane association (Ichimura et al., 2000), and 
are precursors of second messengers (Exton et al., 
1994). The main phospholipids of S. cerevisiae mem-
branes are phosphatidylcholine (PC), phosphati-

dylethanolamine (PE), phosphatidylinositol (PI), 
and phosphatidylserine (PS) (reviwed by Carman & 
Henry, 1989). The most common fatty acids found 
in the phospholipids include the saturated palmitic 
and stearic acids, and monounsaturated palmitoleic 
and oleic acids (Rattray et al., 1975). PS, PE, and PC 
are synthesized from phosphatidic acid (PA) via the 
CDP-DAG (CDP-diacylglycerol)  pathway (Fig. 2). 
The CDP-DAG liponucleotide is synthesized from 
PA and CTP by the Cds1 CDP-DAG synthase (Cart-
er & Kennedy, 1966; Shen & Dowhan, 1996). CDP-
DAG is then converted to PS by the Cho1 PS syn-
thase (Nikawa et al., 1987; Kiyono et al., 1987) and 
it is decarboxylated to PE by the Psd1 (Clancey et 
al., 1993) and Psd2 (Trotter & Voelker, 1995) PS de-
carboxylase enzymes. PE is then converted to PC by 
a three-step methylation reaction catalyzed by Cho2 
and Opi3 (Bremer & Greenberg, 1960). 

PE and PC can also be synthesized from eth-
anolamine and choline via the Kennedy pathway (re-
viwed by Carman & Han, 2007) (Fig. 2). In PI syn-
thesis the Pis1 PI synthase (Nikawa & Yamashita, 
1984) utilizes CDP-DAG and inositol as substrates 
(Paulus & Kennedy, 1960). The inositol used in this 
reaction is synthesized from glucose-6-phosphate 
by the Ino1 inositol-3-phosphate synthase (Klig & 
Henry, 1984; Dean-Johnson & Henry, 1989) and the 
Inm1 inositol-3-phosphate phosphatase (Murray & 
Greenberg, 2000).  

Rsp5 regulates the synthesis of unsaturated 
fatty acids (see previous paragraph) which are built 
into phospholipids and therefore it also affects the 
phospholipids’ composition. It has been shown that 
rsp5-3 cells grown at the restrictive temperature ex-
hibit significantly reduced levels of di-unsaturated 
PE species (Neumann et al., 2003). Moreover, accu-

Figure 2. biosynthesis of phospholi-
pids and triacylglycerol.
Description in the text.
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mulation of saturated fatty acids in particular phos-
pholipids can be one of the reasons of the decreased 
viability of the rsp5-19 mutant cells at the restrictive 
temperature. Interestingly, this growth defect can be 
suppressed by overexpression of the PIS1 gene en-
coding an enzyme involved in PI synthesis (Fig. 2) 
(Kaliszewski et al., 2006). The PIS1 gene appeared to 
be a nonspecific suppressor since it suppressed also 
growth defects of other rsp5 mutants at the restric-
tive temperature, suggesting that the suppression 
mechanism was not connected with a particular 
rsp5 mutation. It was demonstrated that enhanced 
phosphatidylinositol synthesis was important for the 
suppression because expression of PIS1 was higher 
in the rsp5-19 mutant than in the wild-type, whereas 
the introduction of PIS1 on a multicopy plasmid re-
sulted in a further increase of the Pis1 level in both 
backgrounds and the catalytic activity of Pis1 was es-
sential for the suppression (Kaliszewski et al., 2006).  
Moreover, the synthesis and utilization of  inositol 
(a substrate of Pis1) was increased, since the expres-
sion of INO1 (inositol synthase, see Fig. 2) was el-
evated in the rsp5-19 mutant, and inositol added to 
the medium improved growth of rsp5 mutants at the 
restrictive temperature. Finally, it was shown that 
overexpression of PIS1 did not correct the cellular 
unsaturated fatty acid content in rsp5-19; however, 
the rsp5-19 mutation induced saturated fatty acid ac-
cumulation in PE, a phenomenon that could be fully 
suppressed by overexpression of PIS1 due to rerout-
ing of saturated acyl chains towards PI (Kaliszewski 
et al., 2006). This suggests that the primary reason of 
rsp5 mutant lethality at the restrictive temperature 
can be accumulation of saturated fatty acids in PE, 
the phospholipid which normally is the most un-
saturated one (Ferreira et al., 2004).

Triacylglycerols (TAG) serve as a storage of 
energy and of fatty acids required for the synthesis 
of membrane lipids in cells. TAG cannot integrate 
into a phospholipid bilayer membrane, so they are 
deposited in lipid particles. TAG synthesis in yeast 
is mainly catalyzed by two enzymes: Dga1, DAG-
acyltransferase which catalyzes acyl-CoA-dependent 
acylation of DAG, and Lro1, which is a phospholip-
id: DAG acyltransferase (Oelkers et al., 2002). Lro1p 
converts DAG to TAG in an acyl-CoA-independent 
reaction and uses glycerophospholipids, preferen-
tially PC and PE, as the acyl source (Dahlqvis et al., 
2000; Oelkers et al., 2000). These two enzymes play 
different roles in the cell. Lro1 is mainly responsi-
ble for TAG synthesis during logarithmic phase of 
growth, whereas Dga1 is more active in the station-
ary phase of growth. Another difference between 
them is their subcellular distribution. Dga1 is located 
in the ER and lipid particles, the storage compart-
ment for neutral lipids, whereas Lro1 seems to be 
located only in the ER  (Sorger & Daum, 2002; Sorg-

er & Daum, 2003). Lro1 and Dga1 are not the only 
TAG-synthesizing enzymes in yeast cells because 
when both LRO1 and DGA1 genes are disrupted the 
cells retain approximately 5% of the DAG esterifi-
cation activity as compared to wild type (Sorger & 
Daum, 2002; Oelkers et al., 2002). For that activity 
Are1 and Are2 sterol acyl transferases are respon-
sible (see Fig. 3) which mainly use activated fatty 
acids to synthesize steryl esters (SE), another form 
of lipids stored in lipid particles (Sandager et al., 
2002; Sorger et al., 2004). TAG in yeast cells mainly 
contain unsaturated fatty acids and they cannot ac-
commodate too much saturated ones (Ferreira et al., 
2004). In agreement with this finding it has been 
shown that TAG amount is decreased in the rsp5-
19 mutant which shows elevated levels of saturated 
fatty acids (Kaliszewski et al., 2006; 2008). Overpro-
duction of Spt23 or Mga2 devoid of transmembrane 
domain and constitutively active (see previous para-
graph) enhanced TAG synthesis in the wild type 
and the rsp5-19 mutant and led to an accumulation 
of unsaturated fatty acids stored within TAG. Those 
results indicate that Rsp5 via Spt23 and Mga2 affects 
not only the unsaturation ratio but also the TAG 
level. The overproduction of Spt23 or Mga2 was also 
accompanied by the appearance of large lipid parti-
cles in the wild type and rsp5-19 strains, probably as 
a result of enhanced TAG synthesis (Kaliszewski et 
al., 2008).

Regulation of mevalonate pathway

The mevalonate (MVA) pathway supplies the 
cell with sterols and isoprenoid precursors which 
are used to produce dolichols, prenylated proteins, 
ubiquinone and heme. The first step in the pathway 
is the synthesis of acetoacetyl-CoA by the Erg10 en-
zyme — acetoacetyl-CoA thiolase (see a review by 
Kornblatt & Rudney, 1971; Daum et al., 1998). Then 
acetoacetyl-CoA is converted to isopentenyl diphos-
phate (IPP) and dimethylallyl diphosphate (DMAPP) 
in a multistep reaction catalyzed by six enzymes: 
Erg13 — hydroxymethylglutaryl-CoA (HMGCoA) 
synthase, Hmg1/Hmg2 HMGCoA reductases, Erg12 
MVA kinase, Erg8 phosphomevalonate kinase, Erg19 
MVA pyrophosphate decarboxylase, and Idi1 isopen-
tenyl diphosphate isomerase (see a review by Daum 
et al., 1998) (Fig. 3). The branch point enzyme of the 
isoprenoid pathway is farnesyl diphosphate syn-
thase (Erg20) which catalyses the sequential conden-
sation of DMAPP with IPP to form geranyl diphos-
phate (GPP) and further farnesyl diphosphate (FPP) 
(Song & Poulter, 1994). DMAPP used by Erg20 is 
also a substrate for Mod5, a tRNA isopentenyltrans-
ferase (Dihanich et al., 1987), an enzyme which is 
dually localized in the cytoplasm and mitochondria. 
It has been shown that rsp5 mutant cells exhibit a 
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decreased mitochondrial pool of Mod5 as compared 
to wild type (Żołądek et al., 1995).

The main product of the MVA pathway is er-
gosterol in yeast and cholesterol in humans. Ergos-
terol is an important component of the plasma and 
organellar membranes which affects their fluidity, 
permeability and other features. Physiological char-
acterization of various erg mutants in yeast has re-
vealed roles for sterols in endocytosis (Munn et al., 
1999; Heese-Peck et al., 2002), lipid raft formation 
(Bagnat et al., 2000; Umebayashi & Nakano, A. 2003), 
cation and amino acid uptake (Welihinda et al., 1994; 
Umebayashi & Nakano, 2003), cell cycle regulation 
(Rodriguez & Parks, 1983), vacuole fusion (Kato & 
Wickner, 2001), and mitochondrial respiration (Parks 
& Casey, 1995). Ergosterol is synthesized from FPP 
through a cascade of  enzymatic reactions (Fig. 3). 
In the first step squalene synthase Erg9 condenses 
two FPP molecules to form squalene (Jennings et al., 

1991). Then the first sterol molecule of the pathway 
is synthesized by action of two enzymes, the Erg1 
squalene epoxidase (monooxygenase) which converts 
squalene to 2,3-oxidosqualene (Jahnke & Klein, 1983), 
and 2,3-oxidosqualene cyclase Erg7 which converts 
it  to lanosterol (Corey et al., 1994; Shi et al., 1994).  
Lanosterol conversion to zymosterol and further to 
ergosterol is catalyzed by ten other enzymes (Erg 11, 
Erg24, Erg25, Erg26, Erg27, Erg6, Erg2, Erg3, Erg5, 
Erg4) (Fig. 3; see a review by Daum et al., 1998). 
Ergosterol exists in free and esterified forms (SE). 
SE are synthesized by two enzymes Are1 and Are2 
which form SE from sterols and activated fatty acids 
(Yu et al., 1996; Yang et al., 1996). Esterified sterols 
are strongly hydrophobic and form the core of lipid 
particles (reviewed by Czabany et al., 2007).

Sterol depletion in mammalian cells causes ac-
tivation of the transcription factors known as sterol 
regulatory element (SRE)-binding proteins (SREBPs) 

Figure 3. The mevalonate pathway.
Underlined enzymes are encoded by genes 
which are bound by Spt23 and Mga2.
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(reviewed in Edwards et al., 2000). When sterols are 
abundant the SREBPs are inactive and tethered to 
the endoplasmic reticulum membrane by their trans-
membrane domains. When sterol level drops, regu-
lated proteolysis releases the transcrpitional activa-
tion domain of SREBPs allowing its nuclear trans-
port. SREBPs activate transcription of genes involved 
in sterol and fatty acid synthesis. The human gene 
encoding FPP synthase contains a SRE sequence 
(Sato et al., 1996). However, less is known about 
this regulatory mechanism in yeast. Many genes of 
the mevalonate pathway are transcriptionaly regu-
lated in response to erg mutations, inhibitors of 
MVA pathway, and anaerobiosis, as determined by 
genome-wide expression profile analyses (Dimster-
Denk et al., 1999; Bammert  & Fostel, 2000; Kwast 
et al., 2002; Agarwal et al., 2003). On the other hand, 
ERG20 is constitutively expressed after inhibition 
of the downstream part of the ergosterol synthesis 
pathway by azoles (Bammert & Fostel, 2000; Agar-
wal et al., 2003) and in anaerobiosis (Kwast et al., 
2002), and only 2–3-fold upregulated by lovastatin, 
an inhibitor of HMG-CoA reductase in the upstream 
part of the pathway (Dimster-Denk et al., 1999). An 
about two-fold increase of ERG20 expression was 
also observed in an RNA polymerase III regula-
tory mutant that shows enhanced tRNA synthesis 
(Kamińska et al., 2002). Many ERG genes (ERG1, 
ERG2, ERG3, ERG7, ERG25, ERG26, and ERG27) are 
activated by the Upc2 and Ecm22 transcription fac-
tors which bind yeast SRE (Vik & Rine, 2001), and 
are repressed by Mot3 and Rox1 (Kwast et al., 2002; 
Henry et al., 2002). One of the enzymes of the iso-
prenoid pathway, HMG-CoA reductase (Hmg2), is 
physiologically regulated by ubiquitination and deg-
radation in proteasomes (Gardner et al., 2001). It was 
observed that in the rsp5-19 mutant the level of ster-
ols was lower compared to wild type and the steady 
state level of ERG20  transcript was diminished, but 
this latter effect appeared to be Spt23-independent 
(Kamińska et al., 2005). It was demonstrated that 
the rsp5-19 strain had a decreased level of ergosterol 
and its intermediates downstream from lanosterol in 
the pathway (Kaliszewski et al., 2008), which implies 
that Rsp5 may affect  the level of FPP.

It has been shown that activated Spt23 and 
Mga2 bind to genes involved in the ergosterol bio-
synthetic pathway: ERG1, ERG3, ERG5, and ERG26 
(Auld et al., 2006). Moreover, Mga2 binds to the 
ERG19 gene encoding an enzyme which acts up-
stream of Erg20 in the ergosterol pathway (see 
Fig. 3). Recently it was observed that  overproduc-
tion of Spt23 and Mga2 transcriptional activators 
increased the level of sterols in the wild type and, 
to a lower extent, in the rsp5-19 mutant strain (Ka-
liszewski et al., 2008), which led to the conclusion 
that Rsp5 regulates sterol synthesis via activation of 

Spt23 and Mga2 and via other post-activation step(s) 
(Kaliszewski et al., 2008).

Ubiquinone, another product of the MVA 
pathway, is present in all cells and membranes and 
in addition to being a component of the mitochon-
drial respiratory chain it has other functions as well: 
it participates in extra-mitochondrial electron trans-
port, is the only lipid-soluble antioxidant, a regula-
tor of the physicochemical properties of membranes, 
etc. (see a review by Turunen et al., 2004). Ubiqui-
none is composed of a benzoquinone moiety and an 
isoprenoid side chain. The number (n) of isoprene 
units in the polyprenyl tail (Qn) is species specific, 
in humans it is 10 and in S. cerevisiae 6. In the yeast 
the isoprenoid chain is formed by Coq1, a trans-
prenyltransferase (Ashby & Edwards, 1990) which 
catalyzes the condensation of FPP with three IPPs, 
all in the trans configuration. The isoprenoid chain 
is then transfered to the benzoquinone precursor 4-
hydroxybenzoic acid by Coq2 (Ashby et al., 1992). 
The final steps of ubiquinone synthesis are subse-
quent ring modifications by the Coq3, Coq5, Coq6, 
and Coq7/Clk-1 enzymes (see a review by Turunen 
et al., 2004).

 Dolichol is a long-chain polyprenol with a 
saturated α-isoprene unit, and its phosphorylated 
form (dolichyl phosphate, Dol-P) participate in the 
synthesis of N- or O-glycosidically linked oligosac-
charide chains of glycoproteins and in the formation 
of glycosylphosphatidylinositol (GPI) membrane 
anchors (Herscovics & Orlean, 1993; reviewed by 
Grabinska & Palamarczyk, 2002). Dolichol synthesis 
is catalyzed by a cis-prenyltransferase enzyme which 
catalyses successive condensations of IPP with FPP 
in the cis configuration to form long-chain polypre-
nyl diphosphate which is further converted to doli-
chol by dephosphorylation and saturation of the α-
isoprene unit (Chojnacki & Dallner, 1988; Sagami et 
al., 1993; 1996). There are two cis-prenyltransferases, 
Rer2 and Srt1, in yeast (Sato et al., 2001). The poly-
prenol product of Srt1 is longer (19–24 isoprene 
units) than that of Rer2 (14–18 isoprene units) (Sato 
et al., 2001). The expression of these two cis-prenyl-
transferases is differently regulated during the yeast 
life cycle. The cellular level of Srt1 is maximal in 
the late-logarithmic and stationary phases, while the 
level of Rer2 is the highest in the early logarithmic 
phase (Sato et al., 2001).

 It was shown that in the rsp5-19 mutant 
strain, in addition to a decreased sterol level, the 
level of dolichols and ubiquinone was also decreased 
(Kaliszewski et al., 2008). This suggests that the syn-
thesis of FPP (the common substrate for these prod-
ucts, see Fig. 3) could be diminished by the rsp5-19 
mutation. Moreover, the Spt23 and Mga2 transcrip-
tional activators appeared to play a role in the reg-
ulation of dolichol synthesis. The level of dolichols 
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was decreased in rsp5-19 and wild type strain over-
producing Spt23 or Mga2, which could be an effect 
of enhanced utilization of FPP in sterol synthesis 
(Kaliszewski et al., 2008). Moreover, the Spt23 and 
Mga2 factors affected the synthesis of long chain 
dolichols, products of the Srt1 cis-prenyl transferase 
(Kaliszewski et al., 2008). Spt23 or Mga2 overproduc-
tion resulted in lowering of the pool of long-chain 
dolichols from 30% to 3–5% of total polyprenols. 
Similarly, the rsp5-19 strain transformed with plas-
mids encoding Spt23 or Mga2 exhibited no Srt1 ac-
tivity (Kaliszewski et al., 2008). These results indicate 
that Rsp5 together with Spt23 and Mga2 have broad 
physiological effects on lipid homeostasis.

ConCLUSionS

Ubiqutination is an extensively studied proc-
ess in yeast and mammalian cells. It has been shown 
that deregulation of this pathway is implicated in 
pathogenesis of many diseases, including neurode-
generative diseases and cancer. Therefore, discov-
ering new functions of highly homologous ligases, 
such as Rsp5 in yeast, provides useful information 
which can be easily utilized in the deciphering of 
similar processes in higher eukaryotes. Moreover, 
the knowledge of lipid synthesis regulation can be 
used to construct yeast strains with high lipid con-
tent which can be useful in biotechnology.
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