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Due to its natural properties, Trichoderma reesei is commonly used in industry-scale production 
of secretory proteins. Since almost all secreted proteins are O-glycosylated, modulation of the ac-
tivity of enzymes of the O-glycosylation pathway are likely to affect protein production and se-
cretion or change the glycosylation pattern of the secreted proteins, altering their stability and 
biological activity. Understanding how the activation of different components of the O-glycosyla-
tion pathway influences the glycosylation pattern of proteins and their production and secretion 
could help in elucidating the mechanism of the regulation of these processes and should facili-
tate creation of engineered microorganisms producing high amounts of useful proteins. In this 
review we focus on data concerning Trichoderma, but also present some background information 

allowing comparison with other fungal species. 
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IntrODuctIOn

Trichoderma species play an important role in 
the biotechnological industry where their protein 
synthesis and secretory capabilities are widely ex-
ploited for protein production. Hence, stimulation of 
their secretory capacity is of considerable commer-
cial interest and novel potential stimulants of protein 
production and secretion are highly desirable. Some 
species of Trichoderma secrete up to 40 g of protein 
per liter of culture (Durand et al., 1988), however, 
the yield of heterologously expressed proteins is not 
so impressive. 

In T. reesei the majority of secretory proteins 
(Table 1) are highly glycosylated with both N- and 
O-linked glycans (Table 2) (Palamarczyk et al., 1998). 
In this paper we present the current understanding 
of the interdependencies between protein glycosyla-
tion and their production, secretion, and activity. In 

particular, we describe the influence of changes in 
the activity of the O-glycosylation pathway on pro-
tein production by Trichoderma. 

Trichoderma SecretOry prOteInS Are 
hIghly glycOSylAteD

It was discovered by our group that protein 
O-glycosylation in Trichoderma occurred in a similar 
way as in the yeast Saccharomyces cerevisiae (Fig. 1) 
(Kruszewska et al., 1989). The first mannosyl residue 
transferred by protein O-mannosyltransferases onto 
the OH-group of serine (Ser) or threonine (Thr) orig-
inates from dolichyl phosphate mannose (DPM) and 
then, for the elongation of the sugar chain, GDP-
mannose is used. The significance of this process 
becomes obvious when we consider the structure 
of proteins secreted by Trichoderma. Cellobiohydro-
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lase I (CBHI), the main hydrolytic enzyme secreted 
by this fungus, is composed of a catalytic and a cel-
lulose binding domain, connected by an O-glycosyl-
ated linker (Fagerstam et al., 1984). A major function 
of the O-glycosylation of the linker is to maintain 
a fixed distance between the catalytic and binding 
domains, as has been shown for glucoamylase from 
Aspergillus niger (Williamson et al., 1992). 

In the high-secreting Trichoderma strain ALKO 
2877 the glycosylated forms of the linker contain 
from 14 to 26 hexoses (Harrison et al., 1998). All 
threonines in the linker are glycosylated, with at 
least one and up to three mannoses per site. In CBHI 
secreted by Trichoderma RutC-30 strain the linker is 
extensively glycosylated at threonine and serine res-
idues with di- and tri-saccharides, and in addition 
some phosphorylated di-saccharides are also found 
(Hu et al., 2001). 

The proteins secreted by Trichoderma are 
also N-glycosylated. The N-glycosylation proc-
ess is conserved in Eukaryotes and requires doli-
chyl phosphate as oligosaccharide carrier [DolPP-
(GlcNAc)2Man9Glc3] synthesized step by step using 
UDP-N-acetylglucosamine, GDP-mannose, DolPMan 
and DolPGlc (Helenius & Aebi, 2001; Wildt & Gern-
gross, 2005). The whole oligosaccharide is trans-
ferred by oligosaccharyl transferase to an asparagine 
located in the consensus sequence (-Asn-X-Ser/Thr-) 
in the protein (Yan & Lennarz, 2005; Lennarz, 2007). 

CBHI has four N-glycosylation sites, all in the 
catalytic domain (Swiss-Prot P62695). The structure 
of the N-linked saccharides depends on the fungal 
strain and conditions of cultivation (Klarskov et al., 
1997; Maras et al., 1997; Pakula et al., 2000; Garcia 
et al., 2001; Hui et al., 2001; 2002; Harrison et al., 
2002; Stals et al., 2004). Cultivation in minimal me-
dia, when the medium acidifies, results in fully gly-
cosylated and phosphorylated proteins, while rich 
media stimulate the activity of endoglucosidase H 

(Endo H), mannosidases and phosphatases, thus 
modifying the pattern of the N-linked oligosaccha-
rides.

CBHI from T. reesei QM9414 cultivated with 
lactose-cellobiose (9: 1) was reported to have only 
single N-acetylglucosamine (GlcNAc) residues linked 
to asparagines in positions 45, 270 and 384 in the 
catalytic domain (Klarskov et al., 1997). On the other 
hand, the RutC-30 strain may also secret CBHI with a 
high-mannose glycan (predominantly GlcNAc2Man8) 
with outer-branch phosphodiester-mannose linkages 
attached to Asn270 and a single GlcNAc at Asn45 
and Asn384 (Maras et al., 1997; Hu et al., 2001; Stals 
et al., 2004). It has also been reported that T. reesei 
secretes multiple forms of CBHI, and in one isola-
tion 14 different glycoforms were found (Garcia et al., 
2001). The major isoform contained only one GlcNAc 
in the catalytic domain, presumably N-linked, and 
one mannose, most probably O-linked to serine/thre-
onine at a separate site. Except for a small fraction 
of the enzyme containing GlcNAc2 Man5 +1-2 Man, 
the majority of the protein molecules had negatively 
charged phosphate-containing N-glycans. All glyco-
forms contained at least one O-linked mannose resi-
due. 

Intensive O- and N-glycosylation and differ-
ent glycoforms were also shown for other Trichode-
rma secretory proteins such as cellobiohydrolase 
II (CBHII) and endoglucanases (EGI, II) (Hui et al., 
2002). Glycosylation of these enzymes accounted for 
12–24% of their molecular mass. Both CBHII and 
endoglucanases contained high-mannose forms of 
glycans as well as a single GlcNAc attached to as-
paragine.

In spite of the intensive study of the N-gly-
coforms of proteins secreted by Trichoderma, the bio-
logical significance of N-linked carbohydrates in the 
catalytic domain is not known. It is known, howev-
er, that the proper course of N-glycosylation is tight-

ly connected with protein folding and 
crucial for the recognition of misfolded 
glycoproteins which are then retained 
in the endoplasmic reticulum (Parodi, 
2000). Accumulation of misfolded pro-
teins in the endoplasmic reticulum 
causes secretion stress leading to tran-
scriptional down regulation of genes 
encoding secreted proteins in T. reesei 
and A. niger (Pakula et al., 2003; Al-
Sheikl et al., 2004). 

Prevention of correct protein 
folding in Trichoderma by incubation 
with dithiothreitol leads to enhanced 
expression of components of the UPR 
(unfolded protein response) pathway 
such as foldases and chaperones (Pa-
kula et al., 2003). A global transcrip-

table 1. Main glycoproteins produced by Trichoderma

Enzyme EC number NCBI or Reference
*Cellobiohydrolase I (CBHI) EC 3.2.1.91 Shoemaker et al., 1983
*Cellobiohydrolase II (CBHII) EC 3.2.1.91 AAA34210
*Endoglucanase I (EGI) EC 3.2.1.4 AAA34212
*Endoglucanase II (EGII) EC 3.2.1.4 ABA64553
Endoglucanase III (EGIII) EC 3.2.1.4 AAA34213
Endoglucanase IV (EGIV) EC 3.2.1.4 CAA71999
Endoglucanase V (EGV) EC 3.2.1.4 P43317
*α-Galactosidase (melibiase) EC 3.2.1.22 Savel’ev et al., 1997
∗β-Galactosidase EC 3.2.1.23 Gamauf et al., 2007
Β-Glucosidase EC 3.2.1.21 BAA74959
Chitinase 46 EC 3.2.1.14 BAD44715
Chitinases CHI 1-18 from family 18 EC 3.2.1.14 Seidl et al., 2005
*Acetylxylan esterase EC 3.1.1.6 CAA93247

*structure of carbohydrates characterized by Klarskov et al. (1997); Maras et al. 
(1997); Harrison et al. (1998; 2002); Hui et al. (2002). 
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tional analysis of the stress response in A. niger has 
revealed up-regulation of chaperones, foldases, gly-
cosylation enzymes, vesicle transport proteins, and 
ER-associated proteases (Guillemette et al., 2007). 
These results indicate possible targets for manipula-
tion in strain improvement strategies. From the bio-
technological point of view the most important is, 
however, that dysfunction of glycosylation results 
in accumulation of proteins in the endoplasmic re-
ticulum and a drastic down regulation of the genes 
encoding secreted proteins (Pakula et al., 2003; Guil-
lemette et al., 2007). 

IMpOrtAnce Of the glycOSylAtIOn 
pAttern

The correct glycosylation pattern is particu-
larly important with regard to therapeutic or enzy-
matic proteins (Hollister et al., 2002; Ahn et al., 2008;  
Jenkins et al., 2008; Ko et al., 2008; Spiriti et al., 2008). 
Altered glycosylation may affect the stability and 
half-life of the protein, and change its activity or af-
finity towards some substrates. Hyperglycosylation 
of CBHII expressed in S. cerevisiae reduced its affin-
ity towards crystalline cellulose. The poor binding to 
cellulose causes the heterologously expressed CBHII 
to aggregate more readily than the native enzyme 
secreted by Trichoderma (Penttila et al., 1988). Simi-
lar results were obtained when Trichoderma CBHI 
was expressed in A. awamori (Jeoh et al., 2008). The 
recombinant enzyme contained six-fold more of N-
linked glycan than the enzyme secreted by Trichode-
rma. That hyperglycosylation resulted in a decreased 
enzymatic activity and lower affinity towards cellu-
lose, while cleavage of the N-glycans by N-glucosi-
dase (PNGaseF) improved both parameters. On the 
other hand, hyper-N-glycosylated endoglucanase 

II (EGII) produced in yeast revealed a 
wider pH-range of activity and higher 
thermal stability compared to the native 
enzyme (Qin et al., 2008). The two en-
zymes differed in their activity toward 
various substrates and the recombinant 
one had a higher activity against Avicel 
cellulose. Endoglucosidase H treatment 
of the hyperglycosylated EGII restored 
about 88% of its original activity. A de-
creased O-glycosylation of glucoamy-
lase I from A. awamori expressed in an 
S. cerevisiae pmt1 disruptant resulted in 
a 70% decrease of the activity towards 
raw starch compared to the enzyme 
expressed in a wild type S. cerevisiae 
strain (Goto et al., 1999). In addition, 
the stability of the under-glycosylated 
glucoamylase I toward extreme pH and 
high temperature was reduced. 

In general, under-glycosylated proteins could 
be recognized by the protein quality control system 
and the non-native proteins could be directed to the 

table 2. O- and n-linked carbohydrates found in Trichoderma glyco-
proteins

Man1-3 -Ser/Thr
(ManP or ManS)-Man-Ser/Thr (mannose phosphorylated or sulfonated)
Glc or Gal-Ser/Thr
Man-Glc-Ser/Thr
Glc-Gal-Ser/Thr
Glc-Man-Gal-Ser/Thr
GlcNAc2-Asp
Man5-9GlcNAc2 -Asp
Glc-Man7-9GlcNAc2 -Asp
ManP-Glc-Man7-8 GlcNAc2 -Asp (mannose phosphorylated)
(Man1-2 P)1-2 -Man 5-6-7 GlcNAc2 -Asp (mannose phosphorylated) 

Man, mannose; Glc, glucose; Gal, galactose; GlcNAc, N-acetylglucosamine; These 
carbohydrates structures are presented by Salovuori et al. (1987); Savel’ev et al. 
(1997); De Bruyn et al. (1997); Maras et al. (1997); Hui et al. (2001); Stals et al. 
(2004); Goto (2007).

figure 1. O-glycosylation pathway in fungi.
GDPMan, guanosine diphosphate mannose; Man1P, man-
nose-1-phosphate; DolP, dolichyl phosphate; Man, man-
nosyl residue; MPGI, guanylyltransferase; DPMS, dolichyl 
phosphate mannose synthase; PMT, protein O-mannosyl-
transferase; MT, mannosyltransferase.
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retrograde transport and degraded by the ER-asso-
ciated degradation (ERAD) pathway (Harty et al., 
2001; Ellgaard & Helenius, 2003; Nakatsukasa et al., 
2004). It was also shown that substitutive O-glyco-
sylation of proteins mutated in the N-glycosylation 
sites restored their solubility and they were partly 
secreted out of the cell through the normal secretory 
pathway (Nakatsukasa et al., 2004). 

There is no doubt that the glycosylation sta-
tus of enzymatic proteins influences their important 
parameters, and understanding these relationships 
allows a proper strategy to be adopted for the en-
zymes’ production. One may choose optimal cultiva-
tion conditions or use a different host for heterolo-
gous expression of the protein of interest. Also the 
glycosylation pathways may be engineered to influ-
ence directly the glycosylation pattern of produced 
proteins (Choi et al., 2003; Wildt & Gerngross, 2005). 

DISturbeD glycOSylAtIOn MAy creAte 
A bArrIer fOr prOteIn prODuctIOn AnD 

SecretIOn

A number of studies underline the impor-
tant role of O-glycosylation of secretory proteins 
for their production and secretion (Kubicek et al., 
1987; Kruszewska et al., 1990; 1999; Agaphonov 
et al., 2001; 2005; Perlińska-Lenart et al., 2006a). 
We have suggested previously (Kruszewska et al., 
1990) that dolichyl phosphate mannose synthase 
(DPM synthase; EC 2.4.1.8.80) plays a key role in 
T. reesei O-glycosylation. In Trichoderma, like in the 
human, DPM synthase forms an enzymatic com-
plex of three different proteins DPMI, DPMII and 
DPMIII. In human the Dpm1 protein is the cata-
lytic subunit attached to the endoplasmic reticu-
lum via the Dpm3 protein and regulated by Dpm2 
(Maeda et al., 1998, 2000; Ashida et al., 2006). The 
DPM synthase activity is 10-fold higher in the 
presence of Dpm2 protein, indicating that this 
protein plays an important role in the enzymatic 
reaction, however, it is not essential for survival. 
In the yeast S. cerevisiae DPM synthase is encoded 
only by the DPM1 gene and the Dpm1 protein it-
self has an enzymatic activity. The protein has a 
C-terminal transmembrane domain which is not 
present in the DPM1 protein from the human 
class of DPM synthases (Colussi et al., 1997), how-
ever, addition of the yeast transmembrane domain 
to Trichoderma DPMI was not sufficient to rescue 
the S.  cerevisiae  ∆dpm1 mutant (Kruszewska et al., 
2000). 

Based on the finding that Dpm1 protein from 
S. cerevisiae is enzymaticaly active, the DPM syn-
thase activity was elevated in Trichoderma by over-
expression of the yeast DPM1 gene. The transform-

ants had an over twice higher activity of the enzyme 
and, more importantly, secreted up to seven-fold 
higher amount of proteins (Kruszewska et al., 1999). 
Moreover, the proteins, although secreted in a huge 
amount, were glycosylated to the same extent as in 
the control strain. 

A detailed study of the Trichoderma DPM1-
transformed strains revealed significant changes in 
the structure of their cell wall. The secretion pro-
cess is very well documented in fungi and some 
potential barriers for protein secretion are recog-
nized (Conesa et al., 2001). The cell wall is an evi-
dent barrier for protein secretion. In an A. nidu-
lans strain expressing the DPM1 gene from S. cere-
visiae, protein production was elevated similarly 
as it was in the Trichoderma DPM1 transformants, 
but since the cell wall of the A. nidulans transfor-
mant was not altered, the secreted proteins were 
accumulated in the periplasmic space (Perlińska-
Lenart et al., 2005). On the other hand, removal of 
the cell wall of Trichoderma did not change protein 
production and secretion in the wild type strain, 
however, for a strain with an increased poten-
tial to produce and modify proteins, such as the 
DPM1-expressing strain, the cell wall was indeed 
shown to limit the protein secretion (Perlińska-
Lenart et al., 2006b). There are examples of how 
changes found in the cell wall structure could in-
fluence the process of fermentation. Disruption of 
the chitin synthase gene chsB in Aspergillus altered 
growth and morphology of the fungus manifested 
as hyperbranching and sensitivity to Calcofluor 
White (Müller et al., 2002). The hyperbranching 
of the mycelia decreased their clumping which 
in turn facilitated oxygen uptake by the cells and 
improved the flow of substrates and products. In-
tensive branching of mycelia was also observed in 
A. fumigatus carrying disruption of the AGS1 gene 
encoding α-1-3-glucan synthase and in conse-
quence characterised by a reduced content of α-1-
3-glucan (Beauvais et al., 2005). Carbohydrate pol-
ymers are the main components of the fungal cell 
wall, however, mannosylated proteins make up 
about 40% of its composition in the yeast (Kollar 
et al., 1997; Schmidt et al., 2005; Klis et al., 2006). 
It was suggested that defects in protein glycosyla-
tion could impair cell wall integrity by influenc-
ing the folding and activity of proteins catalysing 
synthesis of cell wall components (Chavan et al., 
2003). It was proposed that a mutation in STT3, 
encoding an essential subunit of the oligosaccharyl 
transferase complex catalysing transfer of the oli-
gosaccharide chain from dolichyl phosphate (Dol-
P) to protein, led to an insufficient synthesis of the 
glucan primer serving as a building block for β-1-
6-glucan biosynthesis. Moreover, it was suggested 
that N-linked sugars of certain secretory proteins 
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or the cell wall mannoproteins themselves could 
serve as the initial acceptor of glucosyl residues to 
generate the β-1-6-glucan chain (Shahinian et al., 
1998). 

IncreASeD ActIvIty Of 
guAnylyltrAnSferASe Or cis-

prenyltrAnSferASeS enhAnceS 
glycOSylAtIOn Of SecreteD prOteInS

DPM synthase, a key enzyme of the O-glyco-
sylation pathway, uses GDP-mannose and dolichyl 
phosphate as substrates for production of dolichyl 
phosphate mannose (DPM). Shortage of the sub-
strates decreases the production of DPM and limits 
protein O-glycosylation as well as N-glycosylation 
and the synthesis of the GPI anchor. Overexpression 
of the mpg1 gene coding for guanylyltransferase, the 
enzyme synthesizing GDP-mannose, increased the 
cellular level of GDP-mannose in T. reesei (Zakrze-
wska et al., 2003). In the mpg1-overexpressing strains 
the increased activity of DPM synthase was accom-
panied by an increased dpm1 transcript level and a 
higher concentration of DPMI protein. Since a sim-
ple increase in dpm1 mRNA and DPMI protein does 
not ensure an increase in DPM synthase activity, as 
demonstrated for Trichoderma transformed with its 
own dpm1 gene (Zakrzewska et al., 2003), one might 
speculate that the overexpression of mpg1 resulting 
in an increased dpm1 mRNA level also increases ex-
pression of the other subunits of DPM synthase, i.e., 
DPMII and DPMIII proteins in T. reesei. The high-
er level of GDP-mannose in the cells also activated 
mannosyltransferases elongating O-linked carbo-
hydrate chains. In turn, the elevated activity of the 
mannosyltransferases resulted in longer O-linked 
carbohydrates bound to the secreted proteins. On 
the other hand, we also observed more intensive 
N-glycosylation of the proteins as a result of the in-
creased pools of DPM and GDP-mannose in the cell. 
The mpg1-overexpressing strains showed no changes 
in the amount of proteins secreted, however, this 
modification of Trichoderma could still be beneficial 
for biotechnology because the secreted cellulases 
were by up to 50% more active than those secreted 
by the wild type strain (our unpublished data). The 
lack of changes in the amount of secreted proteins 
could have resulted from the unchanged cell wall of 
the transformants. 

The influence of overproduction of GDP-man-
nose on the formation of fungal cell wall appears to 
be species-specific. Overexpression of the guanylyl-
transferase PSA1 (MPG1) gene in the yeast Kluyvero-
myces lactis wild type strain JA6 resulted in a higher 
resistance to Hygromycin B and SDS and enabled 
the cells to grow on medium with 50 µg ml–1 Cal-

cofluor White, often used as a diagnostic tool for 
detection of cell wall changes (Uccelletti et al., 2005). 
The transformation of K. lactis with the PSA1 gene 
increased expression and secretion of human serum 
albumin from a cDNA construct three-fold com-
pared with that in the JA6 strain; this was not due 
to an enhanced transcription of the human cDNA. 
Similarly, expression of glucoamylase from the salt-
tolerant yeast Arxula adeninivorans in the modified 
K. lactis strain gave a significantly more active en-
zyme than the one secreted by the control strain. 

Here, however, the authors reported on the 
enzyme’s total activity only, so it is not known 
whether this effect was due simply to an increased 
secretion of the protein, its higher specific activity 
that could have been caused by an altered glycosyla-
tion, or both. 

Attempts to elucidated the reasons of the 
enhanced production of heterologous proteins by 
K. lactis cells overexpressing the PSA1 (MPG1) gene 
revealed a slight increase of its cell wall porosity 
(Uccelletti et al., 2005). Consequently, the authors 
suggested that the enhanced secretion might have 
been connected not with an enhanced glycosylation 
potential of the K. lactis strain overexpressing the 
PSA1 gene, but rather with its modified cell wall. 
After all, the highly secreted human serum albumin 
has no N-glycosylation sites and probably was also 
not O-glycosylated. On the other hand, shortage of 
GDP-mannose in a Hansenula polymorpha conditional 
mutant partially blocked in GDP-mannose produc-
tion influenced O-glycosylation, and this defect in 
glycosylation decreased the secretion of a model O-
glycosylated protein, chitinase, which was poorly 
glycosylated (Agaphonov et al., 2001). A comparison 
of the glycosylation and secretion of the N-glyco-
sylated invertase with the above-mentioned effect on 
the O-glycosylated chitinase revealed differences in 
the effect of these two types of glycosylation on pro-
tein secretion. Invertase, a heavily N-glycosylated 
enzyme due to the presence of four N-glycosylation 
sites, was secreted in a larger amount by the mutant 
than by the wild type strain, despite being totally 
non-glycosylated. Similarly, expression of the N-gly-
cosylated human urinary type plasminogen activa-
tor (u-PA) in the Hansenula mutant resulted in the 
secretion of an unglycosylated, active protein, but 
only by the mutant strain, which could be due to its 
more permeable cell wall. 

On the other hand, it was shown that expres-
sion of a potentially highly glycosylated protein itself 
activated enzymes of the O-glycosylation pathway 
(Górka-Nieć et al., 2007). Expression of Trichoderma 
cellobiohydrolase II in S. cerevisiae resulted in a sig-
nificant activation of protein O-mannosyltranferases, 
mannosyltransferases elongating O-linked carbohy-
drates, and cis-prenyltransferase. 
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Similarly to the shortage of GDP-mannose, 
also limitations in dolichyl phosphate production 
caused by low activity of cis-prenyltransferase 
(Shenk et al., 2001) could influence protein glyco-
sylation and secretion. Dolichyl phosphate serves 
as a carrier of carbohydrate residues in O- and 
N-glycosylation by providing the first mannosyl 
residue for the direct transfer to the –OH group 
of serine and threonine in protein O-glycosylation, 
and by taking part in the synthesis of lipid-linked 
oligosaccharide in the N-glycosylation process. To 
overcome the possible shortage of dolichyl phos-
phate for the glycosylation of secretory proteins 
in Trichoderma, the yeast RER2 gene was overex-
pressed in this fungus. RER2 encodes cis-prenyl-
transferase, a key enzyme in dolichol synthesis, 
the first of the polyprenol branch of the meval-
onate pathway (Sato et al., 1999; 2001). The en-
zyme catalyzes the elongation of polyprenol chain 
by sequential addition of isopentenyl diphosphate 
(IPP) to farnesyl diphosphate (FPP) (Daleo et al., 
1977; Adair & Cafmeyer, 1987; Szkopińska et al., 
1996).

Overexpression of the yeast RER2 gene in 
T. reesei caused no significant changes in protein 
secretion, however, the secreted proteins were 
more heavily O- and N-glycosylated (Perlińska-
Lenart et al., 2006a). The higher N-glycosylated 
proteins were secreted later during cultivation 
than O-glycosylated, in agreement with the con-
cept of the controlling role of O-glycosylation in 
the N-glycosylation process (Ecker et al., 2003). At 
the same time, activation of the first two reactions 
in the formation of lipid-linked oligosaccharide 
during N-glycosylation was observed. The first 
steps of N-glycosylation require UDP-N-acetylglu-
cosamine also used in the synthesis of chitin, 
which was temporarily decreased in the cell wall 
of the RER2- transformed Trichoderma strains. 

Mutation in the RER2 gene in S. cerevisiae 
caused accumulation of ER membranes and their 
extreme elongation and, simultaneously, led to a 
ring-like structure of Golgi membranes (Sato et al., 
1999); most importantly, it caused mislocalization 
of some of the ER proteins engaged in protein 
trafficking. All these changes point to a tight inter-
dependence between Rer2p activity and the state 
of the cellular structures taking part in protein 
glycosylation and secretion. A limited activity of 
Rer2p (Belgareh-Touze et al., 2003; Shridas et al., 
2003) caused underglycosylation of caboxypepti-
dase Y, a model N-glycosylated protein, however, 
the lack of Rer2p did not affect the plasma mem-
brane Gas1 protein, which carries N- and O-linked 
sugars and, in addition, requires a glycosylphos-
phatidyl inositol (GPI) anchor. On the other hand, 
the O-glycosylated Hsp150 protein was found to 

be underglycosylated in cells when RER2 expres-
sion was inhibited (Davydenko et al., 2004). 

DISturbeD ActIvIty Of prOteIn  
o-MAnnOSyltrAnSferASeS cOulD 

enhAnce SecretIOn Of n-glycOSylAteD 
prOteInS AnD DecreASe SecretIOn Of O-

glycOSylAteD OneS

Protein O-mannosyltransferases, enzymes di-
rectly transferring the mannosyl residue from doli-
chyl phosphate mannose to the –OH group of ser-
ine or threonine are represented in S. cerevisiae by 
seven Pmt proteins. This suggests an essential role 
of the O-glycosylation process for the survival of 
fungal cells. The yeast Pmt proteins are classified in 
three subfamilies PMT1, PMT2 and PMT4 (Gentzsch 
& Tanner, 1996; 1997). Members of the PMT1 and 
PMT2 subfamilies, Pmt1p and Pmt5p, and Pmt2p, 
Pmt3p and Pmt6, respectively, form enzymatically 
active heterodimers such as Pmt1-Pmt2 and Pmt3-
Pmt5 (Girrbach & Strahl, 2003). Deletion of a PMT 
gene encoding a protein from either of these groups 
results in the formation of less active complexes such 
as Pmt1-Pmt3 or Pmt2-Pmt5. The PMT4 family has 
one member only, Pmt4 p, and this protein forms an 
active homodimer. Moreover, protein O-mannosyl-
transferases are substrate-specific (Gentzsch & Tan-
ner, 1997). 

Up to now, there are no data concerning the 
influence of an increased activity of protein O-man-
nosyltransferases on protein production, glycosyla-
tion and secretion or on the assembly of the cell wall. 
Only the effects of deletion of the genes encoding 
protein O-mannosyltransferases have been studied. 
In A. nidulans, three Pmt proteins have been identi-
fied and it was shown that a lack of an individual 
Pmt protein resulted in cell wall damage, swollen 
hyphae, hyperbranching, reduced or no conidiation, 
an increased number of nuclei and the presence of 
non-O-glycosylated proteins (Goto, 2007). Disrup-
tion of the pmtA gene in A. awamori did not change 
the amount of secreted glucoamylase I, however, it 
caused a significant decrease of its O-glycosylation 
(59.4%) but not N-glycosylation (Oka et al., 2005). 
Moreover, the authors also observed an alteration 
of the O-linked oligosaccharide profiles. The under-
O-glycosylated glucoamylase I had a lower specific 
activity toward soluble starch. 

Disruption of the pmtA gene in A. awamori 
or A. nidulans resulted in abnormal cell morphol-
ogy and alteration in carbohydrate composition of 
their cell wall but, nonetheless, the secretion of pro-
teins by the mutants was not altered. Those results 
showed that weakening of the cell wall structure 
was not enough to stimulate protein production 



Vol. 55       453Interdependence between glycosylation and secretory proteins

and secretion when O-glycosylation abilities were 
limited. In wild type T. reesei removing of the cell 
wall did not result in increased protein production 
and secretion, while DPM1-transformed Trichoderma, 
characterized by enhanced O-glycosylation, secreted 
much more proteins when relieved of the cell wall 
barrier (Perlińska-Lenart et al., 2006b). These results 
suggest that to obtain increased protein production 
and secretion both an enhancement of posttransla-
tional modifications and weakening of the cell wall 
structure are required.

A Hansenula polymorpha strain carrying dis-
ruption of the pmt gene produced and secreted high 
amounts of normally N-glycosylated proteins such 
as heterologously expressed human urinary type 
plasminogen activator, although in a non-glycosylat-
ed form (Agaphonov et al., 2005). The strain showed 
temperature sensitivity which was alleviated on os-
motically (1 M sorbitol) supported medium, indicat-
ing a cell wall integrity defect. In this strain stimula-
tion of protein production and secretion concerned 
only N-glycoproteins, whereas both the production 
and secretion, and the affinity to chitin of under-O-
glycosylated chitinase were significantly decreased.

Those results pointed at different roles of O- 
and N-glycosylation for protein production, secre-
tion, stability, localization and functioning. In yeast 
the integral plasma membrane proteins Axl2/Bud10 
and Fus4 need Pmt4 O-mannosyltransferase for their 
O-mannosylation. In the pmt4∆ mutant the Axl2/
Bud10 protein remained un-O-glycosylated and was 
probably recognized as improperly folded and be-
came degraded in the Golgi apparatus (Sanders et 
al., 1999). Un-O-glycosylated Fus1p was accumulat-
ed in the late Golgi structures suggesting that O-gly-
cosylation functions as a sorting determinant for cell 
surface delivery of Fus1p (Proszynski et al., 2004). 

Disruption of the pmt1 gene in Trichoderma 
resulted in significant changes in the structure of 
the cell wall and the mutant was not able to grow 
without an osmotic stabilizer (1 M sorbitol) (Górka-
Nieć et al., 2008). This defect was not repaired by 
switching on the cell wall integrity pathway in con-
trast to what was observed in an Aspergillus pmtA 
disruptant, in which the amount of chitin in the cell 
wall was elevated (Oka et al., 2004; 2005).

Secretion of proteins in the Trichoderma pmt1 
mutant was decreased while their glycosylation was 
not altered. Since Pmt proteins had been reported to 
be substrate-specific, one could conclude that those 
secretory proteins were not substrates of the PMTI 
protein O-mannosyltransferase. 

An attempt to stimulate the activity of protein 
O-mannosyltransferases by integration of additional 
copies of the pmt1 gene in Trichoderma was unsuc-
cessful and resulted in silenced expression of the 
pmt1 gene and of some other pmts present in this 

fungus (Górka-Nieć et al., manuscript in prepara-
tion). The Trichoderma strain carrying additional cop-
ies of pmt1 secreted under-O- and N-glycosylated 
proteins, but in normal amounts. Since the cell wall 
of the pmt1-silenced mutant was weakened, but to a 
lesser extent than in the pmt1 disruptant, the strain 
could grow without 1 M sorbitol. The possibility of 
cultivation of this strain without sorbitol eliminated 
an additional factor (1 M sorbitol) which influenced 
protein glycosylation and secretion in the pmt1 dis-
ruptant. A comparison of the Trichoderma pmt1-si-
lenced strain with the H. polymorpha or A. awamori 
pmt1 disruptants supported our thesis that changes 
in protein glycosylation ability may differently influ-
ence protein production, glycosylation and secretion 
in different fungal species. 

cOncluSIOnS

Generally, defects in protein O-glycosylation 
induce compensatory changes in cells that allow 
their growth. These changes include: activation of 
cell wall compensatory mechanisms, up-regulation 
of stress response, decrease of transcription of genes 
coding for glycosylated secretory proteins, and in-
teractions between O- and N-glycosylation. The se-
creted proteins are under glycosylated and show an 
altered activity compared to the native ones. 

On the other hand, enhanced O-glycosylation 
does not give effects opposite to those caused by 
decreased O-glycosylation. The same compensatory 
mechanisms could be switched on. Moreover, the 
higher activity of the O-glycosylation pathway could 
result in over-glycosylation and a changed biological 
activity of the secreted proteins. Nevertheless, O-gly-
cosylation appears a promising site of manipulation 
to influence processes interesting from the biotech-
nological point of view. Effective processing of pro-
teins in the endoplasmic reticulum and Golgi appa-
ratus and their quicker relocation along the secretory 
structures allow a higher throughput. If, in addition, 
the cell wall of the fungus is permeable enough not 
to hamper the secretion itself, a higher production of 
secretory proteins may be achieved. 
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