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We present here a neural network-based method for detection of signal peptides (abbreviation 
used: SP) in proteins. The method is trained on sequences of known signal peptides extracted 
from the Swiss-Prot protein database and is able to work separately on prokaryotic and eukaryo-
tic proteins. A query protein is dissected into overlapping short sequence fragments, and then 
each fragment is analyzed with respect to the probability of it being a signal peptide and con-
taining a cleavage site. While the accuracy of the method is comparable to that of other existing 
prediction tools, it provides a significantly higher speed and portability. The accuracy of cleavage 
site prediction reaches 73% on heterogeneous source data that contains both prokaryotic and eu-
karyotic sequences while the accuracy of discrimination between signal peptides and non-signal 
peptides is above 93% for any source dataset. As a consequence, the method can be easily ap-
plied to genome-wide datasets. The software can be downloaded freely from http://rpsp.bioinfo.

pl/RPSP.tar.gz.
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INTRODUCTION

The destination of newly synthesized proteins 
in a cell is often controlled by their short fragments 
called signal peptides (SP) (Gierasch, 1989). Most sig-
nal peptides comprise N-terminal amino acids that 
are cleaved off while the protein is being translocat-
ed through a membrane. In that way signal peptides 
modulate various aspects of cellular life, such as the 
entry of proteins to the secretory pathway, both in 
eukaryotic and prokaryotic cells (Bruch et al., 1989; 
Cornell et al., 1989; Gierasch, 1989; Rapoport, 1992). 
The simplest computational approach for the identi-
fication of signal peptides is based on the application 
of regular expression search, where regular expres-
sions are constructed from experimentally verified 
signal peptides in proteins (Puntervoll et al., 2003). 
In order to improve the efficiency of prediction by 
regular expression search and lower the number of 

false positives, context-based rules and various logi-
cal filters may be applied (Puntervoll et al., 2003). 
Detection of signal peptides can be also carried out 
using a weight matrix approach (von Heijne, 1986a, 
1986b). This approach is quite efficient in recognition 
of cleavage sites between a signal sequence and the 
mature exported protein because many cleavage sites 
are strongly characterized by a set of simple rules 
which are quantified by the weight matrix methods 
(von Heijne 1986a; 1986b; Menne et al., 2000). For in-
stance, the residues at positions –3 and –1 relative 
to the cleavage site are usually small and neutral. 
The regular expression search and weight matrix 
algorithms are now replaced by more sophisticated 
methods that include various types of machine learn-
ing methods such as neural networks (Nielsen et al., 
1997), support vector machines (Vert, 2002), hidden 
Markov models (Nielsen et al., 1999) and many oth-
ers (Ladunga et al., 1991; Talmud et al., 1996; Nielsen 
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et al., 1997a; 1997b; Nielsen & Krogh, 1998; Nielsen 
et al., 1999; Bendtsen et al., 2004a; 2005b; Menne et 
al., 2000; Chou 2001; Lao et al., 2002a;  2002b; Vert, 
2002; Juncker et al., 2003; Hiller et al., 2004; Kall et 
al., 2004; Zhang & Henzel, 2004; Liu et al., 2005; Sid-
hu & Yang, 2006). However, most of these methods 
classify proteins as secretory or non-secretory but do 
not provide cleavage site assignment. In addition, 
high throughput genome sequencing has problems 
with assigning the 5’-end of genes, so many proteins 
lack the correct N-terminal end (Reinhardt & Hub-
bard, 1998). This obviously leads to incorrect predic-
tion of signal peptides.

Currently, two of the most commonly used 
methods for detection of classical signal peptides, 
SignalP (Bendtsen et al., 2004a; 2004b) and SPEPlip 
(Fariselli et al., 2003), also predict the actual cleav-
age site. SPEPlip applies a neural network trained on 
a set of experimentally verified signal peptides from 
eukaryotes and prokaryotes, while SignalP uses both 
neural network and Hidden Markov Model and may 
work on various types of sequences including those 
from Gram-positive and Gram-negative bacteria and 
eukaryotes. In this paper we describe a similar but 
significantly faster method for identification of sig-
nal peptides in proteins based on a neural network 
trained on the most recent version of Swiss-Prot da-
tabase. RPSP (rapid prediction of signal peptides) is 
publicly available as a standalone version together 
with its source code. The new method focuses on the 
classical types of signal peptides neglecting the non-
classically secreted proteins (Bendtsen et al., 2004a; 
2005a), and can be used in large-scale predictions of 
signal peptides even for heterogeneous sets of se-
quences. Specifically, three types of prediction can 
be performed: for prokaryotic sequences, eukaryotic 
sequences and without specifying the organism type. 
Similar sequence based approaches were extensively 
tested by our collaborators in the case of active site 
prediction and structural motifs for herpes ICP4 pro-
tein (Ostrowski et al., 2006; 2007; Plewczynski et al., 
2006;  2008; Koczyk et al., 2007; Wyrwicz et al., 2007; 
2008; Wyrwicz & Rychlewski, 2007; 2008). Such se-
quence based methods are able to provide predictions 
of important short sequence fragments that are phos-
phorylated, bind ligands, interact with other proteins, 
RNA molecules, as well as critical residues that sta-
bilize ligands (Plewczynski et al., 2004; 2005a; 2005b; 
2005c; 2006; 2008; von Grotthuss et al., 2006).

METHOD

The training and testing datasets were gen-
erated using annotated protein sequence informa-
tion acquired from the Swiss-Prot database (release: 
49.4). The initial set was constructed by extracting all 

Swiss-Prot entries with a keyword: ‘SIGNAL’ in the 
FT line (20863 entries). All uncertain entries (poten-
tial, probable, by similarity, or possessing more than 
one cleavage site in FT line were removed) (4566 en-
tries left), as well as all archaeal and viral proteins 
(by accepting entries only with ‘Eukaryota’/’Bacteria’ 
in the OC line) (4296 entries left). The resulting se-
quences were split into two sets: eukaryotic (‘Eu-
karyota’ in OC line) (3331 entries) and prokaryotic 
(‘Bacteria’ in OC line) (965 entries). For eukaryotes 
all organelle proteins (entries with the line OG were 
removed) (3327 entries left), sequences shorter than 
15 and longer than 45 amino acids (3294 entries left) 
and those with residues other than: A, C, G, L, P, Q, 
S, T at ‘–1’ position (3167 entries left). For prokary-
otes we removed all lipoproteins (cross-reference to 
the PROSITE, keyword: “PROKAR_LIPOPROTEIN”) 
(894 entries left), sequences shorter than 15 and lon-
ger than 50 amino acids (875 entries left) and those 
with residues other than: A, G, S, T at ‘–1’ position 
(841 entries left). The datasets of negatives were pre-
pared by extracting N-terminal parts (first 70-resi-
due sequence fragments) of eukaryotic cytoplasmic 
(2215 entries) and nuclear (3616 entries) proteins 
for eukaryotes, and N-terminal parts of bacterial 
cytoplasmic proteins for prokaryotes (6225 entries), 
removing any potential, probable, fragment and 
shorter than 70 amino acids entries. All sets were 
reduced at 60% sequence identity (calculated for 
whole protein sequences, not for short fragments for 
which sequence similarity can be misleading) using 
the CD-HIT clustering tool (Li et al., 2001) (1784 en-
tries left for eukaryotes, 646 for prokaryotes, 987 cy-
toplasmic and 2265 nuclear for negative eukaryotes 
and 2040 for negative prokaryotes). This cut-off was 
optimized as it provides both the best results and 
moderate memory requirements for training of the 
neural network. We also checked datasets clustered 
at 30% and 100% sequence identity, yet the results 
were worse. The negative datasets were further re-
duced approximately to the sizes of the positive da-
tasets, to avoid bias during training and testing of 
the neural network. Finally, the resulting datasets 
were divided into six approximately equal-size parts 
(five as training data, one as test data). The neural 
networks were trained using a standard cross-vali-
dation learning procedure on the training sets (sepa-
rate for eukaryotes, prokaryotes, and mixed) (Baldi 
& Brunak, 2001) while test sets were used only for 
final benchmarks. Details of the prepared datasets 
are shown in Table 1. All training datasets used to 
build the RPSP method are available on the http://
rpsp.bioinfo.pl web pages.

As the cleavage site position and the amino- 
acid composition of the signal peptide are known 
to be highly correlated (Nielsen et al., 1997a; 1997b), 
the local sequence information is sufficient as an 
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input to the neural network. RPSP uses two inde-
pendent neural networks with complex feed-for-
ward, multi-layer architecture and a back-propaga-
tion learning algorithm (Fig. 1). The first network is 
designed to identify if a given residue belongs to a 
signal peptide or not. Here, we use a symmetric se-
quence window with 27 amino acids for eukaryotic 
and mixed (prokaryotic&eukaryotic) sequences and 
19 amino acids for prokaryotic sequences as an in-
put for the neural network. We also neglect differ-
ences between Gram-negative and Gram-positive 
bacteria (Nielsen et al., 1997a). The output layer is 
a single neuron providing the S-score of a predic-
tion. High S-score corresponds to higher probability 
that the given amino acid belongs to a signal pep-
tide, and low score indicates that the amino acid is 
rather part of a mature protein. The second neural 
network identifies the cleavage site (first residue in 
the mature protein, i.e. position +1). The input for 
the neural network is an asymmetric sliding win-
dow with 24 residues for prokaryotic/eukaryotic 
and 25 for prokaryotic&eukaryotic sequences. The 
output layer is also a single neuron that provides 
the C-score of a prediction. This score describes the 
cleavage site likelihood for each position in the que-
ry sequence. The C-score is higher at the cleavage 
site than for other parts of the protein sequence. The 
discrimination between signal peptide and non-sig-
nal peptide and cleavage site prediction are guided 
by Y-score that combines both the S-score and the 
C-score (similarly to SignalP (Bendtsen et al., 2004a) 
and SPEPlip (Fariselli et al., 2003)). For the clarity we 
use the same name convention of various scores as 
in the SignalP and SPEPlip prediction algorithms. 
The Y-score is equal to: idii SCY ∆= * , where ∆dSi is 
the difference between the mean S-score for all d 
amino acids before and d amino acids after position 
i. The d value of 17 was taken from our benchmark-
ing results. The Y-score provides a better cleavage 
site prediction than the raw C-score alone, because 
usually a number of high C-scores can be assigned 
to amino acids in the query sequence, whereas only 
one residue can be the true cleavage site. As a con-
sequence, cleavage site is predicted for the highest 
Y-score, which means that the slope of the S-score 
is steep and a significant C-score is found. Finally, 
the D-score is also computed that is an arithmetic 
mean of Y-score for position i and the mean value 
of S-score for all amino acids. This score was shown 

(Bendtsen et al., 2004a; 2004b) to be superior in dis-
crimination between secretory and non-secretory 
proteins in comparison with the S-mean score used 
in previous approaches. A protein is expected to 
contain a signal peptide in the considered position i 
if the Y-score for this position is larger than 0.35 and 
D-score is larger than 0.43.

PERFORMANCE

Our main goal was to develop a fast method 
for signal peptide detection that could be applied 
for large scale annotations of heterogeneous sets of 
sequences and did not necessarily require specify-
ing their origin. The performance analysis of three 
sets of neural networks trained on prokaryotic, eu-
karyotic and prokaryotic&eukaryotic sequences was 
conducted on an independent data set that was not 
used during the learning procedure. The perform-
ance of each NN classification model is described by 
three measures of accuracy: classification error E, re-
call R, and precision P:

where tp is the number of true positives, fp is the 
number of false positives, tn is the number of true 
negatives and fn is the number of false negatives. 
The classification error E provides an overall error 
measure, whereas recall R measures the percentage 
of correct predictions (the probability of correct pre-
diction). Precision P gives the percentage of observed 
positives that are correctly predicted (the measure of 
reliability of the positive prediction). These meas-
ures of accuracy are calculated using a precise but 
computationally intensive leave-one-out procedure. 
The leave-one-out test removes from the training da-
taset one sample, constructs the model on the basis 
of the remaining training dataset and then tests the 
prediction of the model on the removed sample. The 
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Table 1. RPSP training datasets

Signal peptides Cytoplasmic proteins Nuclear proteins
Dataset Total Reduced Total Reduced Total Reduced
Eukaryotes 3167 1784 2215 987 3616 2265
Prokaryotes 841 646 6225 2040 — —
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resulting error estimators are averaged over all such 
models (for all positive and all negative instances).

Detailed benchmark results are shown in 
Table 2. One of the main assets of the program is 
its high efficiency of signal peptide prediction even 
without specifying the organism of a protein. The 
precision of the method operating without distin-
guishing between prokaryotic and eukaryotic pro-
teins is not significantly lower (only 4% difference) 
than using separate neural networks trained either 
on eukaryotic or prokaryotic sequences. The accu-
racy of cleavage site prediction reaches 73% on het-
erogeneous source data that contains both prokary-
otic and eukaryotic sequences, while the accuracy 
of discrimination between signal peptides and non-
signal peptides is above 93% for any source dataset. 
Thus, the results are comparable to those that can 
be obtained with other prediction tools such as Sig-
nalP 3.0 (Bendtsen et al., 2004) or SPEPlip (Fariselli 
et al., 2003).

Another crucial advantage of RPSP is that 
the method is very fast. For instance, analysis of 
959 proteins (our full benchmark set) takes about 
2 seconds on a Linux machine with 2 GHz CPU 
and 512 MB RAM. Examples of genome-wide sig-
nal peptide predictions, with the time of execu-
tion and SignalPv3.0 and SPEPlip results for com-
parison, are shown in Table 3. Most importantly 
the RPSP server is designed for high-through-
put analyses and, in addition, the method is also 
available as a standalone program. This is a sig-
nificant advantage over other tools that provide 
only standard web server interfaces. Those serv-
ices usually cannot accept an input of more than 
around a thousand proteins having certain limits 
of residues per sequence, number of residues in 
total and number of jobs accepted from a single 
IP internet address. Altogether, this makes RPSP 
the method of choice in high throughput studies, 
such as massive analyses of whole proteomes in 

Table 2. Results of independent benchmarks

Discrimination (SP/non-SP) Cleavage site
Dataset Sensitivity Specificity Accuracy CC* Accuracy
Eukaryotes 90% 98% 95% 0.91 77%
Prokaryotes 91% 98% 95% 0.91 78%
Euk & Pro 86% 98% 93% 0.87 73%

*Matthews correlation coefficient
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the context of function prediction or detailed char-
acterization of proteins.

CONCLUSIONS

In this paper we describe a new, fast method 
for identification of signal peptides in proteins. The 
method uses two neural networks trained on experi-
mental data from the Swiss-Prot database. We would 
like to stress that our training dataset, in comparison 
to previous approaches, is based on the most recent 
version of the Swiss-Prot database, so present the 
significant update of the earlier signal peptide pre-
diction methods. Experimental laboratories provide 
each year a number of new confirmed signal pep-
tides, therefore updating of the training sets is very 
important. 

The main advantage of RPSP is its ease of 
use, i.e. its local version with source code and pre-
compiled binary is available. The method is very 
fast. We were able to optimize the source code and 
the binary during the compilation. The availability 
of a free local version with the source code is the 
crucial advantage over the other previously devel-
oped algorithms that provide only web server in-
terfaces. The web server technology has some inher-
ent limits due to internet architecture and the web 
server technical design. The existing signal peptide 
prediction servers cannot accept input of more than 
around a thousand proteins, all have to contain less 
than a certain limit of residues per sequence (few 
thousand) and there is also the limit for the number 
of residues in total. Additionally, the existing serv-
ers have also the limit of a few thousand lines in the 
input file, and the number of jobs accepted from a 
single IP internet address is limited. The splitting 
of whole proteome sequences into smaller bunches 
by hand is time consuming and cannot be done in 
a high-throughput manner. In addition, the local 
version of SignalP does not contain the source code 
(you cannot modify it in accordance with your spe-
cific needs), and cannot be used in commercial ap-
plications. We were also not able to get its binary 

compiled version from the authors of SignalP, so 
we could not perform a detailed comparison of both 
tools on independent benchmarks. Apparently the 
availability of the local version of SignalP is limit-
ed. There is no local version, either binary or source 
code, of SPEPlip predictor, you are allowed to use 
only the web service. 

Summarizing, we would like to highlight 
three features of our machine learning software, 
namely: i) new training set based on updated ver-
sion of Swiss-Prot database; ii) speed of the software 
and the availability of the local version with source 
code and precompiled binary for LINUX; and iii) 
good efficiency even without specifying the origin 
organism class. These points make RPSP, a tool for 
rapid prediction of signal peptides, the method of 
choice in high throughput environments, such as 
massive analysis of whole proteomes in the context 
of function prediction or detailed characterization of 
proteins. The prediction of signal peptides in both 
example proteomes are performed in real time. The 
RPSP source code in C programming language to-
gether with the LINUX precompiled binary can be 
downloaded freely from http://bioinfo.pl/RPSP.tar.
gz. Consequently, predictions can be run locally on 
any typical workstation and can be used in large-
scale analyses. 
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