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Since the discovery of the first E. coli mutator gene, mutT, most of the mutations inducing elevat-
ed spontaneous mutation rates could be clearly attributed to defects in DNA repair. MutT turned 
out to be a pyrophosphohydrolase hydrolyzing 8-oxodGTP, thus preventing its incorporation into 
DNA and suppresing the occurrence of spontaneous AT→CG transversions. Most of the bacterial 
mutator genes appeared to be evolutionarily conserved, and scientists were continuously search-
ing for contribution of DNA repair deficiency in human diseases, especially carcinogenesis. Yet a 
human MutT homologue — hMTH1 protein — was found to be overexpressed rather than inacti-
vated in many human diseases, including cancer. The interest in DNA repair contribution to hu-
man diseases exploded with the observation that germline mutations in mismatch repair (MMR) 
genes predispose to hereditary non-polyposis colorectal cancer (HNPCC). Despite our continu-
ously growing knowledge about DNA repair we still do not fully understand how the mutator 

phenotype contributes to specific forms of human diseases. 
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INTRoDuCTIoN

Maintaining low mutation rates is essential 
for the cell stability. However, natural isolates of 
Escherichia coli have been found to have elevated 
mutation rates (Matic et al., 1997) and strains show-
ing this phenotype are termed mutators. Although 
the mutator phenotype may have some beneficial 
effects allowing better adaptation to environmental 

conditions, it also generates many deleterious and 
lethal mutations (Funchain et al., 2000). 

The first described E. coli mutator gene 
— mutT1 (Treffers et al., 1954) which specifically in-
creases, from 100 to 10 000-fold, the occurrence of 
AT→CG transversions (Yanofsky et al., 1966) was 
shown to encode MutT pyrophosphohydrolase spe-
cifically acting on 8-oxodGTP (Maki & Sekiguchi, 
1992), thus preventing incorporation of this po-
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tentially mutagenic substrate into DNA. The list of 
E. coli mutators was extended further by other DNA 
repair gene products, such as the base excision repair 
(BER) glycosylases MutM/Fpg and MutY (for details 
see Krwawicz et al., this issue), mismatch repair 
(MMR) proteins MutH, MutS and MutL (for details 
see below), and MutU/UvrD — helicase II engaged 
in MMR, nucleotide excision repair (NER) (Truglio 
et al., 2006; for details see Maddukuri et al., this is-
sue), and recombination repair (RR) (for details see 
Vidakovic et al., 2005; O’Driscoll & Jeggo, 2006; No-
wosielska, this issue). Additionally, Miller (1996) ex-
tended the list of E. coli mutators by ung, sodA, dam, 
oxyR, and polA strains defective in uracil-DNA gly-
cosylase, superoxide dismutase, DNA adenine meth-
yltransferase, positive regulator of oxidative damage 
response, and DNA polymerase I, respectively, but 
all of them are rather weak mutators and thus are 
not considered as major E. coli mutators. The list of 
E. coli mutators is not limited to strains defective in 
DNA repair, but also includes strains encoding mu-
tated tRNAs, such as mutA and mutC (Slupska et al., 
1996), and mutated 3’→5’ proofreading ε subunit of 
the DNA polymerase III holoenzyme — mutD/dnaQ 
(Echols et al., 1983), but they are not subject of this 
review. 

Counterparts of bacterial DNA repair pro-
teins have been found in eukaryotic organisms, in-
cluding humans. Moreover, it has been shown that 
DNA repair deficiency results in accumulation of 
DNA damage, which may contribute to aging and 
development of human diseases, including cancer 
and neurological diseases (Brooks, 2002; Krokan et 
al., 2004; Olinski et al., 2007). The present review de-
scribes two DNA repair and damage prevention sys-
tems — nucleotide pool sanitization and mismatch 
repair. For an overwiev of the human repair pro-
teins described below see Table 1.

NuCleoTIDe Pool DAMAGe AS SouRCe of 
MuTATIoNS AND ITS PReveNTIoN bY E. coli 

MutT PRoTeIN

Various DNA damaging agents react with 
nucleic acid bases present not only in DNA (for a 
review see Krwawicz et al., this issue), but also in 
precursors for DNA synthesis, i.e. 2’-deoxyribonu-
cleoside-5’-triphosphates (dNTPs). Generally, bases 
in dNTPs are more easily accessible to damage than 
bases in DNA, where they are involved in secondary 
and tertiary DNA as well as chromosomal structures 
(Topal & Baker, 1982; Kamiya & Kasai, 1995). Modi-
fied dNTPs may induce mutations, since they are in-
corporated into DNA by DNA polymerases with an 
efficiency within the range of 10–5–10–2 of unmodi-
fied dNTPs incorporation (for examples see: Snow et 

al., 1984; Purmal et al., 1994; Miller et al., 2000; Imoto 
et al., 2006). In fact, one of the most common oxida-
tive modifications in the dNTP pool — 8-oxodGTP 
— has been shown to be incorporated almost 24 
times more efficiently opposite template A than op-
posite template C by human polymerase β (Miller et 
al., 2000). Thus, 8-oxodGTP misincorporated oppo-
site A may lead to AT→CG transversions (for details 
see Fig. 1) both in vitro (Pavlov et al., 1994; Minnick 
et al., 1994) and in vivo (Inoue et al., 1998; Satou et al., 
2005).

To prevent 8-oxodGTP incorporation to DNA, 
E. coli cells are equipped with the MutT protein, 
which was discovered as a nucleoside triphosphate 
pyrophosphohydrolase dephosphorylating all canon-
ical ribo- and 2’-deoxyribonucleoside-5’-triphosphates 
to their corresponding 5’-monophosphates and in-
organic pyrophosphate (dNTP + H2O → dNMP + 
PPi) (Bhatnagar & Bessman, 1988; Bhatnagar et al., 
1991). Initially, the MutT protein was proposed to 
prevent the occurrence of AT→CG transversions by 
degrading a specific form of dGTP, or dGTP in the 
syn conformation, which can mispair with A dur-
ing replication (Akiyama et al., 1989; Bhatnagar et al., 
1991). However, the discovery that the MutT protein 
is over 2000 times more active towards 8-oxodGTP 
than towards dGTP, has pointed out to its true role 
(Maki & Sekiguchi, 1992). Recently it appeared that 
the MutT protein is also able to efficiently hydrolyze 
8-oxodGDP (Ito et al., 2005). 8-OxodGTP and 8-oxo-
dGDP are interconvertible, probably by the actions 
of nucleoside diphosphate kinase (NDPK) and nu-
cleoside triphosphatase (Hayakawa et al., 1995; Ka-
miya & Kasai, 1999). Furthermore, MutT protein also 
prevents transcriptional errors by dephosphorylation 
of ribonucleotides 8-oxoGDP and 8-oxoGTP, which 
otherwise can be incorporated into RNA opposite A 
present in the DNA template (Taddei et al., 1997; Ito 
et al., 2005).

A comparison of the amino-acid sequence of 
the MutT protein with sequences present in databas-
es has revealed similarities with putative products 
of uncharacterized open reading frames (Orfs) from 
bacteria to mammals, and also with viral gene prod-
ucts of unknown function. All these similarities were 
concentrated in the same MutT segment consisting 
of about 30 amino acids, with six positions contain-
ing strictly conserved amino-acid residues. Based on 
this sequence homology the MutT protein family 
was distinguished as a family of proteins containing 
the MutT signature sequence, i.e. Gx5Ex7REUxEEx2U 
(where x means any residue and U means a bulky 
aliphatic or hydrophobic residue, i.e. I, L, V, M, F, 
Y or W) (Koonin, 1993). In consequence, functional 
MutT homologues from Proteus vulgaris and Strepto-
coccus pneumoniae were identified, characterized, and 
shown to complement the mutator phenotype of the 
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mutT E. coli strain (Kamath & Yanofsky, 1993; Bul-
lions et al., 1994; Mejean et al., 1994). Furthermore, 
human, rat and mouse MutT homologue-1 (MTH1) 
genes have been identified, cloned and shown to 
suppress the increased occurrence of AT→CG trans-
versions in E. coli mutT cells (Mo et al., 1992; Saku-
mi et al., 1993; Furuichi et al., 1994; Cai et al., 1995; 
Kakuma et al., 1995). Despite the functional homol-
ogy, human MTH1 and E. coli MutT share only 30 
residues (23%), 14 of which are contained in the con-
served 23-residue module, while the other 16 resi-
dues are scattered throughout the whole molecules 
(Shimokawa et al., 2000).

The MutT protein family appeared to contain 
also proteins active in many other reactions, distinct 
from the MutT-like activity, including hydrolysis of 
nucleoside-5’-di- and triphosphates, dinucleoside and 
diphosphoinositol polyphosphates, nucleotide sugars 
and alcohols, dinucleotide coenzymes and RNA caps 
(Bessman et al., 1996; McLennan, 2006). In all the cas-
es where the enzymatic function was known these 

proteins appeared to be pyrophosphohydrolases that 
acted upon a nucleoside diphosphate linked to some 
other moiety, X, hence the name “Nudix” hydrolases 
was proposed for this family, with the term “MutT 
signature sequence” changed to “Nudix box”. MutT 
and its functional homologues constitute a subfamily 
of Nudix hydrolases, where X = phosphate group. 
It has been proposed that Nudix hydrolases are 
“housecleaning” enzymes which control the level of 
cellular metabolism by-products, metabolic interme-
diates and signaling compounds, whereas the spe-
cific role of MutT proteins is to “sanitize” the dNTP 
pool (Bessman et al., 1996). 

The importance of nucleotide pool sanitization 
is further highlighted by the observation that dUT-
Pase, enzyme responsible for elimination of another 
damaged dNTP, dUTP, is essential for survival of 
E. coli (el-Hajj et al., 1988), S. cerevisiae (Gadsden et al., 
1993; Guillet et al., 2006) and C. elegans (Dengg et al., 
2006). Interestingly, it was shown recently that abro-
gation of the S-phase checkpoint gene clk-2 rescued 
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figure 1. Prevention of transversion mutations by mammalian Go system (adapted from scheme proposed for E. coli 
by Michaels and Miller, 1992).
8-OxoG is formed in DNA both by direct guanine oxidation and by 8-oxodGTP incorporation from nucleotide pool. 
8-OxodGTP is incorporated mainly opposite A, and thus, if unrepaired may lead to AT→CG transversion. When 8-oxoG 
is present in DNA it may pair with A upon replication, which leads to GC→TA transversions. hMTH1 pyrophosphohy-
drolase, and hOGG1, hOGG2 and hMYH glycosylases act together to prevent these mutations. E. coli cells lack hOGG2 
protein, 8-oxodGTP is hydrolyzed by MutT protein, 8-oxoG is excised from pair with C by MutM glycosylase, and A is 
excised from pair with 8-oxoG by MutY glycosylase. G*, 8-oxoG.
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lethality and developmental defects, and eliminated 
cell cycle arrest and apoptosis induced by dUTPase-
depletion in C. elegans. Therefore, it appears that 
dUMP misincorporation to DNA leads to checkpoint 
activation after processing by uracil-DNA glycosy-
lase, and abrogation of the CLK-2 checkpoint leads 
to tolerance of DNA-repair intermediates (Dengg et 
al., 2006). Furthermore, methylated nucleotides, such 
as 1-medATP, may be repaired by E. coli oxidative 
demethylase AlkB (Koivisto et al., 2003); for a review 
of AlkB protein see Nieminuszczy & Grzesiuk (this 
issue).

PATHwAY of 8-oxodGTP elIMINATIoN IN 
MAMMAlIAN CellS — MTH1, MTH2 AND 

NuDT5 PRoTeINS

To counteract 8-oxodGTP incorporation to 
DNA, mammalian cells have an elaborate system of 
several enzymatic activities which convert this po-
tentially mutagenic modified dNTP to its nucleoside, 
8-oxodGuo (see Fig. 2). The 8-oxodGTP dephospho-
rylation pathways of E. coli and mammalian cells 
show some differences. In mammalian cells, like in 
E. coli, the whole process is initiated by 8-oxodGTP 
dephosphorylation to 8-oxodGMP by MTH1 protein, 
or to 8-oxodGDP probably by an unspecific nucleo-

side triphosphatase (Mo et al., 1992). In contrast to E. 
coli MutT, MTH1 is unable to hydrolyze 8-oxodGDP 
and its 8-oxodGTPase activity is strongly inhibited 
by this oxidized dNDP, and also by 2-oxodADP (Bi-
alkowski & Kasprzak, 1998; Fujikawa et al., 1999). 8-
OxodGDP and 2-oxodADP may be phosphorylated 
back to 8-oxodGTP and 2-oxodATP, respectively, 
by nonspecific NDPK (Hayakawa et al., 1995; Ka-
miya & Kasai, 1999). Importantly, 8-oxodGTP can 
be generated only by direct oxidation of dGTP or 
by phosphorylation of 8-oxodGDP, and it does not 
come from the ribonucleotide pool, since ribonucle-
otide reductase, normally catalyzing the reduction of 
NDPs to dNDPs, cannot convert 8-oxoGDP to 8-oxo-
dGDP (Hayakawa et al., 1995).

To counteract the MTH1 inhibition by 8-oxo-
dGDP, and to eliminate this potential 8-oxodGTP 
source, mammalian cells possess an enzymatic ac-
tivity which hydrolyses 8-oxodGDP to 8-oxodGMP, 
namely the NUDT5 protein. NUDT5, originally dis-
covered as ADP-sugar pyrophosphatase (Canales et 
al., 1995; Kim et al., 1998; Gasmi et al., 1999; Yang 
et al., 2000; Ribeiro et al., 2001), dephosphorylates 
8-oxodGDP with high specificity, i.e. its Km for this 
substrate equals 0.77 µM (Ishibashi et al., 2003). 
Taking into account that the Km of hMTH1 protein 
for 8-oxodGTP is almost 20 times higher (i.e. it is in 
the range of 12.5–17.3 µM (Mo et al., 1992; Fujikawa 

figure 2. Pathways of interconversion of 8-oxo(d)G-containing nucleotides in E. coli and mammalian cells (based on 
Hayakawa et al., 1999; Ishibashi et al., 2003; 2005).
Double bars represent a block of reaction.

          RNA              DNA 
        

       
8-oxoGTP   8-oxodGTP

               

8-oxoGDP      8-oxodGDP

       
8-oxoGMP    8-oxodGMP

              
   8-oxoGuo       8-oxodGuo

ribonucleotide 
reductase

MTH2
MutT

MTH1
MutT

NUDT5
MutT

NDPK

MTH1 

NDPK

guanylate 
kinase

guanylate
kinase

?

RNA 
polymerase

DNA 
polymerase

cell membrane 

urine

nucleoside
triphosphatase

?

cDN (?) 



Vol. 54       441Nucleotide pool sanitization and mismatch repair systems

et al., 1999), it can be concluded that NUDT5 may 
play a more important role than the MTH1 protein 
in prevention of 8-oxodGTP-induced mutations. 
Additionally, NUDT5 also prevents transcription 
errors by efficient 8-oxoGDP hydrolysis (Ishibashi 
et al., 2003). Importantly, the dephosphorylation of 
8-oxodGTP or 8-oxodGDP to 8-oxodGMP by MTH1 
or NUDT5, respectively, is irreversible, since gua-
nylate kinase, normally phosphorylating dGMP 
to dGDP, is inactive on 8-oxodGMP (Hayakawa 
et al., 1995; Kim et al., 2006). Finally, 8-oxodGMP 
is dephosphorylated to 8-oxodGuo, probably by 
cytoplasmic 5’(3’)-deoxyribonucleotidase (cDN) 
(Hayakawa et al., 1995). This proposed pathway of 
 8-oxodGTP dephosphorylation is further supported 
by the observation that both hMTH1 expression and 
nucleotide pool size were shown to significantly 
influence the extracellular 8-oxodGuo level (Hagh-
doost et al., 2005; 2006). Furthermore, 8-oxodGuo is 
excreted to urine without further metabolism, since 
enzymes of purine nucleotide metabolism, which 
convert dGuo to uric acid, such as purine nucle-
oside phosphorylase (catalyzing phosphorolysis 
of the dGuo N-glycosidic bond with formation of 
guanine and deoxyribose-1-phosphate) and guanase 
(catalyzing deamination of guanine to xanthine) are 
not active on 8-oxodGuo and 8-oxoGuo, respective-
ly (Bialkowski & Olinski, 1997). Urinary 8-oxodGuo 
has been proposed to be a biomarker of oxidative 
stress (Shigenaga et al., 1989).

Although hMTH1 is functionally and struc-
turally (Mishima et al., 2004) related to its E. coli 
counterpart, it differs from MutT in its lower sub-
strate specificity for 8-oxodGTP, with the Km 26–216 
times higher than that of the MutT protein (Mo et 
al., 1992; Fujikawa et al., 1999; Kamiya et al., 2004). 
Interestingly, hMTH1 has been shown to have a 
broader substrate specificity than MutT, and it hy-
drolyses oxidized forms of dATP, 8-oxodATP and 
2-oxodATP (Fujikawa et al., 1999), and also 8-chloro-
dGTP-formed by HOCl modification (Fujikawa et al., 
2002). 

Human MutT homologue (hMTH1) gene 
spans 9 kb, is localized on chromosome 7p22 (Fu-
ruichi et al., 1994), and consists of five major exons, 
with exon 1 consisting of two segments (1a and 1b), 
exon 2 consisting of three segments (2a, 2b and 2c), 
and exons 3, 4 and 5 without segmentation. Alterna-
tive splicing results in formation of seven types of 
transcripts (1, 2A, 2B, 3A, 3B, 4A and 4B), with type 
1 mRNA transcript predominating in most or all 
human cells and tissues (Oda et al., 1997). All tran-
scripts direct formation of a 156-amino-acid (18-kDa) 
hMTH1 protein isoform (termed p18) from the same 
AUG4 located at the beginning of exon 3. Addition-
ally, B type mRNAs (2B, 3B and 4B) have three ad-
ditional upstream AUGs (AUG1, AUG2 and AUG3) 

localized in-frame with AUG4. AUG1 is followed 
by a termination codon, so functional products 
are produced only from AUG2, AUG3 and AUG4. 
Therefore, B-type mRNAs produce additionally a 
171-amino-acid (p21) and a 179-amino-acid (p22) 
polypeptide from AUG3 and AUG2, respectively. 
Western blot analysis of Jurkat and HeLa cells crude 
extracts revealed the existence of all three isoforms 
of MTH1 protein (i.e. p18, p21 and p22), with the 
p18 isoform constituting 90%. Additionally, a single 
nucleotide polymorphism (SNP) is present at the 5’ 
splice site (GT→GC) of exon 2c segment, which al-
ters the splicing pattern of exon 2c. This polymor-
phism destroys the termination codon after AUG1, 
which generates an extended open reading frame 
coding for a 197-amino-acid polypeptide (p26) (Oda 
et al., 1997). The frequency of the C allele was esti-
mated at about 7–9% in Japanese population (Kohno 
et al., 2006). Computer modeling revealed that p18 
and p26 proteins contain a mitochondrial targeting 
sequence, and the additional N-terminal 18-amino-
acid fragment of the p26 isoform constitutes a bet-
ter mitochondria-targeting signal than that found in 
p18 isoform. All four hMTH1 isoforms were shown 
to have enzymatic activity (Sakai et al., 2006). One 
more polymorphism was discovered in exon 4 in co-
don 83 of the p18 hMTH1 protein coding sequence, 
where GTG encoding valine is changed to ATG en-
coding methionine (Wu et al., 1995). The Met83 vari-
ant was shown to be more thermolabile, more hy-
drophobic, have a higher α-helix content and lower 
catalytic activity than Val83 (Yakushiji et al., 1997). 
The frequency of this type of polymorphic alteration 
in the hMTH1 allele was estimated at about 9% in 
the Japanese population. There is a tight linkage be-
tween the two hMTH1 polymorphic sites, Met83 and 
GC at exon 2c, or Val83 and GT at exon 2c, which 
results in the synthesis of Met83-hMTH1 (p26), but 
not Val83-hMTH1 (p26) (Oda et al., 1999). Other pol-
ymorphisms reported for hMTH1 are as follows: T 
to C at codon 45 in exon 3, with C allele frequency 
2.33%, silent C to T polymorphism at codon 119 in 
exon 5, with T allele frequency 2.03%, C to T poly-
morphism in intron 3, and G to A polymorphism at 
position 92, resulting in the Arg31Gln change (Wu et 
al., 1995; Sieber et al., 2003; Jiang et al., 2005).

hMTH1 mRNA is abundant in human thy-
mus, testis and embryonic tissues (Oda et al., 1997). 
In mice, the amounts of MTH1 mRNA found in var-
ious organs were as follows: embryonic cells >> thy-
mus, liver > large intestine > testis > kidney, spleen 
> stomach, lung, heart > brain (Kakuma et al., 1995; 
Igarashi et al., 1997). In human cells hMTH1 protein 
is localized mainly in the cytoplasm and nucleus, 
with 5–10% present in mitochondria (mainly in the 
mitochondrial matrix) (Kang et al., 1995; Yoshimura 
et al., 2003). 
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Role of hMTH1 IN HuMAN DISeASe

It has been proposed that an early step in 
carcinogenesis is elevation of the rate of spontane-
ous mutations, i.e. development of a mutator pheno-
type (Loeb, 2001; Beckman & Loeb, 2006; Venkate-
san et al., 2006). Since MutT-deficient E. coli cells 
show a clear mutator phenotype, the hMTH1 gene 
was suspected to be one of the genes whose defi-
ciency would be involved in cancer progression. 
Consistently with this assumption, MTH1-knockout 
mice showed a higher incidence of lung, liver and 
stomach cancer (Tsuzuki et al., 2001a; 2001b). How-
ever, no mutations or polymorphisms in the hMTH1 
gene were found to be correlated with hereditary 
nonpolyposis colorectal cancer (HNPCC) (Wu et al., 
1995), acute childhood leukemia (Lin et al., 1998b), 
hepatocellular carcinoma, lung cancer (Oda et al., 
1999), ovarian cancer (Takama et al., 2000), familial 
adenomatous polyposis (FAP), sporadic colorectal 
cancer (Sieber et al., 2003; Kim et al., 2004), nor with 
Parkinson’s disease (Satoh & Kuroda, 2000). Similar-
ly, no such correlation was found in the rat 2-ami-
no-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-
induced mammary carcinomas, which showed an 
elevated level of AT→CG transversions (Okochi et 
al., 2002a; 2002b). On the other hand, the Val83Met 
polymorphism is suggested to be involved in the 
development of type 1 diabetes mellitus in female 
Japanese (Miyako et al., 2004), and together with the 
T/C polymorphism in exon 2, with the risk of small 
cell lung cancer (SCLC), but not with non-small cell 
lung cancer (NSCLC) (Kohno et al., 2006). Further-
more, the Val83Met polymorphism was shown to 
be more frequent in gastric cancer patients, and the 
Met83 variant correlated with somatic mutations in 
TP53 tumor suppressor gene (Kimura et al., 2004). 

Surprisingly, in various types of tumors and 
disease states, and in rodent models of human dis-
eases, MTH1 overexpression was found to be more 
common than its mutation. Thus, MTH1 mRNA was 
shown to be overexpressed in renal cell carcinoma 
(Okamoto et al., 1996), lung cancer cells and NSCLC 
tissues (Hibi et al., 1998; Kennedy et al., 1998), hepa-
tocellular carcinoma (Zhou et al., 2005), breast cancer 
(Wani et al., 1998), PhIP-induced rat mammary car-
cinomas (Okochi et al., 2002a; 2002b), MTH1 protein 
level was shown to be increased in brain tumors (Iida 
et al., 2001), NSCLC (Kennedy et al., 2003), colorec-
tal cancer (Koketsu et al., 2004), lung epithelial cells 
of patients with idiopathic interstitial pneumonias 
(Kuwano et al., 2003), mouse heart after myocardial 
infarction (Tsutsui et al., 2001), and hMTH1 activ-
ity was shown to be increased in NSCLC (Speina et 
al., 2005) in comparison with non affected tissues or 
cells. Furthermore, hMTH1 overexpression was also 
observed in regions involved in oxidative stress-in-

duced damage in brains of patients with Parkinson’s 
(Shimura-Miura et al., 1999) and Alzheimer’s disease 
(Furuta et al., 2001), in nuclei of motor neurons of 
patients with amyotrophic lateral sclerosis (Kikuchi 
et al., 2002), and also was shown to protect mouse 
neurons from oxidative stress damage in a 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine induced Parkin-
son’s disease model (Yamaguchi et al., 2006), and in 
kainate-induced excitotoxicity (Kajitani et al., 2006). 
Furthermore, MTH1 was also shown to suppress 
H2O2-induced cell death in mouse embryo fibrob-
lasts (Yoshimura et al., 2003). Consistently with the 
above results, MTH1 overexpression was observed 
under oxidative stress induced by H2O2 in cultured 
glioma cells (Iida et al., 2004), human skin fibroblasts 
and Jurkat cells (Meyer et al., 2000), and in cells ex-
posed to various toxic agents, such as in the case of 
human lung tissues of tobacco-smoking NSCLC pa-
tients (Arczewska et al., in preparation), human fi-
broblasts exposed to ionizing radiation (Haghdoost 
et al., 2006), in livers of rats treated with carbon tet-
rachloride (Takahashi et al., 1998), rat lung epithelial 
cells treated with urban particulate matter (Choi et 
al., 2004), human lung epithelial cells treated with 
crocidolite asbestos (Kim et al., 2001), and also in 
tissues exposed to a high level of toxic metabolites 
excreted from the organism, such as the rat kidney 
inner cortex (Kasprzak et al., 2001) and human color-
ectal cancers located in the distal part of the colon 
(Koketsu et al., 2004). Furthermore, hMTH1 overex-
pression was observed under increased oxygen con-
sumption, i.e. in leukocytes of healthy subjects after 
exercises (Sato et al., 2003). All the above observa-
tions have led to the conclusion that hMTH1 over-
expression is a molecular marker of oxidative stress, 
especially in cancer cells (Kennedy et al., 1998), and 
was even proposed to be a marker for diagnosis of 
patients with non-small cell lung cancer (Chong et 
al., 2006). In fact, hMTH1 overexpression has proved 
to be a reliable marker of oxidative stress in cancer 
and other diseases, since a high level of its expres-
sion in peripheral lymphocytes was shown to be as-
sociated with increased risk of prostate cancer (Liu 
et al., 2003), and its overexpression was observed in 
lymphocytes of uremic patients (Tarng et al., 2004).

The role of MTH1 in oxidative-damage pre-
vention is further highlighted by the observation 
that hMTH1 mRNA level is inversely correlated 
with 8-oxoG DNA level in human lung cancer cell 
lines (Kennedy et al., 1998) and in leukocytes of 
healthy subjects after exercise (Sato et al., 2003), a 
higher hMTH1 mRNA level coincides with lower 
8-oxoG DNA levels in human lung epithelial cells 
treated with crocidolite asbestos (Kim et al., 2001), a 
higher MTH1 activity coincides with lower 8-oxoG 
DNA levels in fetal compared to maternal mouse 
organs (Bialkowski et al., 1999b), a higher hMTH1 
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protein level coincides with higher 8-oxodGuo lev-
els in the cytoplasm and mitochondria of substantia 
nigra neurons of patients with Parkinson’s disease 
(Shimura-Miura et al., 1999) and the hMTH1 pro-
tein level is positively correlated with extracellular 
8-oxodGuo level in cell cultures (Haghdoost et al., 
2006). Furthermore, treatment of rats with cadmium 
(II) (Cd(II)), which inhibits the activity of the MutT 
and MTH1 proteins (Porter et al., 1997; Bialkowski & 
Kasprzak, 1998), resulted in a decrease of MTH1 ac-
tivity concurrently with an increase of 8-oxoG level 
in DNA of the testis, the target organ of Cd(II)-in-
duced mutagenesis (Bialkowski et al., 1999a).

Interestingly, although MTH1 expression was 
found to be increased in replicating cells (Wani & 
D’Ambrosio, 1995), stimulated by phytohemaggluti-
nin and interleukin-2 (Oda et al., 1997), and higher 
in tissues with highly proliferating cells, such as thy-
mus and testis, than in tissues with non-proliferating 
cells, such as brain (Kakuma et al., 1995; Igarashi et 
al., 1997; Oda et al., 1997), Bialkowski and Kasprzak 
(2004) have shown that MTH1 protein activity is 
not regulated by the cell proliferation rate. Further-
more, the MTH1 protein activity does not depend 
on the cell cycle stage, and is not changed under 
serum starvation of cultured cells, but decreases 
with increasing cell population density (Bialkowski 
& Kasprzak, 2000). Therefore, although MTH1 over-
expression under oxidative stress and in cancer cells 
is a well-recognized feature, the actual mechanisms 
that are involved in this phenomenon remain to be 
elucidated.

PReveNTIoN of 8-oxoG-INDuCeD MuTATIoNS 
bY Go SYSTeM — CooPeRATIoN of THe 

hMTH1 PRoTeIN AND beR PATHwAY

8-OxoG may be formed in DNA by G oxi-
dation or by 8-oxodGTP incorporation opposite A 
or C (see Fig. 2). In E. coli 8-oxoG paired with C 
is removed by MutM protein, but, if unrepaired it 
may pair with A upon replication and thus GC→
TA transversions occur. On the other hand, A is re-
moved from the 8-oxoG•A pair by MutY protein, 
which prevents GC→TA transversions. Paradoxi-
cally, if 8-oxoG comes from 8-oxodGTP incorporated 
opposite A, then removal of A by MutY would in-
duce AT→CG transversions, since 8-oxoG may pair 
with C upon replication. Therefore, the MutT pro-
tein hydrolyzing 8-oxodGTP is crucial in prevention 
of AT→CG transversions. Altogether, MutM, MutY 
and MutT were proposed to cooperate in prevention 
of 8-oxoG (GO)-induced mutations, and this pre-
vention system was termed GO (Michaels & Miller, 
1992). Consistently, GC→TA transitions are greatly 
increased in an E. coli mutMmutY double mutant, but 

in the triple mutant mutMmutYmutT their frequency 
is not further increased. This phenomenon may be 
explained by 8-oxoG removal by Nei glycosylase 
(for a review see Krwawicz et al., this issue) or oth-
er DNA repair systems, such as MMR (see below) 
or NER (Czeczot et al., 1991; Bregeon et al., 2003). 
On the other hand, mutMmutYmutT and mutYmutT 
show a lower level of AT→CG transversions than 
mutMmutT and mutT, which confirms that MutY ac-
tivity in fact enhances 8-oxodGTP-induced mutagen-
esis (Fowler et al., 2003).

Mammalian cells possess three main N-gly-
cosylases that prevent 8-oxoG-induced mutations: 
OGG1, which preferentially removes 8-oxoG from 
pairs with C or T, OGG2, which removes 8-oxoG 
paired with G or A, and MYH, which removes A 
from the pair with 8-oxoG. Mammalian OGG2 has 
been proposed to remove mainly 8-oxoG incorpo-
rated from the cellular nucleotide pool (for a review 
see (Nakabeppu et al., 2006)). Similarly like in E. coli 
cells, OGG1 and MYH are key players in GC→TA 
transversions prevention, and OGG1−/− MYH−/− dou-
ble knockout mice show an increased level of G→
T transversions together with a very high incidence 
of tumors (Xie et al., 2004). Surprisingly, MTH1 dis-
ruption appeared to suppress lung tumorigenesis in 
OGG1-knockout mice, which was attributed to the 
increased cell death of damaged tumor progenitor 
cells upon extensive 8-oxoG incorporation in DNA 
and RNA (Sakumi et al., 2003).

MISMATCH RePAIR (MMR)

Mismatch repair (MMR) is the major postrep-
licative DNA repair system, which increases rep-
lication fidelity up to 1000-fold (Modrich & Lahue, 
1996; Schofield & Hsieh, 2003). MMR removes pri-
mary replication errors that escaped DNA polymer-
ase proofreading, such as base-base mismatches 
and small insertion/deletion loops (IDLs), which are 
most easily formed in long repetitive sequences, i.e. 
in microsatellites. Thus, defects in MMR induce the 
mutator phenotype characterized by changes in the 
microsatellites length, termed microsatellite instabil-
ity (MSI). MSI is an established biomarker for MMR 
dysfunction in tumor cells (Umar et al., 2004).

Additionally, MMR repairs also modified bas-
es, such as 8-oxoG (Ni et al., 1999; Mazurek et al., 
2002; Macpherson et al., 2005), 2-oxoadenine (Barone 
et al., 2007), carcinogen adducts (Li et al., 1996), and 
UV-photoproducts (Feng et al., 1991; Mu et al., 1997; 
Wang et al., 1999). MMR processes also natural bases 
paired with template O6-methylguanine, O4-methyl-
thymine, (Duckett et al., 1996; Rasmussen & Samson, 
1996), 1,N2-propanoguanine, malondialdehyde-gua-
nine (M1G) (Johnson et al., 1999) and cisplatin ad-
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ducts (Duckett et al., 1996; Mello et al., 1996; Yamada 
et al., 1997). This induces MMR-mediated cytoxicity 
and MMR-defective cells are resistant to methylating 
agents and cisplatin.

Finally, MMR participates in affinity matu-
ration of antibodies, regulation of the mitotic and 
meiotic recombination, DNA-damage signaling, ap-
optosis (reviewed in: Harfe & Jinks-Robertson, 2000; 
Schofield & Hsieh, 2003; Jiricny, 2006), and transcrip-
tion-coupled repair (TCR) (see, for example, Lee et 
al., 2004). Furthermore, paradoxically, rearrange-
ments resulting in expansions of tandem trinucle-
otide repeats, observed in disorders such as Hunt-
ington’s disease, fragile X syndrome and myotonic 
dystrophy, have been shown to depend on function-
al MMR proteins in mice (Manley et al., 1999; Kov-
tun & McMurray, 2001; van den Broek et al., 2002; 
Savouret et al., 2003; Gomes-Pereira et al., 2004), and 
consistently MutSβ was shown to bind hairpin loops 
formed by such trinucleotide repeats (Owen et al., 
2005). Thus, in this case functional MMR rather in-
duces genome destabilization, which may promote 
disease development.

Methyl-directed MMR in E. coli

Key players in the E. coli MMR system, MutS, 
MutL, MutH and UvrD were identified in studies of 
mutator strains (Cox et al., 1972; Wagner & Mesel-
son, 1976), and the whole system was reconstituted 
in vitro (Lahue et al., 1989). MMR preferentially re-
pairs the newly synthesized strand, and in E. coli 
strand discrimination is based on the fact that ad-
enine is methylated in GATC sequences by Dam 
methyltransferase about 2 min after DNA synthesis, 
therefore the newly synthesized strand is transiently 
unmethylated (Lyons & Schendel, 1984). Consistent-
ly with its role in MMR, dam E. coli cells are weak 
mutators (Glickman, 1979).

Initially, MutS protein dimer (or tetramer) 
recognizes and binds IDLs containing up to about 
four unpaired bases (Parker & Marinus, 1992), and 
also seven of eight possible mismatches (Su & Mo-
drich, 1986; Su et al., 1988). MutS binding affinities 
and mismatch repair efficiencies vary with the com-
position of the mismatch and local sequence context, 
with G•T and C•A mismatches being preferentially 
repaired in most of the tested systems (Kramer et 
al., 1984; Dohet et al., 1985; Jones et al., 1987; Brown 
et al., 2001). Consistently, defects in MMR genes in-
duce mainly GC→AT and AT→GC transitions, and 
frameshift mutations (Lahue et al., 1989). The C•C 
mismatch is almost not recognized by MutS and 
it was postulated to be repaired by an MMR-inde-
pendent pathway (Nakahara et al., 2000). Further, 
mismatch-bound MutS recruits MutL dimer in an 
ATP-dependent manner (Grilley et al., 1989). The 

MutL protein is an ATPase and is thought to be a 
“molecular matchmaker” which mediates the inter-
action between MutS and MutH (Modrich, 1991). 
Thus formed, the ternary complex of MutS(ATP)–
MutL-mismatch activates monomeric MutH en-
donuclease which incises an unmethylated GATC 
sequence at a site 5’ or 3’ to the mismatch, located 
even 1000 bp from the mismatch (Welsh et al., 1987; 
Bruni et al., 1988). The resulting nick serves as the 
point of entry for MutL-activated UvrD helicase, 
which unwinds DNA double helix from the nick to 
about 100 nucleotides past the mismatch, and sin-
gle-stranded DNA binding (SSB) protein, which sta-
bilizes the single-stranded gap (Lahue et al., 1989). 
After unwinding the ssDNA flap is degraded in the 
5’→3’ direction by ExoVII or RecJ exonuclease, if the 
incision occurred 5’ to the mismatch, or in the 3’→
5’ direction by ExoI, ExoVII or Exo X exonuclease, if 
the incision occurred 3’ to the mismatch (Cooper et 
al., 1993; Grilley et al., 1993; Burdett et al., 2001). Fi-
nally, the SSB-stabilized single-stranded gap is filled 
in by DNA polymerase III holoenzyme and DNA 
ends are sealed by LigI. Importantly, β clamp, which 
is a polymerase processivity factor, and γ complex, 
which loads β clamp onto the DNA helix are re-
quired for MMR in vitro (Lahue et al., 1989), and β 
clamp was shown to interact with MutS (Lopez de 
Saro & O'Donnell, 2001).

MMR in eukaryotes

In eukaryotes several homologs of MutS and 
MutL have been identified, including six mutS homo-
logues (MSH1–MSH6) and four mutL homologues 
(MLH1–MLH3, and PMS1) found in yeast (Kramer 
et al., 1989; Reenan & Kolodner, 1992a; 1992b; New 
et al., 1993; Prolla et al., 1994; Ross-Macdonald & 
Roeder, 1994; Hollingsworth et al., 1995; Marsischky 
et al., 1996), and five mutS (MSH2–MSH6) and four 
mutL (MLH1, MLH3, PMS1, and PMS2) homologues 
found in mammals (Hughes & Jiricny, 1992; Fishel et 
al., 1993; Leach et al., 1993; Bronner et al., 1994; Nico-
laides et al., 1994; Papadopoulos et al., 1994; Liu et al., 
1994; Varlet et al., 1994; Horii et al., 1994; Drummond 
et al., 1995; Li & Modrich, 1995; Palombo et al., 1995; 
Baker et al., 1995; Acharya et al., 1996; Watanabe et 
al., 1996; Paquis-Flucklinger et al., 1997; Her & Dog-
gett, 1998; Winand et al., 1998; Lipkin et al., 2000).

Although MutS and MutL proteins are evo-
lutionarily conserved, the MutH endonuclease is 
restricted only to Gram-negative bacteria (Jiricny, 
2006). Thus, in eukaryotic cells the signals that di-
rect MMR to the newly synthesized strand remain 
uncertain. Initially it has been proposed that strands 
are discriminated on the basis of cytosine methyla-
tion, analogously to the role of adenine methylation 
in E. coli cells, but this hypothesis has not been veri-
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fied (Drummond & Bellacosa, 2001; Petranovic et al., 
2000). More plausible hypotheses suggest that natural 
single-strand breaks, occurring as replication inter-
mediates, the replication complex, especially prolifer-
ating cell nuclear antigen (PCNA), or proteins segre-
gating with individual strands after replication may 
be involved. This was supported by the observation 
that mutH E. coli strains are able to carry out MutH-
independent MMR, both in vivo and in vitro, from a 
single-strand break located at the vicinity of the mis-
match (Lahue et al., 1989; Kramer et al., 1984; Bruni 
et al., 1988). The same was observed in human in 
vitro MMR assays (Holmes et al., 1990; Thomas et al., 
1991; Iams et al., 2002). Furthermore, similarly as ob-
served in E. coli, the eukaryotic β clamp counterpart 
— PCNA — interacts with yeast and human MutS 
and MutL homologues (Umar et al., 1996; Clark et 
al., 2000; Flores-Rozas et al., 2000; Kleczkowska et al., 
2001), and mutations in PCNA that abolish interac-
tion with MSH3 and MSH6 confer partial mutator 
phenotype in vivo (Johnson et al., 1996; Chen et al., 
1999; Clark et al., 2000; Flores-Rozas et al., 2000; Lau 
et al., 2002; Lau & Kolodner, 2003). Thus, PCNA is 
implicated not only in gap filling repair synthesis, 
but also in early stages of MMR (Umar et al., 1996; 
Gu et al., 1998). Moreover, PCNA and eukaryo-
tic clamp loader replication factor C (RFC) were 
shown to be essential for bi-directional excision dur-
ing MMR (Dzantiev et al., 2004). Human MSH2 and 
MSH3 interact also with MMR exonuclease — Exo1 
(Schmutte et al., 1998; 2001; Rasmussen et al., 2000). 

Eukaryotic MMR proteins function as het-
erodimers. MSH2-MSH6 form a heterodimer, termed 
MutSα, which recognizes all eight single base mis-
matches, including C•C mismatch, and small IDLs, 
up to about 10 unpaired nucleotides, whereas the 
MSH2-MSH3 heterodimer (MutSβ) recognizes IDLs 
containing from 2 up to 16 nucleotides (McCulloch 
et al., 2003). In human cells the MutSα to MutSβ ra-
tio is roughly 6 : 1 (Drummond et al., 1995; 1997; Pal-
ombo et al., 1995; 1996; Acharya et al., 1996; Genschel 
et al., 1998; Umar et al., 1998). Consistently, MSH6-
deficient tumor cells show mononucleotide (but not 
dinucleotide) instability (Kolodner et al., 1999; Verma 
et al., 1999), and MSH3-deficient cells do not display 
microsatellite instability (Inokuchi et al., 1995). Mam-
malian MSH4 and MSH5 also form a heterodimer, 
show germ cell-specific expression and are involved 
in meiotic recombination, but not postreplicative 
MMR (Ross-Macdonald & Roeder, 1994; Bocker et al., 
1999; Kneitz et al., 2000; Snowden et al., 2004). MutSα 
forms an ATP-dependent sliding clamp, but it is still 
not evident if the movement of MutSα on DNA is 
driven by ATP hydrolysis (Blackwell et al., 1998), or 
is ATP hydrolysis-independent (Gradia et al., 1997) 
(Fig. 3; for discussion of the proposed models see: 
Kunkel & Erie, 2005; Iyer et al., 2006; Jiricny, 2006). 

Next, MutSα (or MutSβ) recruits MutLα ATPase 
(MLH1-PMS2 heterodimer; in yeast MLH1-PMS1 het-
erodimer) (Li & Modrich, 1995), and MutSα–MutLα 
complexes may travel along the DNA helix, similarly 
to the MutSα sliding clamp (Blackwell et al., 2001). 
MutLα has been proposed to be important for cou-
pling mismatch recognition with further MMR steps 
and consistently it interacts with Exo1 (Schmutte et 
al., 2001; Tran et al., 2001) and PCNA (Umar et al., 
1996; Lee & Alani, 2006). Importantly, MutLα defi-
ciency leads to the mutator phenotype and MSI, as 
observed in sporadic colorectal or endometrial can-
cers with epigenetic silencing of MLH1 expression 
(Kane et al., 1997; Cunningham et al., 1998; Esteller 
et al., 1998; Herman et al., 1998; Veigl et al., 1998; 
Wheeler et al., 1999). Moreover, several MLH1 mu-
tations found in hereditary non-polyposis colorec-
tal cancer (HNPCC) patients were found to reduce 
interaction with Exo1 (Schmutte et al., 2001). Other 
mammalian MutL homologues also function in het-
erodimers. MLH1 and PMS1 form the MutLβ het-
erodimer whose function is still unknown, but PMS1-
knockout mice exhibit MSI at mononucleotide runs 
(Prolla et al., 1998), which may suggest that MutLβ is 
somehow involved in MMR. Moreover, MLH1 and 
MLH3 form the MutLγ heterodimer which is thought 
to participate in the repair of base-base mismatches 
and single-nucleotide IDLs (Cannavo et al., 2005), 
and murine cells with MLH3 deficiency display the 
MSI phenotype (Lipkin et al., 2000). MutLγ is also in-
volved in meiotic recombination (Santucci-Darmanin 
et al., 2000; Lipkin et al., 2002; Svetlanov & Cohen, 
2004). One more protein engaged in MMR is high-
mobility group box 1 (HMGB1) protein, which was 
shown to interact with MutSα and is required prior 
to the excision step (Yuan et al., 2004).

Final steps of MMR include mismatch excision 
and DNA resynthesis. When a single-strand break is 
localized at the 5’ side of the mismatch, Exo1, stimu-
lated by MutSα hydrolyzes DNA in the 5’→3’ direc-
tion in an ATP-, mismatch-, and replication protein 
A (RPA)-dependent manner (Lin et al., 1998a; Gen-
schel et al., 2002; Lee Bi et al., 2002). RPA plays a role 
similar to E. coli SSB, since it protects ssDNA from 
incision by nucleases (Ramilo et al., 2002). Further-
more, eukaryotic MMR is apparently helicase-inde-
pendent (Bennett et al., 1997; Langland et al., 2001; 
Pedrazzi et al., 2001), and thus RPA binding has been 
proposed to play some role in DNA unwinding. 
Exo1 is the only eukaryotic MMR exonuclease, and 
Exo1-deficient mice are prone to lymphomas and ex-
hibit MSI, as well as the mutator phenotype (Wei et 
al., 2003; Tran et al., 2004). The single stranded gap 
is stabilized by RPA. RPA reduces Exo1 processiv-
ity by binding ssDNA, and Exo1 is further inhibited 
by MutSα and MutLα upon reaching the mismatch. 
This leads to termination of excision. In consequence 
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figure 3. Models of MMR complex assembly (A, b and C) and mismatch excision (D).
(A) In the molecular-switch model (Gradia et al., 1999) MutSα normally exists in ADP-bound form, and upon mismatch 
binding ADP is exchanged to ATP, which induces conformational changes and ATP-independent diffusion of multiple 
MutSα (possibly in complex with MutLα) sliding clamps along DNA helix. (B) In the active-translocation model (Black-
well et al., 1998; Martik et al., 2004), MutSα clamp (possibly in complex with MutLα) translocates along DNA and ATP 
is used as energy source to drive its motion. (C) In the DNA bending/verification model (Wang & Hays, 2003; 2004) 
MutSα remains at the mismatch and makes contact with strand break through DNA bending. MutS is able to sense the 
mismatch, and when bound to DNA without mismatch it hydrolyzes ATP and in consequence becomes displaced from 
the DNA. On the other hand, when MutS binds DNA containing mismatch, ATP is not hydrolyzed, what leads to acti-
vation of downstream MMR effectors. (D) When MutSα–MutLα complex comes into contact with PCNA and RFC bound 
to strand break, it triggers further MMR steps. MutSα, PCNA and RFC activate latent MutLα endonuclease (Kadyrov et 
al., 2006), which cleaves DNA at both sides of the mismatch in ATP-dependent manner. Next, at the 5’-break (created 
by MutLα endonucleolytic cleavage or preexisting in DNA) MutSα–MutLα complex displaces RFC from complex with 
PCNA and loads Exo1, which hydrolyzes DNA in 5’→3’ direction. The single stranded gap is stabilized by RPA. RPA 
reduces Exo1 processivity by binding ssDNA, and Exo1 is further inhibited by MutSα and MutLα upon reaching the 
mismatch. This leads to termination of excision. Finally, gap is filled by Pol δ, in presence of PCNA and RPA, and ends 
are joined by LIG1.
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excision terminates at about 100 nucleotides beyond 
the mismatch (Genschel & Modrich, 2003; Nielsen 
et al., 2004). However, Exo1 lacks the 3’→5’ exonu-
clease activity, and a complex consisting of MutSα, 
MutLα, PCNA, Exo1, and RFC is essential for MMR 
from a single-strand break located at the 3’ side of 
the mismatch (Dzantiev et al., 2004; Guo et al., 2004). 
RFC has been proposed to play a double role in 3’-
directed excision: it loads the PCNA clamp, but also 
suppresses 5’→3’ excision by Exo1 from a single-
strand break located 3’ to the mismatch (Dzantiev et 
al., 2004). It has been proposed that 3’→5’ excision 
is mediated by Pol δ or Pol ε proofreading activity, 
which was supported by genetic and biochemical in-
hibition studies conducted in vivo in S. cerevisiae and 
in vitro with HeLa extracts (Tran et al., 1999; Wang 
& Hays, 2002). The recent discovery that MutLα has 
an endonuclease activity, stimulated by MMR cofac-
tors (MutSα, MutLα, PCNA, RFC, ATP and divalent 
cations) (Kadyrov et al., 2006) may explain the MMR 
mechanism in a situation when the single strand 
break is located at the 3’ side of the mismatch. Thus, 
the 5’ nick introduced by this endonuclease activity 
specifically in the discontinuous strand may serve for 
Exo1 degradation in substrates containing a break lo-
calized 3’ to the mismatch. Finally, DNA polymerase 
δ fills the gap, in the presence of PCNA (Gu et al., 
1998) and RPA (Lin et al., 1998a; Ramilo et al., 2002), 
and finally DNA ligase (probably LIG1) seals the 
ends (Constantin et al., 2005; Zhang et al., 2005).

MMR and hereditary non-polyposis colorectal cancer 
(HNPCC)

Defects in MMR are implicated in heredi-
tary non-polyposis colorectal cancer (HNPCC), also 
termed Lynch syndrome, and less frequently in 
endometrial, ovarian, gastric and some other can-
cer forms. Colon epithelium has the highest known 
proliferation rate of all cell types, and this may di-
rectly contribute to the accumulation of MMR-defi-
ciency-induced replication errors specifically in this 
tissue type. Lynch syndrome accounts for about 
5–8% of all colon cancer cases. About 500 different 
Lynch syndrome-associated MMR gene mutations 
have been found, and among them MLH1, MSH2, 
and MSH6 gene mutations constitute about 50%, 
40%, and 10%, respectively (for mutations found 
in respective genes see http: //www.insight-group.
org/). Mutations in MSH6 show stronger associa-
tion with endometrial than colon cancer (Wijnen 
et al., 1999). Mice defective in either MLH1, MSH2 
or MSH6 show cancer susceptibility and develop 
mainly lymphomas, gastrointestinal (GI) epithelial 
adenomas or basal cell carcinomas, whereas PMS2−/− 
mice develop lymphomas and sarcomas, but not GI 
tumors. Moreover, a few pathogenic germline muta-

tions have been found in PMS2 and most of them 
are associated with Turcot syndrome, characterized 
by brain tumors, colonic polyps and colon cancer. 
Finally, mutations in MLH3 may also be associated 
with Lynch syndrome. On the other hand, although 
MSH3 frequently shows somatic mutations in MSI-
positive tumors, and potentiates the consequences of 
defects in other MMR genes, MSH3-deficient mice 
are not cancer prone and no Lynch syndrome-as-
sociated germline mutations have been found in 
MSH3 (Lynch & de la Chapelle, 1999; Peltomaki, 
2005; Chao & Lipkin, 2006).

Microsatellite instability (MSI) is found in 
virtually all Lynch syndrome cases (Aaltonen et al., 
1994), and thus is a diagnostic feature for Lynch 
syndrome. However, MSI also appears in sporadic 
(i.e. non-Lynch syndrome) colon cancers, where hy-
permethylation of MLH1 promoter leads to gene si-
lencing (Kane et al., 1997; Cunningham et al., 1998; 
Esteller et al., 1998; Herman et al., 1998; Veigl et al., 
1998; Wheeler et al., 1999). Thus, although 12–15% of 
colon cancers show MSI, only 20–25% of MSI-posi-
tive colon cancers represent Lynch syndrome, which 
complicates diagnosis (Lynch & de la Chapelle, 1999; 
Umar et al., 2004; Jass, 2006). 

CooPeRATIoN beTweeN hMTH1 PRoTeIN 
AND MMR

The antimutagenic role of MTH1 is less pro-
nounced than that of the MutT protein, since while 
the mutT E. coli mutant has a specifically increased 
level of spontaneous mutations by 100- to 10 000-fold, 
their level in the Hprt locus of homozygous MTH1−/− 
mouse cells is increased only 2 times in comparison 
with the wild type MTH1+/+ mouse cells (Tsuzuki et 
al., 2001a; 2001b). This low level of spontaneous mu-
tations can be explained, at least partially, by the ex-
istence of MutT homologue 2 (MTH2) protein, which 
is active on 8-oxodGTP and may backup MTH1 func-
tion (Cai et al., 2003), and by the existence of NUDT5 
protein. Importantly, both proteins, i.e. mouse MTH2 
and human NUDT5 expressed in the mutT E. coli 
strain suppressed its mutator phenotype (Cai et al., 
2003; Ishibashi et al., 2003). Furthermore, mutagenesis 
may be prevented by efficient removal of oxidized 
bases incorporated from the cellular dNTP pool by 
DNA repair systems, such as BER, MMR or NER. 
Interestingly, although the MTH1−/− mice showed a 
higher incidence of lung, liver and stomach cancer 
(Tsuzuki et al., 2001a; 2001b), they did not show an 
increased frequency of spontaneous rpsL− forward 
mutations in comparison with the wild type MTH1+/+ 
mice. On the other hand, the frequency of AT→CG 
transversions was 3.6-times higher, and of single-
base frameshifts at mononucleotide runs 5.7-times 
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higher in MTH1−/− than in MTH1+/+ mice (Egashira et 
al., 2002). Single-base frameshifts at mononucleotide 
runs are a characteristic feature of MMR deficien-
cy, and MMR was in fact shown to remove 8-oxo-
dGMP incorporated from the nucleotide pool, since 
overexpression of hMTH1 reduced the DNA 8-oxoG 
level in MSH2−/− cells (i.e. MMR-defective) (Colussi 
et al., 2002; Russo et al., 2004). Furthermore, MTH1−/− 
MSH2−/− mice in comparison with MSH2−/− once had 
a specifically increased occurrence of GC→TA trans-
versions, which could be induced by 2-oxodAMP 
incorporation opposite G, or by erroneous incorpo-
ration of dAMP opposite 8-oxoG present in DNA 
(Egashira et al., 2002). Moreover, hMTH1 overexpres-
sion reduced the level of spontaneous Hprt locus 
mutations in the MSH2−/− background, and among 
them the highest reduction was observed in the 
case of frameshifts, AT→GC transitions and AT→
TA and GC→TA transversions (Russo et al., 2004). 
The AT→TA and GC→TA transversions are induced 
by erroneous incorporation of dAMP and dCMP, 
respectively, opposite template 2-oxoA (Kamiya & 
Kasai, 1997a; 1997b; Barone et al., 2007). Consistently, 
MMR could be involved in 2-oxoA removal, since 
MutSα has been shown to bind 2-oxoA-containing 
DNA (Barone et al., 2007). Therefore, the low level of 
spontaneous mutations in MTH1−/− mice and mouse 
cultured cells can be attributed partially to the re-
moval, by the MMR system, of oxidized bases incor-
porated from the nucleotide pool. Furthermore, in 
the MTH1−/− background the high level of oxidized 
bases incorporated to DNA from the nucleotide pool 
may partially sequester MMR, leading to a more fre-
quent occurrence of single-base frameshifts at mono-
nucleotide runs (Egashira et al., 2002). Surprisingly, 
AT→CG transversions, which are dramatically in-
creased in mutT E. coli cells, were only slightly in-
creased in MTH1−/− mice (Egashira et al., 2002), and 
only slightly decreased by hMTH1 overexpression in 
MSH2−/− mice (Russo et al., 2004). AT→CG transver-
sions are induced by 8-oxodGMP incorporation op-
posite template A, and in mutT E. coli cells, lacking 
the MutT protein which removes both 8-oxodGTP 
and 8-oxodGDP, they can be much more frequent 
than in MTH1−/− cells, lacking the 8-oxodGTP-hydro-
lysing MTH1 protein, but still possessing the MTH2 
and NUDT5 proteins dephosphorylating 8-oxodGTP 
and 8-oxodGDP, respectively. On the other hand, 
MTH1−/− mice showed increased levels of all types of 
mutations connected with 2-oxoA, consistently with 
the fact that human MTH1 hydrolyses 2-oxodATP 
(Russo et al., 2004). This may suggest that MTH1 is 
the only protein specifically involved in 2-oxodATP 
elimination from the mammalian cellular nucleotide 
pool or that 2-oxoA repair by MYH glycosylase (Oht-
subo et al., 2000) or MMR is saturated upon MTH1 
deficiency.
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