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Model organisms are essential to study the genetic basis of human diseases. Transgenic mamma-
lian models, especially genetic knock-out mice have catalysed the progress in this area. To con-
tinue the advancement, further sophisticated and refined models are crucially needed to study
the genetic basis and manifestations of numerous human diseases. Coinciding with the start of 
the new era of post-genomic research, new tools for establishment of transgenesis, such as nucle-
ar transfer and gene targeting in somatic cells, have become available, offering a unique oppor-
tunity for the generation of transgenic animal models. The new technology provides important 
tools for comparative functional genomics to promote the interpretation and increase the practical 
value of the data generated in numerous mouse models. This paper discusses the state-of-the-art 

of the nuclear replacement technology and presents future perspectives.

Keywords: cloning, transgenic, animal models, epigenetics

Presented at the International Review Conference on Biotechnology, Vienna, Austria, November 2004.

Transgenic animal models have played and 
are anticipated to continue to play an important role 
in our pursuit of knowledge of the genetic basis of 
human disease. There is a need for animal models 
instead of cell culture because of the complexity of 
the biological processes that form the basis of most 
diseases. To-date, most of the available information 
has been generated in the mouse. The availability 
of stable embryonic stem cell lines enables gene 
targeting technology in the mouse. However, the 
lack of such cell lines in most mammals has so far 
prevented targeted genetic modifications. Although
murine models have been of great use, the potential 
of the mouse model is limited because the anatomy 
and physiology of the mouse is not always fully ad-
equate to study many of the diseases affecting the
human population. Many species have metabolism 
and organs with characteristics much closer to that 
of humans than is the case in mouse (such as lipo-
protein metabolism and the development of athero-
sclerosis in rabbits, skin structure and organ capac-
ity and size for transplantation in pig). However, 
the lack of stable stem cell lines in animal species 
other than the mouse has blocked the way for the 

usage of refined genetic tools for specific targeted
genetic models. Furthermore, the difficulties and
expenses of the conventional method for generat-
ing transgenic models has hindered the progress. 
The nuclear transfer technology has become avail-
able for studies in non-murine species and can be 
exploited to bridge the gap between mouse mod-
els and treatment of human diseases by generating 
transgenic models in other species. 

Despite its great potentials, the nuclear trans-
fer technology is still in its infancy. Some of the 
reasons for the low efficiency and the possibilities
to overcome the present limitations are described 
below.

STATE OF NUCLEAR TRANSFER

Since the first mammals to be ‘cloned’ from
cultured differentiated cells (Campbell et al., 1996), 
and the birth of ‘Dolly’, the first mammal derived
from an adult somatic cell (Wilmut et al., 1997) 
progress was fast. Milestones included the first
transgenic mammal to be produced by nuclear 
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transfer from a cell line genetically modified in cul-
ture (Schnieke et al., 1997); the first nuclear transfer
pigs (Polejaeva et al., 2000; Onishi et al., 2000) and 
the first gene-targeted non-murine mammals (Mc-
Creath et al., 2000, first ”knock-in” lambs; Denning et 
al., 2001a, first “knock-out” lamb; Phelps et al., 2003, 
first knock-out pig). Nuclear replacement efficiency
varies among species. In ca�le the reported percent-
age of born progeny increased from the initial 1% 
to around 20%. This considerable progress is due, 
besides the improved nuclear replacement methods, 
to be�er embryo culture systems. The mouse nucle-
ar transfer technology is relatively well established 
(Wakayama et al., 1999; Zhou et al., 2001). In rabbit, 
development of the technology recently resulted in 
the first somatic-cell nuclear transfer rabbit (Chesne
et al., 2002). The technology has also resulted in 
live birth in other mammals, including rat (Zhou 
et al., 2003), goat (Baguisi et al., 1999), horse (Galli 
et al., 2003), mule (Woods et al., 2003), cat (Shin et 
al., 2002), banteng, gaur (Lanza et al., 2000), Afri-
can Wildcat (Gomez et al., 2004) and dog (Lee et al., 
2005). In human, nuclear transfer embryos have been 
created, and embryonic stem cell lines established 
from them for potential cell therapy (“therapeutic 
cloning”, Hwang et al., 2004; 2005).

These successes do, however, mask several 
confounding issues, including the limited lifespan of 
primary somatic cells in culture as well as the low 
efficiency of gene targeting in these cells (Denning et 
al., 2001b), which effectively limits the target genes
to those that are expressed in the donor cell. Com-
plex strategies need to be developed to overcome 
such restraints. 

CRITICAL ASPECTS OF NUCLEAR TRANSFER

Somatic cell nuclear transfer is characterised 
by a series of developmental abnormalities, the so 
called cloning-syndrome. This encompasses higher 
rates of pregnancy loss, prolonged gestation, higher 
birth weight, higher rates of peri- and post-natal 
mortality and specific adult phenotypes (Hill et al., 
1999; De Sousa et al., 2001). Only about two-thirds of 
clones delivered at term survive at least until wean-
ing. It has been claimed that at least these long-term 
survivors can be physiologically normal and appar-
ently healthy, displaying normal behaviour, growth 
rates, reproduction and productivity. Equally, there 
are reports of various abnormal cloning-associated 
phenotypes, including higher annual mortality rates 
in ca�le, reduced maximal lifespan, and obesity in
mice (Eggan et al., 2001; Tamashiro et al., 2002), and 
compromised immune function in both species (Re-
nard et al., 2002). The incidence of these anomalies 
varies according to the species, genotype, donor 
cell status, or specific aspects of the nuclear transfer

and culture protocols used and it is not clear which 
of them could be eliminated by technical improve-
ments. Despite the present inefficiencies, mouse nu-
clear replacement experiments have proven that this 
method is already capable of improving the efficien-
cy of transgenic production compared to traditional 
methods (Wakayama et al., 2001). 

NUCLEAR REPROGRAMMING AND 
EPIGENETICS

The reasons behind the frequent deforma-
tions and high mortality among nuclear replacement 
foetuses and progeny are not well understood, but 
genetic reprogramming problems are likely to be in-
volved. In natural reproduction, relatively low levels 
of DNA methylation exist in the male and female 
gametes, which are further demethylated during 
early embryo development. With nuclear transplan-
tation, the somatic nucleus carries the specific epi-
genetic modifications of its tissue type, which must
be erased during nuclear reprogramming. There-
fore, the levels of epigenetic modification existing
in donor cells may affect their reprogrammability
following nuclear transfer. A discrepancy in the re-
programmability has been observed in different cell
types, which results in altered in vitro and in vivo 
development of cloned embryos (Kato et al., 2000; 
Rideout et al., 2000). 

Nuclear transfer embryos are known for prob-
lems of implantation, abnormalities in placental de-
velopment and losses during pregnancy. These ab-
errations are consequences of epigenetic errors, and 
studies on the frequency of such errors in various 
genes have revealed that imprinted genes, very im-
portant for placental development, are particularly 
o�en affected (Rideout et al., 2001). According to re-
cent data, these epigenetic deviations are reset in the 
second generation a�er nuclear replacement in con-
junction with gametogenesis (Tamashiro et al., 2002). 
It is, however, an absolute requirement that the first
generation of nuclear replacement animals is epige-
netically normal enough to complete embryogenesis, 
foetal development and adaptation to post-natal life.

Mitochondrial inheritance is a specific is-
sue in nuclear replacement and deserves special at-
tention during the development of the technology. 
However, it is now evident that the offspring gen-
erated through nuclear replacement has inconsistent 
pa�erns of mtDNA inheritance, o�en with mixed
populations (heteroplasmy) of mtDNA (Takeda et al., 
1999; Hiendleder et al., 2003; Steinborn et al., 2000). 
This heteroplasmy can arise from the introduction 
of mtDNA accompanying the donor nucleus into 
the reconstructed embryo and/or the use of recipient 
oocytes from the ovaries of different females. ‘Dolly
the lamb’ possessed only the recipient egg mtDNA 
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(Evans et al., 1999). However, in each case, the nu-
clear donor will remain the same and analysis of 
nuclear DNA alone will indicate that these offspring
are identical.

ADDITIONAL FACTORS AFFECTING NUCLEAR 
TRANSFER EFFICIENCY

The efficiency of nuclear replacement is also
influenced by the donor cells, in vitro activation and 
cultivation methods and technical aspects regarding 
micromanipulation. The origin of the donor cells af-
fects success rates and survival in culture. For any 
given somatic cell type, the best source for nuclear 
transfer is still a ma�er of debate. The highest clon-
ing efficiencies were achieved with oocytes and do-
nor cells of hybrid mice. 

FUTURE PERSPECTIVE

Nuclear transfer is a fast developing tech-
nique, far from being optimized. Evolution in the 
efficiency and applicability in new species is ex-
pected. However, it is not clear how much of an 
improvement can be achieved by simply optimizing 
the present protocols. Revolutionary changes in our 
understanding of the reprogramming of the nuclear 
material, organization of chromatin and epigenetic 
changes are necessary to allow proper control of 
the procedures and to avoid epigenetic aberrations 
in the progeny. Clones of the same donor provide 
unique experimental material since they are geneti-
cally identical yet may be epigenetically different
regarding imprinted and X-linked genes. Therefore, 
the nuclear transfer animal model provides insight 
into epigenetic regulation that cannot be studied in 
natural reproduction. 

Several new technologies and molecular bio-
logical events are studied preferentially in mice, but 
the practical production of transgenic animals in this 
species is not likely to be dominated by the nuclear 
transfer procedures in the near future, as the exist-
ing microinjection and embryonic stem cell technol-
ogy-based methods work efficiently. However, com-
parison of embryonic stem- and somatic-cell nuclear 
transfer in mouse will allow a true validation of the 
nuclear transfer technology for standardized trans-
genic animal production. 

Rat nuclear transfer is one of the biggest tech-
nological challenges, partially due to the high sensi-
tivity of rat oocytes to spontaneous parthenogenetic 
activation. Recently, rat nuclear transfer succeeded 
as well, using chemicals that block pre-activation 
before nuclear transfer (Zhou et al., 2003). Use of 
transgenic rats in the pharmaceutical testing of new 
drugs might be one of the main activities in the fu-

ture, and nuclear transfer might represent a viable 
method to produce stable knock-out and knock-in 
animals in this important species. 

Rabbit nuclear transfer has been successful in 
producing progeny with fresh cumulus cells, but not 
with cultured cells. Several transgenic human dis-
ease models could be developed in rabbit which are 
not available in mouse, due to anatomical and phys-
iological differences (e.g., cystic fibrosis, atheroscle-
rosis). Furthermore, placenta structure of the rabbit 
resembles that of the human, providing a chance for 
model studies on human reproduction.

Basic research in nuclear reprogramming will 
continue, especially due to connections to the em-
bryonic stem cell research field. Practical application
of nuclear transfer in the near future is expected in 
the agriculture for enhanced food production and 
propagation of superior breeding stock; in medicine 
by using animals as novel disease models, bioreac-
tors and organ donors produced by the combination 
of transgenesis/homologous recombination in somat-
ic cell lines and nuclear transfer; and in therapeutic 
cloning of human embryos. Methods with much 
improved efficiency would provide a good tool for
endangered species preservation efforts, as well. In
the case of industrial utilization the importance of 
avoiding inbreeding with advanced breeding man-
agement will increase.
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