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Adsorption of biomolecules on surfaces is a perennial and general challenge relevant to many 
fields in biotechnology. A change of the Helmholtz free energy ∆A takes place when a molecule 
becomes adsorbed out of a bulk solution. The purpose of our investigations is to explore routes 
for the calculation of ∆A by molecular simulations. ∆A can be obtained both by integration over 
the mean force on a molecule and via the local density. It turns out that the route via the po-
tential of mean force prevails over the la�er due to be�er consistency. In this work we present

results for systems of 1-centre and 2-centre Lennard-Jones mixtures at a 9/3 Lennard-Jones wall. 
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Adsorption at solid surfaces is of growing 
practical importance, e.g. in separation technology, 
industrial catalysis, and pollution control (Rouquer-
ol et al., 1999). It plays a leading part in the puri-
fication of proteins by adsorption chromatography
and is also involved in the detection of antigens or 
antibodies by immunochemical techniques, i.e. ELI-
SA. As a molecule approaches the solid surface, a 
balance is established between the intermolecular at-
tractive and repulsive forces. If other molecules are 
already adsorbed, both adsorbent–adsorbate and 
adsorbate-adsorbate interactions come into play. It 
is at once evident that description of the adsorption 
is more complicated in the case of a multicompo-
nent system – especially if the adsorption is tak-
ing place from a solution at a liquid-solid interface 
(Rouquerol et al., 1999). 

Over the last several years there has been 
significant interest in using molecular simulations
to understand the behaviour of adsorbed solutions 
on solid surfaces (Monson, 1987; Maddox & Row-
linson, 1993). Much of this interest has come from a 
need to understand the molecular basis of adsorp-
tion separations (Vuong & Monson, 1999). By mo-
lecular simulation one can yield structural and ther-
modynamic information about a system.

A thermodynamic quantity of particular in-
terest is the change of the Helmholtz free energy 
∆A during adsorption of a solute molecule out of 
a bulk solution. The most favourite position, orien-
tation, and configuration of the adsorbed molecule
will be determined by the minimum of the free 
energy (Fig. 1). In general, ∆A is given by the po-
tential of mean force (PMF) which was introduced 
by Kirkwood (1935). The PMF was used recently 
among others for the minimisation of the free ener-
gy of isolated proteins by Sippl (1990). For the first
time the PMF was used in molecular simulations 
for the calculation of the change of the free energy 
during adsorption by Billes et al. (2003). The PMF 
can be obtained via two different routes – first by a 
path integral over the mean force (MF) on the sol-
ute molecule, and second over the local density.

A�er deriving the working equations we per-
formed molecular dynamics simulations for pure 
Lennard-Jones (LJ) fluids and several dilute LJ mix-
tures in contact with a plane LJ 9/3 wall in order to 
explore both routes for the calculation of ∆A. From 
the results for these simple systems we want to fig-
ure out which route is more appropriate for an ex-
tension to complex molecules like proteins.
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Abbreviations: ΔA, change of the Helmholtz free energy; ΔW, change of the Helmholtz free energy; ε, potential param-
eter; <FB> mean force on particle B; LJ, Lennard-Jones; Lx,y,z, box length in x-, y-, z-direction; MF, mean force; n, local 
density; p, protein; PMF, potential of mean force; s, solid surface; σ, size parameter; w, water molecule.
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DERIVATION OF THE WORKING EQUATIONS

The model (Fig. 2) consists of a rigid solid 
surface (s), and of N water molecules (w) and one 
protein molecule (p) as fluid phase. The protein is,
as usually, modelled by several interaction sites. The 
potential energy of all interactions within the prote-
in in a given configuration shall be denoted by Upp, 
and between all water molecules in a given confi-
guration by Uww. Upw is the interaction between the 
water molecules and the protein sites, Usp the whole 
interaction of the protein with the solid, and Usw the 
sum of all water–solid interactions. Hence, the total 
potential energy U of the system is given by U = Upp 
+ Upw + Uww + Usp + Usw. It may be worth, however, 
to emphasise already now that the resulting equa-
tions can be used for a mixture with an arbitrary 
number of p and w molecules or even a pure fluid
of w. The change of the free energy, however, refers 
always to the adsorption of just one molecule out of 
the bulk solution.

Route of the mean force

Molecule B, simplified as a sphere, is fixed in
a given position whilst all A-molecules can move 
according to the forces exerted on them. In other 
words, molecule B is considered like an external 
potential. The item at issue is the �ange of the free
energy ∆A during adsorption of the molecule B. If 
B is fixed at position z1 we have system 1, position 
z2 gives system 2 (Fig. 3) – both with different free
energies. ∆A is given by ∆A = A(z1) –  A(z2). In order 
to obtain ∆A, we can form the derivative of A with 
respect to the coordinate z of particle B and perform 
therea�er an integration over the adsorption path.
This gives ∆A = ∫ (∂A /∂ z) dz  = –∫ <FB> dz. The con-

tent of this equation is simple and physically appea-
ling. Keeping in mind that FB is the force exerted on 
B, then –FB is the reaction force exerted by B. Hence, 
the integral is mean force times path whi� is work
and the work is the �ange of the free energy.

Route of the local density

Here we allow particle B to move freely. A 
�ange in the free energy W is related to the local 
density nB according to ∆W =  – kT ∆ln nB (z). We 
have identified ∆A as being a potential of the mean 
force <FB>, and according to the derivative of the 
upper equation (Billes et al., 2003) the same holds 
for ∆W. Thus ∆A = ∆W. From the above equations 
we see that a second route for the calculation of the 
�ange of the free energy during adsorption of a
molecule is that via the local density.

Link of both routes

In order to have a clear nomenclature, we 
will denote by ∆W the change in the free energy ob-
tained via the local density, and by ∆A that obtained 
via integration of the mean force. According to the 
equations above both values must be equal, which 
can be expressed by ∆ln nB(z) = β ∫ <FB >  dz, with 
β = kT. This equation offers the possibility to calcu-
late the local density nB(z) via the mean force <FB > 

Figure 1. Determination of the most favourite position, 
orientation and configuration over the Helmholtz free
energy ΔA.

Figure 2. Model for the working equations

Figure 3. Change of Helmholtz free energy ΔA during 
adsorption for a simple model solution.
For explanation see text.



Vol. 52       687Molecular simulation of adsorption from dilute solutions

which will turn out to be necessary in the case of a 
dilute solution. 

SIMULATION RESULTS FOR DIFFERENT 
SYSTEMS

The working equations above derived will 
be applied here to a pure Lennard-Jones fluid and
several dilute solutions of various particles in con-
tact with a wall in order to explore their practical 
usefulness. The LJ parameters are denoted as usual 
by ε (potential parameter) and σ (size parameter). In 
the case of a dilute binary mixture, the component 
in high concentration will be A with LJ parameters 
εAA and σAA whilst the dilute component is B with 
εBB and σBB. The interaction between the plane wall 
and the particles in the fluid is modelled by an LJ
9/3 potential. In the following reduced units will be 
used.

Molecular dynamics simulations were done 
using periodic boundary conditions parallel to the 
surface (in x- and y-directions) with a box length Lx 
= Ly. The distance between the two LJ walls in z-di-
rection Lz is identically equal to Lx except for case B 
(Lz = 2Lx). The number of A-particles for the simu-
lation systems varied between 1371 (case A), 2743 
(case B), and 399 (case C).

For cases A and B the systems were started 
from a face-centred cubic (fcc) la�ice with particles
of equal size σAA. At the beginning of the simulation 
a fluidisation run was made over 5000 time steps
with Δt = 0.0003 in reduced units. Therea�er the 9/3
LJ wall was inserted at z = –Lx/2 and moved to z = 0 
during another 5000 calculation steps.

For case C the simulation box was filled by
randomly distributed and rotated molecules one by 
one at a lower density (50 kg/m³). The production 
runs (10 000 cycles) were started a�er 2250 equilib-
ration steps by increasing the density up to its end 
value. 

Pure LJ-fluid in contact with a wall

A pure LJ fluid in contact with an LJ 9/3 wall
is considered. The fluid parameters are εAA and σAA, 
and wall-fluid parameters εsA

 = 3εAA and σsA = σAA. 
First we simply calculated the local density at con-
stant bulk density nb = 0.84 and temperature T = 1.0 
by allowing all particles to move freely. In the se-
cond simulation we have fixed one of the LJ partic-
les (particle 1) at a given distance to the wall and 
calculated the MF. These second simulations were 
performed for several distances z of particle 1 from 
the wall. In Fig. 4 we compare ∆A with ∆W obtai-
ned via the local density n(z). The conclusion is that 
the results for the PMF calculated via both routes 
agree remarkably well. 

Dilute LJ-mixtures in contact with a wall

We consider a dilute LJ mixture consisting of 
one bigger B-particle and an A-particle bulk fluid
in contact with an LJ 9/3 wall (σBB = 4σAA, εsA = εAA, 
and εBB = 9εAA; we note that εsA = εAA and the re-
sulting value εsB = 3εAA mean weak a�raction from
the wall) at constant bulk density nb = 0.70 and tem-
perature T = 1.0. First a simulation was performed 
in order to obtain the local density for component B, 
nB(z). Results from two simulation runs of different
lengths and starting points are displayed in Fig. 5. 
Next, we calculated the MF on particle B in different
fixed positions and obtained the local density over
the path integral. We see that the directly calculated 
nB(z) shows strong sca�ering and li�le agreement
with the density profile obtained via the MF. The 
solute particle stays somewhat remote from the wall. 
The small circles on the le� side indicate A-particles
densely packed close to the wall. The big circles in-
dicate the B-particle in two different positions. The
bold big sphere at the right side is centred at the 
maximum of the local density nB(z). There the B-par-
ticle is most likely found. The big dashed circle at 
the le� side marks the intuitively given position of
the B-particle. However, the fact that the maximum 
of nB(z) appears between 8 and 9 units away from 
the wall can be explained by the formation of very 
dense layers of A-molecules close to the wall into 
which the B particle cannot penetrate. On the other 
hand, the wall and the dense A-layers exert a cer-
tain a�raction on B such that its favourite position is
somewhat remote from the wall but not in the bulk 
of the liquid.

The differing size of particle B plays an im-
portant role in a�ieving the PMF and consequently
its density profile. Increasing diameters induce glo-
bal density maxima at even larger distances to the 
wall provoked by a dense layer of solvent particles 
between the adsorbing surface and the solute mole-

Figure 4. Potential of mean force (PMF) results for a 
pure LJ fluid in contact with an LJ 9/3 wall.
() PMF ΔA calculated by integration of <FB>; (—) PMF 
Δw obtained over local density nB(z); (- - -) wall poten-
tial US.
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cule. One could imagine that for a molecule B of an 
increasing volume it is ge�ing more and more diffi-
cult to penetrate into the area of a higher density of 
particles A. Subsequently, staying somewhat remote 
from the wall is a consequence of volume fraction.

Diluted dumbbell in contact with a wall

The system is a binary mixture of a dumbbell 
B (ethane) diluted in methane A and in contact with 
a 9/3 LJ graphite wall at a constant density of 500 
kg/m³ and temperature T = 160K. The intramolecular 
potential functions and intermolecular potential pa-
rameters refer to the CHARMM force field (MacK-
erell et al., 1998). Throughout the simulations the 
centre of mass is kept at a fixed position. Circles on
the le� side show densely packed A-particles close
to the wall (Fig. 7). The dumbbell on the le� side
represents a B-particle in its most likely conforma-

tion at the maximum of the local density. Obviously 
the B-particle is a�racted by the wall. As expected
the dumbbell is parallel-oriented to the surface in 
the global maximum of the density. Other dumb-
bells shown in this Figure delineate the orientation 
of the single B-particle in different distances from
the wall. The most preferred orientation of molecule 
B at the position of the second highest density peak 
is also parallel to the surface. Furthermore, the more 
remote B-particles are located in rather arbitrary ori-
entations.

SUMMARY AND CONCLUSION

We presented two possible routes for the 
calculation of the change of the free energy dur-
ing adsorption of a molecule; via integration of the 
mean force on a fixed interaction site or the centre
of mass, and over the local density of the solute 
molecule. Moreover, by combining both routes it is 
also possible to calculate the local density via the 
mean force. Following that we have explored the 
applicability of both routes in molecular simulations 
for pure Lennard-Jones fluids, diluted spheres, and
dumbbells. The most interesting finding is that di-
rect simulations do not yield reliable local densities 
for several dilute solutions, whilst the path integral 
over the mean force can always be calculated with 
reasonable accuracy. 

Our findings for spherical particles of a vol-
ume difference 64:1 and for dumbbells give us hints
how the results for PFM and density profile for me-
dium sized biomolecules could look like, although 
there are two major flaws of these principle stud-
ies. Firstly, long range forces and polar behaviour 

Figure 5. Directly calculated local density for a diluted 
sphere B in contact with a wall (σBB = 4σAA, εsA = εAA, 
and εBB = 9εAA) from initial positions (—) zB = 12.51 a�er
averaging over 2.0 × 106 time steps, and (- - -) zB = 9.39 
a�er averaging over 1.6 × 106 time steps.

Figure 6. Potential of mean force PMF(z) () and local 
density nB(z) (—) of a spherical diluted B-particle for 
the system of Fig. 5 obtained by integration of the mean 
force.
Small circles on the le� side show rather densely packed
A-particles close to the wall. The big circle on the right 
side represents the B-particle centred at the maximum 
of the local density. The big circle on the le� represents
a B-particle located in the minimum of the wall potential 
where B would be in the absence of the A-particles.

Figure 7. Local density nB(z) (—) of a dumbbell B 
(ethane) diluted in spheres (methane) and in contact 
with an LJ wall (graphite) obtained over integration of 
the mean force by the fixation of the centre of mass.
Do�ed circles on the le� side symbolise densely packed
A-spheres close to the wall. The dark dumbbell on the le�
side shows the B-particle in its most preferred conforma-
tion in the maximum of the local density. Brighter dumb-
bells indicate preferred orientations of particle B at further 
positions in the system.
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are not considered in our simulations. Secondly, all 
the particles are considered to be either spherical or 
dumbbell-like. Thus, more complex systems would 
involve not only more realistic geometries, but also 
structural changes even if simplifications have to be
done due to tremendous computation time.
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