
lum, while HO-2 is constitutively expressed in the 
brain, testes, endothelium, distal nephron segments, 
liver and myenteric plexus of the gut with subcel-
lular localization in the mitochondria (reviewed in 
Agarwal & Nick, 2000). Recent studies have sug-
gested that HO-1 is also present in caveoli (Jung et 
al., 2003; Kim et al., 2004). HO-1 plays a cytoprotec-
tive role in modulating tissue responses to injury 
in several pathophysiological states. HO-2, on the 
other hand, functions as a physiological regulator 
of cellular function (Wagener et al., 1999).

The protective effects resulting from HO-1 
activity are due to its inducibility by a variety of 
stimuli including heme, nitric oxide (NO), cadmi-
um, growth factors, hyperoxia and others resulting 
in the liberation of its reaction products, which exert 
several biological effects including anti-oxidant, anti-
inflammatory and anti-apoptotic properties (Choi & 
Alam, 1996; Pla� & Nath, 1998; Nath, 1999; Dong et 
al., 2000; Ryter & Choi, 2002; O�erbein et al., 2003). 
The mechanisms underlying the beneficial effects of 
HO-1 and the role of the individual reaction prod-
ucts in mediating these cytoprotective properties 
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ENZYMATIC REACTION CATALYZED BY HEME 
OXYGENASE-1

Heme oxygenase is the rate limiting en-
zyme in the degradation of heme and results in 
the release of equimolar quantities of biliverdin, 
iron and carbon monoxide (CO) (Fig 1.) (Maines, 
1997). Biliverdin reductase subsequently converts 
biliverdin to bilirubin. Amongst the two reported 
isoforms of heme oxygenase, HO-1 is the highly in-
ducible enzyme by heme and various other stimuli 
including oxidative stress (Alam et al., 1989; Camhi 
et al., 1995; Durante et al., 1997; Agarwal et al., 1998; 
Camhi et al., 1998; Alam et al., 2000; Alcaraz et al., 
2001; Sikorski et al., 2004). HO-2 is the constitutively 
expressed isoform. A third isoform HO-3 has also 
been described (McCoubrey et al., 1997) but has re-
cently been shown to be a pseudogene (Hayashi et 
al., 2004).  Although 45% amino-acid homology ex-
ists between HO-1 and HO-2, (Maines, 1997) they 
are differentially regulated and expressed in tis-
sues. HO-1 is ubiquitously induced in mammalian 
tissues and is localized to the endoplasmic reticu-
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have been recently reviewed (Tomaro & Batlle, 2002; 
Kapitulnik, 2004; Ryter & O�erbein, 2004). The focus 
of this article is to provide a comprehensive review 
of the current literature on the functional role of 
HO-1 gene expression in different disease states. The 
molecular regulation of HO-1 gene expression has 
been reviewed elsewhere (Sikorski et al., 2004).

DISEASES ASSOCIATED WITH HO-1

The expression of HO-1 has been implicated 
in several disease states including atherosclerosis, 
hypertension, transplant rejection, acute renal injury 
hyperoxia and hypoxia-induced lung injury, cancer, 
as well as others (Table 1). More importantly, the ex-
pression of HO-1 modulates several critical biologi-
cal processes such as ischemia-reperfusion injury, in-
flammation/immune dysfunction and transplantation 
in multiple organ systems.

HO-1 IN ISCHEMIA-REPERFUSION INJURY

Ischemia and reperfusion constitute a major 
mechanism of organ failure and tissue injury. HO-
1 has been associated with a tissue protective role 
in ischemia-reperfusion injury in the heart, kidney, 
liver, brain and lung. One possible mechanism for 
this cytoprotection is perhaps by the modulation 
of the pro- and anti-apoptotic pathways by HO-
1 (Tsuchihashi et al., 2004). Pachori and colleagues 
have shown that an adenoviral vector system con-
taining the erythropoietin hypoxia response element 
for ischemia-regulated expression of the human 
HO-1 gene, conferred tissue protection in the heart, 
liver and skeletal muscle (Pachori et al., 2004). Both 
CO and bilirubin have been reported to mediate the 
protective effects of HO-1 expression in ischemia-
reperfusion injury. Inhalation of CO is protective in 

ischemia-reperfusion injury in the heart, lung, kid-
ney and liver (Fujita et al., 2001; Nakao et al., 2003; 
Neto et al., 2004; Nakao et al., 2005). Studies using 
exogenous bilirubin have also shown that the protec-
tive effects of HO-1 activity in ischemia-reperfusion 
injury in the heart, liver and kidney are mediated 
through bilirubin (Clark et al., 2000; Kato et al., 2003; 
Adin et al., 2005). Thus, HO-1 expression serves as 
a protective response in ischemia-reperfusion, effects 
mediated via CO and/or bilirubin.

HO-1 IN INFLAMMATION

HO-1 plays an important role in the inflam-
matory response (Willis et al., 1996; Yet et al., 1997; 
Wang et al., 1998; O�erbein et al., 1999b; Ishikawa 
et al., 2001b; Kapturczak et al., 2004). The beneficial 
effects of HO-1 in inflammation were first reported 
by Willis and colleagues in a model of pleural in-
flammation (Willis et al., 1996). Inhibition of HO-1 
using tin protoporphyrin (SnPP), significantly in-
creased inflammatory infiltrate, while prior induc-
tion with hemin resulted in a significant reduc-
tion of inflammation suggesting that HO-1 activity 
modulates the inflammatory response. Similar find-
ings have been reported in other models of inflam-
mation as well (Vogt et al., 1996; Siow et al., 1999). 
Vogt and co-workers demonstrated a novel phe-
nomenon of acquired resistance to renal tubular in-
jury in glomerular inflammation that was dependent 
on the induction of HO-1 in renal tubules (Vogt et 
al., 1996). Induction of HO-1 by its inducer hemin 
has been shown to reduce inflammation of the gut 
and decreases mucosal injury in an animal model of 
small bowel ischemia (A�uwaybi et al., 2004). 

The importance of HO-1 in inflammation is 
supported by findings in HO-1 knockout mice and 
the human HO-1 deficient child, both exhibiting a 
pro-inflammatory phenotype (Poss & Tonegawa, 
1997a; 1997b; Yachie et al., 1999; Kapturczak et al., 
2004). In addition, several pro-inflammatory media-
tors are activated in HO-1 deficiency (Kapturczak et 
al., 2004) and overexpression of HO-1 or its byprod-
ucts are anti-inflammatory. Furthermore, anti-inflam-
matory mediators such as IL-10 have been shown to 
confer protection through upregulation of HO-1 in a 
murine model of sepsis (Lee & Chau, 2002).  IL-13, 
an immunoregulatory cytokine that is a key media-
tor in allergic inflammation, has also been shown to 
induce HO-1 (Ke et al., 2002). Similar to the effects of 
IL-10 in sepsis, HO-1 induction has been suggested 
to mediate the effects of IL-13 in vivo in rat cardiac 
allogra�s (Ke et al., 2002). 

Although preinduction of HO-1 inhibits in-
flammation, pro-inflammatory mediators like TNF-
α, IL-1, LPS and oxidized lipids are potent inducers 
of HO-1 expression in endothelial cells and macro-

Figure 1. Schematic of the heme oxygenase catalyzed re-
action.

Heme is cleaved by heme oxygenase to generate equimo-
lar quantities of iron, carbon monoxide and biliverdin. 
Biliverdin is then converted by biliverdin reductase to bi-
lirubin.
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phages (Camhi et al., 1998; Terry et al., 1999; Wage-
ner et al., 2003; Chen & Kunsch, 2004). In addition, 
several adhesion molecules that are key mediators 
of inflammation such as ICAM-1, VCAM-1 and se-
lectins are activated by inducers of HO-1 (Wagener 
et al., 1997; Soares et al., 2004). In the context of vas-
cular disorders and transplant rejection, activation, 
survival or apoptosis and differentiation of mono-
cytes are crucial factors which determine fate of 
the disease. Recent studies by Lang and colleagues 
have demonstrated that the dose and time depend-
ent induction of HO-1 by hemin inhibited apoptosis 
in monocytes despite the upregulation of caspase-
3 pathways (Lang et al., 2005). HO-1 induction has 
also been shown to inhibit microvascular endothe-
lial cell leukocyte adhesion through the action of its 
metabolites, bilirubin and CO (Morisaki et al., 2002; 
Zampetaki et al., 2003; Keshavan et al., 2005). 

TRANSPLANTATION

Perhaps the most significant area that has 
generated research interest involving HO-1 is in the 
field of transplantation. HO-1 is induced in several 
models of acute transplant rejection and localizes 
predominantly to infiltrating cells (Agarwal et al., 
1996b; Avihingsanon et al., 2002; Souza et al., 2005).  
Such induction is functionally relevant, since the ab-
sence of HO-1 leads to accelerated gra� rejection in 
cardiac allo- and xenotransplantation (Soares et al., 
1998; Holweg et al., 2004). The functional significance 
of HO-1 in transplantation has been corroborated in 
other organ transplant models as well. In addition 
to transplant rejection, HO-1 induction also a�enu-
ates ischemia/reperfusion injury that affects donor 
organ quality and subsequent transplantation (Am-
ersi et al., 1999; Nath, 1999). Amersi and colleagues 
have demonstrated that overexpression of HO-1, us-
ing either cobalt protoporphyrin (CoPP) or adeno-
viral HO-1 gene transfer a�enuated ischemia-reper-
fusion injury and prolonged survival, following cold 
ischemia/isotransplantation of livers (Amersi et al., 
1999). A recent study evaluating the effect of HO-1 
upregulation showed that peritransplant upregula-
tion of HO-1 by administration of CoPP significantly 
a�enuated chronic rejection of renal allogra�s (Be-
dard et al., 2005). 

HO-1 and its byproduct CO prevent ischemia-
reperfusion injury associated with heart transplanta-
tion (Sato et al., 2001; Beltowski et al., 2004; Braudeau 
et al., 2004). Akamatsu and co-authors have shown 
that exposure of the donor and the gra� to CO con-
fers a protective effect in cardiac transplant associat-
ed ischemia-reperfusion injury. In addition  CO (250 
ppm) improves function of renal gra�s and imparts 
significant protective effects against renal ischemia-
reperfusion injury (Akamatsu et al., 2004; Neto et al., 

2004a). RDP1258, a novel peptide derived from the 
HLA class I heavy chain, has been shown to possess 
immunoregulatory function via  modulation of HO-
1 enzyme activity (Cuturi et al., 1999; Magee et al., 
1999). These recent developments provide new ther-
apeutic approaches in the overall success of organ 
transplantation and prolongation of gra� survival.

ATHEROSCLEROSIS

The expression of HO-1 in atherosclerosis is a 
protective response. This is supported by the follow-
ing findings. First, an abundance of HO-1 (mRNA 
and protein) has been identified in human athero-
sclerotic plaques, providing in vivo relevance to this 
enzyme in atherosclerosis (Wang et al., 1998). In-
creased HO-1 expression is also present in advanced 
lesions in animal models of atherosclerosis (Wang 
et al., 1998). Secondly, overexpression of HO-1 in 
the vasculature in apolipoprotein E (apoE)-deficient 
mice a�enuates the development of atherosclerosis 
(Juan et al., 2001). Thirdly, inhibition of HO enzyme 

Table 1. Disease states associated with heme 
oxygenase-1

General
 Ischemia reperfusion
 Inflammation
 Immune dysfunction
 Transplantation
Specific diseases
Cardiovascular
 Myocardial infarction
 Atherosclerosis
 Hypertension
 Vascular restenosis 
Kidney
 Acute renal failure
 Glomerulonephritis
 Diabetic kidney disease
 Polycystic kidney disease
 Sickle cell renal disease
Lung
 Hypoxia and hyperoxia induced lung injury
 Emphysema
 Pleuritis
 Asthma
Liver
 Sepsis
 Cirrhosis 
Nervous system
 Spinal cord injury
 Cerebrovascular accident
 Alzheimer’s disease
Pancreas
 Acute pancreatitis
Others
 Pre-eclampsia and intrauterine growth 
  retardation
 Cancer
 Iron-related disorders
 Keratitis
 Retinopathy of prematurity 
 Acquired immunodeficiency syndrome



276            2005J. Deshane and others

activity in Watanabe heritable hyperlipidemic rabbits 
leads to accelerated atherosclerosis (Ishikawa et al., 
2001a). Hoekstra and coworkers have also reported 
that differences in susceptibility to atherosclerosis 
between resistant and susceptible strains of Japanese 
quail may be due to differences in endothelial HO 
and anti-oxidant components (Hoekstra et al., 2003). 
Fourth, transgenic mice deficient in HO-1 in an apoE 
knockout background develop significantly more 
atherosclerosis compared to wild-type mice (Yet et 
al., 2003). Finally, atherogenic lipoproteins like oxi-
dized LDL that have been implicated in the patho-
genesis of atherosclerosis (Shi et al., 2000; Furnkranz 
et al., 2005) are potent inducers of HO-1 in vascular 
cells and renal tubular epithelial cells (Agarwal et 
al., 1996a). More importantly, oxidized LDL-medi-
ated HO-1 induction inhibits monocyte chemotaxis 
(Ishikawa et al., 1997), a key inflammatory event in 
the pathogenesis of atherosclerosis.

The major stimulus for the induction of HO-1 
in atherosclerotic plaques is oxidized LDL (Agarwal 
et al., 1996a; Ishikawa et al., 1997) and more specifi-
cally, its fa�y acid component, linoleyl hydroperox-
ide (Agarwal et al., 1998). 13-HPODE, one of the ma-
jor components of oxidized LDL induces HO-1 via 
transcriptional mechanisms (Agarwal et al., 1998). 
Our laboratory has identified a distal cis-acting re-
gion in the human HO-1 promoter that regulates 
this response in human aortic endothelial cells (Hill-
Kapturczak et al., 2003). Studies to further delineate 
this region are in progress. In murine macrophages, 
OxLDL causes nuclear accumulation of Nrf2, which 
in turn activates HO-1 (Ishii et al., 2004). Bach-1 has 
recently been identified as a potential transcriptional 
repressor for HO-1. Although HO-1 has been impli-
cated in the protective response against atherosclero-
sis, the functional role of Bach-1 in modulating this 
response is not well understood. In a recent study 
involving cuff injury in Bach-1 deficient mice, Bach-
1 was shown to play a critical role in the regulation 
of HO-1 expression, macrophage function, smooth 
muscle cell proliferation and neointima formation 
(Omura et al., 2005). In smooth muscle cells derived 
from Bach-1 deficient mice, HO-1 expression was in-
creased and associated with decreased proliferation 
compared with wild type cells (Omura et al., 2005). 
Thus during inflammation or atherogenesis, Bach-
1 may regulate HO-1 gene expression and this hy-
pothesis requires further investigation. 

VASCULAR RESTENOSIS AND OTHER 
CARDIOVASCULAR DISEASES

Several lines of evidence suggest that upregu-
lation of HO-1 may be an important protective factor 
a�er balloon angioplasty in cardiovascular diseases 
such as vascular restenosis (Ishikawa, 2003; Schill-

inger et al., 2004). Prior induction of HO-1 by chemi-
cal and genetic manipulation a�enuates vascular ne-
ointimal proliferation following balloon injury, while 
inhibition of HO enzyme activity, leads to worsening 
of the lesion (Aizawa et al., 1999; Tulis et al., 2001a; 
2001b). HO-1 knockout mice demonstrate exaggerat-
ed vascular neointimal proliferation following wire-
induced injury (Duckers et al., 2001). In recent work, 
Visner and coworkers have suggested that the anti-
proliferative effects of rapamycin in vascular smooth 
muscle cells are mediated through the induction of 
HO-1 (Visner et al., 2003). Rapamycin-coated stents 
have been used to prevent restenosis following an-
gioplasty and these findings implicate HO-1 as the 
underlying mechanism for the beneficial effects of 
rapamycin in vascular injury.

Recent studies focusing on a (GT)n repeat re-
gion in the proximal human HO-1 promoter have 
yielded interesting results in vascular restenosis. A 
study investigating the association of length poly-
morphisms of the human HO-1 promoter and pe-
ripheral vascular restenosis showed significantly 
reduced level of inflammation following balloon an-
gioplasty in patients with short (GT)n repeats (< 25) 
when compared to longer (GT)n repeats (reviewed 
in Exner et al., 2004; Schillinger et al., 2004). These 
findings were confirmed in coronary artery resteno-
sis wherein the carriers of longer (GT)n repeats had 
a 3.74 fold higher risk for restenosis  compared with 
those with shorter (GT)n repeats. Significant associa-
tion was also observed between HO-1 (GT)n poly-
morphisms and abdominal aortic aneurysms (Schill-
inger et al., 2002).  On the other hand, no association 
has been found between HO-1 (GT)n repeat poly-
morphism and Kawasaki disease and systemic vas-
culitis in Japanese children (Kanai et al., 2003).

RENAL DISEASES

Studies utilizing chemical inducers and in-
hibitors as well as HO-1 knockout mice have shown 
that the expression of HO-1 is cytoprotective in 
heme and non-heme mediated models of renal in-
jury (Nath et al., 1992; Agarwal et al., 1995; Shiraishi 
et al., 2000). A detailed review of this area is sum-
marized in a recent article from our group (Hill-Ka-
pturczak et al., 2002). 

HYPOXIA/HYPEROXIA LUNG INJURY AND 
EMPHYSEMA

HO-1 is protective in both hyperoxia as well 
as hypoxia-induced lung injury (Choi & Alam, 1996; 
Taylor et al., 1998; O�erbein et al., 1999a; Christou et 
al., 2000; Zampetaki et al., 2003). The generation of 
CO appears to be the mechanism involved in these 
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models since exogenous administration of CO pro-
tects against lung injury (O�erbein et al., 1999b), 
results that are similar to HO-1 gene delivery stud-
ies (O�erbein et al., 1999a). In mouse lung ischemia-
reperfusion injury models as well as primary rat 
pulmonary artery endothelial cells, overexpression of 
HO-1 a�enuates apoptosis and knockdown of HO-1 
by siRNA in endothelial cells increases anoxia-reox-
ygenation induced apoptosis (Zhang et al., 2004). 

Studies carried out in patients with emphy-
sema (Yamada et al., 2000) suggests that long (GT)n 
repeats reduces HO-1 inducibility in response to 
smoking and thus perhaps a much higher risk for 
development of chronic obstructive pulmonary dis-
ease. On the contrary, a study constituting 621 smok-
ers found no link between HO-1 promoter genotype 
and loss of lung function (He et al., 2002).

PRE-ECLAMPSIA AND INTRA-UTERINE 
GROWTH RETARDATION

Endothelial oxidative stress plays a significant 
role in the pathophysiology of preeclampsia, a hy-
pertensive disorder in pregnancy (Lum & Roebuck, 
2001). Critical inflammatory processes like increased 
leukocyte-endothelial interaction/endothelial dys-
function, associated upregulation of cellular adhe-
sion molecules and endothelial permeability by reac-
tive oxygen species are involved in the development 
of this condition. HO-1 has been proposed to be in-
volved in these processes. In a study investigating 
the effect of HO-1 activation on TNF-α induced pla-
cental damage and feto-placental circulation, induc-
tion of HO-1 significantly a�enuated the inflamma-
tory response mediated cellular damage in placental 
villous explants (Ahmed et al., 2000).  Recent studies 
have also shown that large amounts of peroxynitrite 
are generated in the maternal vasculature (Zhao et 
al., 2004) suggesting a possible role for peroxynitrite 
in the pathogenesis in preeclampsia. Endothelial oxi-
dative stress induced by peroxynitrite upregulated 
adhesion molecule expression and induced HO-1. 
Treatment of endothelial cells with either peroxyni-
trite scavenger or HO-1 inhibitor abolished the in-
creased expression of adhesion molecules. Therefore, 
the modulation of expression of adhesion molecules 
may be mediated by HO-1 regulation (Zhao et al., 
2004).

Damage to the endothelium and impaired 
microvascularization are commonly linked with re-
current miscarriages. HO-1 protein levels were sig-
nificantly lower in placentae from cases with pre-
eclampsia, compared with gestationally matched 
normal pregnancies (Lash et al., 2003). A study in-
vestigating 162 women with recurrent miscarriages 
compared to a group of postmenopausal healthy 
women showed a significant association between 

HO-1 (GT)n repeat polymorphisms and incidence 
of miscarriages (Denschlag et al., 2004).  In pregnant 
women who had a fetus with IUGR, levels of HO-
1 expression in placental trophoblasts were signifi-
cantly reduced when compared to a group of nor-
mal pregnant women (Wang & Yu, 2002). On the 
contrary, an earlier study trying to correlate expres-
sion of HO-1 and HO-2 to preeclampsia and fetal 
growth restriction, showed that reduced expression 
of HO-2 in endothelial cells under these abnormal 
conditions may be responsible for reduced placental 
blood flow (Barber et al., 2001). However, no signifi-
cant difference in HO-1 expression levels was noted 
in endothelial cells and in the placental bed in preec-
lampsia or fetal growth restriction. McLaughlin and 
coauthors on the other hand, have found increased 
HO-1 expression in chorionic villi and fetal mem-
branes from preeclamptic pregnancies compared to 
normotensive controls (McLaughlin et al., 2003).

CO, one of the products of heme degradation 
by HO-1, has been considered as a vascular relaxant 
(McFaul & McGrath, 1987).  Studies of inhibition of 
HO-1 in isolated perfused placentae showed increase 
in placental perfusion pressure suggesting that CO 
levels are perhaps crucial for maintenance of blood 
flow in the placenta which is of vital importance for 
a healthy pregnancy (Lyall et al., 2000). In precon-
stricted placental arteries, hemin reduced vascular 
tension significantly and hemin induced vascular re-
laxation as well as production of CO, was inhibited 
by SnPP (Ahmed et al., 2000) suggesting a role for 
HO-1 as an endogenous placental factor conferring  
cytoprotection and placental blood vessel relaxation.

HYPERTENSION

Johnson and coworkers  demonstrated in Dahl 
salt sensitive (DS) rats, that coronary arterial HO-1 
expression was increased with salt induced hyperten-
sion, and cardioprotection was provided by promot-
ing coronary vasodilation (Johnson et al., 2004b). On 
the other hand, endothelium dependent vasodilator 
responses were a�enuated in arterioles from another 
severely salt sensitive model of hypertension, deoxycor-
ticosterone acetate (DOCA) rats and not in the sponta-
neously hypertensive (SHR) rat model (Johnson et al., 
2004a). Using an inhibitor, which abolishes endogenous 
CO production, they show data which suggests that 
DOCA-salt hypertension is associated with increased 
generation of endogenous CO which may play a role 
in endothelial dysfunction. Yang and coauthors have 
demonstrated that overexpression of HO-1 leads to a 
reduction in pressor responsiveness to angiotensin II 
(Yang et al., 2004). This is most likely due to the in-
creased generation of one of the HO-1 metabolites, pre-
sumably CO, which has the ability to inhibit vascular 
reactivity to constrictor stimuli. Several studies have 
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documented the induction of vascular, cardiac and re-
nal HO-1 in response to angiotensin II both in vitro and 
in vivo (Aizawa et al., 2000; Haugen et al., 2000; Das et 
al., 2004). Mo�erlini and coworkers have also shown 
previously that HO-1 derived CO plays a role in the 
suppression of an acute hypertensive response in vivo 
(Mo�erlini et al., 1998).

DIABETES

Oxidative stress and generation of reactive ox-
ygen species, specifically superoxide anion has been 
implicated in the cardiovascular complications seen 
in patients with diabetes (Giugliano et al., 1995; Mo-
hamed et al., 1999). Hyperglycemia has been shown 
to mediate endothelial dysfunction, delayed cell rep-
lication and enhanced apoptosis (Lorenzi et al., 1987; 
Baumgartner-Parzer et al., 1995; Zou et al., 2002). 
These events seem to be reversible by increased 
expression of anti-oxidant enzymes such as HO-1 
(Lorenzi et al., 1985; Curcio & Ceriello, 1992). Cosso 
and coauthors have shown that diabetes induces an 
increase in oxidative stress and results in upregula-
tion of HO-1 in liver (Cosso et al., 2001). Increased 
HO-1 expression has also been observed in glomeru-
lar cells of diabetic rats (Agarwal & Nick, 2000; Hay-
ashi et al., 2001). Quan and coworkers have reported 
a decrease in HO activity in the early stages of dia-
betes and an increase in number of circulating en-
dothelial cells in streptozotocin-induced diabetic rats 
(Quan et al., 2004). Overexpression HO-1 in diabetic 
rats resulted in increased serum bilirubin, reduced 
production of reactive oxygen species and a�enu-
ated sloughing of endothelial cells (Abraham et al., 
2004; Quan et al., 2004). Interestingly, hyperglycemia 
per se represses HO-1 gene expression (Abraham et 
al., 2003) while low glucose induces HO-1 gene ex-
pression (Chang et al., 2003).

In rodent models of islet transplantation in-
duction of HO-1 in islet cells resulted in a protec-
tive response from pro-apoptotic stimuli and im-
proved islet function (Pileggi et al., 2001; Tobiasch 
et al., 2001). Studies conducted in diabetic and non 
diabetic HO-1–/– and +/+ mice have shown that ani-
mals lacking HO-1 are more susceptible to damage 
from myocardial ischemia-reperfusion injury and 
the presence of diabetes worsens the injury (Liu et 
al., 2005). Myocardial infarct size was significantly 
higher in HO-1 deficient mice, whereas, overexpres-
sion of HO-1 conferred protection against myocar-
dial injury in diabetic rats (Liu et al., 2005). 

CANCER

It is well known that HO-1 is expressed in a 
variety of tumors (Goodman et al., 1997; Doi et al., 

1999; Tsuji et al., 1999; Deininger et al., 2000; Fang et 
al., 2003) and that HO-1 directly contributes to rapid 
tumor growth via its anti-oxidative and anti-apoptotic 
effects (Doi et al., 1999; Tanaka et al., 2003). The anti-
apoptotic action of HO-1 is believed to be mediated 
by multiple mechanisms including decreased levels 
of intracellular pro-oxidants and increased bilirubin 
and CO levels. CO exerts its anti-apoptotic effect by 
inhibiting expression of the tumor suppressor pro-
tein, p53, and release of mitochondrial cytochrome 
c (Liu et al., 2002). In a study investigating the re-
lationship between expression levels of HO-1 and 
cervical lymph node metastasis of tongue squamous 
cell carcinoma, low HO-1 expression was associated 
with lymph node metastasis (Yanagawa et al., 2004) 
and hence suggested to be a possible clinical marker 
for the disease. Fang and coworkers have shown in 
human colon carcinoma cells that treatment with a 
HO inhibitor, ZnPP, enhanced the chemotherapeutic 
response of tumor cells and reduced tumor growth 
suggesting that HO-1 may be an a�ractive target for 
chemotherapeutic intervention (Fang et al., 2003). 
Chen and coauthors have demonstrated in papil-
lary thyroid carcinoma cells that induction of HO-1 
markedly reduces the sensitivity of the cells to ap-
optotic stimuli (Chen et al., 2004). Thus HO-1 may 
be an effective target for anti-cancer therapy.

However, HO-1 has also been shown to have 
a protective effect in cancer which is contradictory 
to its tumorigenic properties. Results from a study 
conducted to establish an association between inci-
dence of lung adenocarcinoma and HO-1 polymor-
phisms among Japanese patients compared to con-
trols showed that large (GT)n repeats in the HO-1 
gene promoter may be directly correlated with the 
development of the disease (Kikuchi et al., 2005). Re-
cent studies also demonstrate an association between 
risk of oral squamous cell carcinoma amongst areca 
chewers and longer (GT)n repeat alleles in the HO-
1 promoter and suggests that shorter (GT)n repeats 
may in fact confer protection against oral carcino-
genesis (Chang et al., 2004). Further studies will de-
lineate the dual role played by HO-1 in cancer and 
the underlying mechanisms. 

CEREBROVASCULAR ACCIDENT

Studies on focal cerebral ischemia in rats 
showed that treatment with an HO inhibitor, ZnPP 
before ischemia significantly reduced the infarct size 
and edema following the event (Kadoya et al., 1995). 
Recent evidence indicates that prolonged expression 
of HO-1 in glial cells in human brains following fo-
cal cerebral infarctions or traumatic brain injury 
helps in the recovery of neuronal tissue following 
these insults (Beschorner et al., 2000). In a study in-
volving 399 patients with ischemic cerebrovascular 
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events, and 398 healthy control subjects, short < 25 
(GT)n repeats in the HO-1 promoter conferred a re-
duced risk for cerebrovascular events in people with 
normal plasma lipid levels (Funk et al., 2004). These 
studies also show a contradictory role for HO-1 in 
this disease context. Since specificity of HO inhibi-
tors is questionable, studies using genetic manipula-
tion of HO-1 would provide more insight into the 
underlying mechanisms.

DRUGS

Several important therapeutic agents have 
been shown to induce HO-1 expression and medi-
ate their beneficial effects, at least in part, through 
the induction of HO-1. For example, rapamycin, an 
immunosuppressive drug which has significant an-
tiproliferative actions is a potent inducer of HO-1 
expression in vascular cells (Visner et al., 2003). Such 
induction is functionally important since HO inhibi-
tion with tin protoporphyrin leads to a loss of the 
antiproliferative effect of rapamycin in smooth mus-
cle cells. Several studies have shown the beneficial 
effects of statins in reducing the mortality rate in 
patients with coronary heart disease (LaRosa, 2000; 
Vaughan et al., 2000).  Mechanisms beyond the li-
pid-lowering effects per se significantly contribute to 
the antiatherogenic and tissue protective properties 
of statins. Recent studies have shown that statins, 
albeit at relatively high concentrations, are potent 
inducers of HO-1 in vitro and in vivo (Grosser et al., 
2004a; 2004b; Lee et al., 2004). It has also been sug-
gested that the anti-inflammatory as well as the anti-
proliferative actions of statins are mediated through 
the induction of HO-1. 

Probucol, a cholesterol lowering drug which 
inhibits atherosclerosis and vascular restenosis has 
been shown to protect against smooth muscle cell 
proliferation by inducing expression of HO-1 (Deng 
et al., 2004). On the other hand, treatment with anti-
oxidants such as probucol, completely normalized 
the HO-1 induction observed in diabetic glomeruli 
(Gorogawa et al., 2002; Koya et al., 2003). Other ther-
apeutic agents such as aspirin and dopamine have 
also been shown to induce HO-1 (Berger et al., 2000; 
Grosser et al., 2003). 

SUMMARY

In summary, induction of HO-1 plays an im-
portant role in the pathophysiology of several dis-
eases such as atherosclerosis, hypertension, acute 
renal injury, lung injury, cancer as well as others 
involving multiple organ systems. Upregulation of 
HO-1 by various stimuli also modulates key biologi-
cal processes including inflammation, ischemic in-

jury and transplant rejection. Evaluation of the role 
played by products of the HO-1 catalyzed reaction 
in mediating the protective response will provide 
further insight into the underlying mechanisms of 
the cytoprotective effect elicited by HO-1.
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