
The first indication that genes influence 
ANGE came from studies on neurogenesis in mice 
of different genetic background. Various mouse 
strains (C57BL/6, BALB/c, CD1(ICR), 129Sv/J A/J, 
C3H/HeJ and DBA/2J) show distinct rates of pro-
liferation, survival, and differentiation of newborn 
cells in DG (Kempermann & Gage, 2002; Kemper-
mann et al., 1997a). Also, environmental stimulation 
differentially influences cell proliferation and sur-
vival in C57BL/6 and 129/SvJ mouse strains (Kem-
permann et al., 1997b; 1998a; 1998b). These results 
pointed out that diverse aspects of ANGE in the 
hippocampus are differentially influenced by the 
genetic background. 

There are several genetically modified mouse 
strains with introduced expression or overexpres-
sion of transgenes affecting ANGE (German & Ei-
sch, 2004). In this review, however, we have con-
centrated on knock-out mice.
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The term adult neurogenesis (ANGE) refers 
to generation of new neurons (due to the prolifera-
tion of precursor cells and their differentiation) in 
the brains of adult animals. Mammalian ANGE was 
initially observed decades ago (Messier et al., 1958; 
Messier & Leblond, 1960; Smart, 1961; Altman & 
Das, 1965; 1966) but has only recently gained rec-
ognition. ANGE is limited to two populations of 
dividing cells: (i) those in the subventricular zone 
(SVZ) with its projection through the rostral migra-
tory stream to the olfactory bulb (OB), and (ii) those 
in the subgranular zone (SGZ) of the dentate gyrus 
(DG) of the hippocampus. Those cells mature into 
OB granule cells and DG granule cells, respectively. 
ANGE is regulated by a multitude of environmen-
tal and physiological stimuli (see Table 1 in Eisch & 
Nestler, 2002). Lately, several genetic manipulations 
have also proved effective in altering ANGE (see 
below and Tables 1 and 2).
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GENETIC MANIPULATIONS RESULTING IN A 
LOSS OF ADULT NEUROGENESIS: CYCLIN D2 

AND TRANSCRIPTION FACTOR Tlx

Gene targeting is a relatively new approach 
to study mechanisms underlying ANGE. In fact, few 
have imagined finding a KO mouse with perfect de-
velopmental neurogenesis and a selective deficit of 
the adult one. Mice from several KO strains with af-
fected developmental neurogenesis die before adult-
hood (e.g., Di Cunto et al., 2000). Nevertheless, in 
two cases investigators were able to show complete 
ablation of ANGE in grown-up KO mice. These cas-
es include cyclin D2 KO mice and orphan nuclear 
receptor/tailless (Tlx) KO mice.

Cyclins D are cell cycle regulatory proteins 
that control specific cyclin-dependent kinases. Three 
cyclins D have been described: D1, D2, and D3. In 
most cells, more than one cyclin D is expressed. 
However, in those instances where only one cyclin 
D is expressed, its mutation produces significant 
phenotypic abnormalities (Sicinski et al., 1995; Ma 
et al., 1998; Sicinska et al., 2003). Among them, mice 
lacking cyclin D2 display tissue-specific abnormali-
ties in the ovaries and testes (Robker & Richards, 
1998; Sicinski et al., 1996), in B cells (Solvason et al., 
2000), and in the cerebellum (Huard et al., 1999).

Using these mice (cyclin D2 KO), we discov-
ered a lack of newly born neurons in adult DG and 
OB. In contrast, ANGE appears normal in cyclin D1 
KO mice as well as in the olfactory epithelium of D2 
KO mice. Furthermore, cyclin D2 is the only D-type 
cyclin expressed in dividing cells derived from neu-
ronal precursors present in the adult hippocampus. 

In contrast, all three cyclin D mRNAs are present in 
cultures derived from 5-day-old hippocampi, when 
developmental neurogenesis in DG takes place. The 
lack of ANGE resulted in changes in adult brain ar-
chitecture, especially smaller OB, hippocampus, cer-
ebellum, and sensory cortex (Kowalczyk et al., 2004).

Tlx is a forebrain-restricted transcription fac-
tor. It was initially identified as an orphan nuclear 
receptor expressed in vertebrate forebrains (Yu et 
al., 1994). Expression of Tlx is high at embryonic 
day 13.5 and in the adult brain (Monaghan et al., 
1995), where it is expressed sparsely throughout the 
cortex and highly in SVZ and DG in adult neural 
stem cells or progenitor cells. These la�er observa-
tions were possible thanks to the use of β-galactosi-
dase reporter, which was knocked into the Tlx locus 
(Shi et al., 2004). The Tlx gene regulates the timing 
of neurogenesis in the cortex indicating that Tlx is 
an essential intrinsic regulator in the decision to pro-
liferate or differentiate in the developing forebrain 
(Roy et al., 2004).

The brains of Tlx-null mice have been report-
ed to have no obvious defects during embryogenesis 
and appear grossly normal at birth; however, mature 
mice suffer from retinopathies, severe limbic defects, 
reduced cerebral hemispheres and DGs, greatly ex-
panded lateral ventricles and reduced olfactory 
bulbs. Behaviorally, Tlx mutants show aggressive-
ness, reduced copulation and progressively violent 
behavior (Monaghan et al., 1997; Yu et al., 2000).

Nestin is a common marker of proliferating 
CNS progenitors (Lendahl et al., 1990; Reynolds et 
al., 1992). Tlx mutant mice show loss of cell prolif-
eration and reduced labeling of nestin in neurogenic 

Table 1. Effects of KO mutations on ANGE (adult neurogenesis)

Gene/Protein Name/Function Effects on ANGE Site Reference
Cyclin D2 cell cycle regulatory protein complete reduction DG, OB Kowalczyk et al., 2004
tlx(tailless)/Tlx transcription factor complete reduction DG, SVZ Shi et al., 2004
nNOS neuronal NO synthase enhancement SVZ, OB, DG Packer et al., 2003
eNOS endothelial NO synthase reduction SVZ Reif et al., 2004
BDNF growth factor reductionb DG Lee et al., 2002
Fgf2 growth factor reduction SVZ Zheng et al., 2004
IGF1 insulin-like growth factor enhancementa DG Cheng et al., 2001
CB1R cannabinoid receptor reduction DG, SVZ Jin et al., 2004
VR1 vanilloid receptor enhancement DG, SVZ Jin et al., 2004
GIPR GIP receptor reduction DG Nyberg et al., 2005
MR mineralocorticoid receptor reduction DG Gass et al., 2000
NK1R neurokinin-1 receptor enhancementa DG Morcuende et al., 2003
mCD24 membrane-associated molecule enhancementa,c DG, SVZ Belvindrah et al., 2002
Sox2 transcription factor reductionb DG, SVZ Ferri et al., 2004
p27Kip1 cyclin-dependent kinase inhibitor enhancementc SVZ Doetsch et al., 2002
Naglu α-N-acetylglucosaminidase reduction DG, SVZ Li et al., 2002
Cystatin C cysteine protease inhibitor reduction DG Pir�ila et al., 2004
Bax proapoptotic Bcl-2 enhancement DG Sun et al., 2004

aThe effect is masked by increased apoptosis; bmice used were not null mutants (see text for details); cincreased was the number of spe-
cific cell type (see text for details).
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areas in the adult brain. The importance of Tlx was 
further supported by the observation that wild-type 
Tlx-expressing cells isolated from adult brains can 
proliferate, self-renew and differentiate into all neu-
ral cell types, while Tlx-null cells isolated from adult 
mutant brains fail to proliferate and self-renew. This 
la�er phenotype is rescued by reintroducing Tlx into 
Tlx-null cells (Shi et al., 2004). 

Tlx KO and D2 KO adult mutant brains have 
a number of morphological similarities. Both show 
severely reduced structures including DG, OB as 
well as greatly expanded lateral ventricles and 
shrinkage of the medial-posterior cortex. Notably, 
this phenotype was also observed in other KO mice 
with altered ANGE intensity (compare Fig. 6 in Ferri 
et al., 2004, and Fig. 3 in Kowalczyk et al., 2004).

GENETIC MANIPULATIONS RESULTING IN 
CHANGES OF ANGE INTENSITY

In most cases of genetic manipulation having 
an impact on ANGE, this influence is limited. Such 
is the case of mice with mutated genes encoding 
gaseous second messenger synthases, growth-fac-
tors, membrane receptors, cyclin inhibitor, and tran-
scription factors. Proteins encoded by these genes 
are usually known to regulate cell proliferation but 
also other processes like apoptosis.

NITRIC OXIDE SYNTHASES

Nitric oxide (NO) acts as a signaling mol-
ecule and an important negative regulator of cell 
proliferation in the adult mammalian brain. NO is 
synthesized by three different isoforms of NO syn-
thase (NOS): nNOS (neuronal), eNOS (endothelial) 
and iNOS (inducible). Effects of deleting NOS genes 
have been reviewed (Huang, 1999; 2000; Kawashima 
& Yokoyama, 2004). The effect of NOS deletion on 
ANGE seems to be isoform-dependent. 

nNOS is the enzyme responsible for produc-
ing the majority of NO in the adult mammalian 
brain (Huang et al., 1993). nNOS expression colocal-
izes with ANGE and pharmacological inhibition of 

nNOS increases ANGE (Packer et al., 2003; Sun et 
al., 2005). Deleting nNOS in KO mice (Packer et al., 
2003) strongly augmented the number of new cells 
generated in SVZ (24% increase), rostral migratory 
stream (42%), OB (20%) and DG (33%). 

Similarly, other nNOS KO mice show reduced 
infarct size and increased neurogenesis, both basal 
and ischemia-induced (Sun et al., 2005). These mice 
display grossly normal appearance, locomotor activ-
ity, breeding, long-term depression and long-term 
potentiation (LTP), and are resistant to neural stroke. 
However, they show a deficit in Morris water maze, 
a large increase in aggressive behavior and excess, 
inappropriate sexual behavior (Kirchner et al., 2004; 
Nelson et al., 1995).

On the other hand, eNOS-deficient mice show 
a significant reduction in neuronal progenitor cell 
proliferation in DG (Reif et al., 2004). These mice 
have decreased SVZ progenitor cell proliferation and 
migration following stroke (Chen et al., 2005). eNOS 
KO mice have defects in the production of hemat-
opoietic and endothelial progenitors as well (Aicher 
et al., 2003). 

In iNOS KO compared with wild-type mice, 
the number of dividing cells in DG was reduced ip-
silaterally to an ischemic lesion, pointing to iNOS as 
a positive mediator of ischemia-induced (but not ba-
sal) neurogenesis (Zhu et al., 2003).

GROWTH FACTORS

BDNF, brain-derived neurotrophic factor 
participates in synaptic plasticity and the adaptive 
changes in the strength of communication between 
neurons thought to underlie aspects of behavioral 
adaptation. It is widely expressed in the develop-
ing and adult brain (Kernie et al., 2000; Conner et 
al., 1997) and is essential for the differentiation and 
survival of many populations of neurons during de-
velopment (Ip et al., 1993; Cheng & Ma�son, 1994; 
Lindholm et al., 1996; Linnarsson et al., 2000). Fi-
nally, BDNF promotes ANGE (Benraiss et al., 2001; 
Pencea et al., 2001).

BDNF KO mutations confer severe neurologi-
cal dysfunction on newborn pups, resulting in early 

Table 2. Some genetic model organisms displaying effects on ANGE in specific experimental situations.

Gene/
Protein

Name/Function Experimental situation Effects on neurogenesis References

iNOS inducible NO synthase ischemia decrease in ipsilateral DG Zhu et al., 2003
NK1R neurokinin-1 receptor chronic antidepressants lack of increase in DG Morcuende et al., 2003
PS1 presenilin-1 enriched environment lower level in DG Feng et al., 2004
NMDAR ε 1 receptor subunit running wheel lack of increase in DG Kitamura et al., 2003
Cox-2 cyclooxygenase enzyme ischemia lower level in DG Sasaki et al., 2003
5-HT1AR serotonin receptor fluoxetine (antidepressant) lack of increase in DG Santarelli et al., 2003
Cystatin C cysteine protease inhibitor status epilepticus decreased migration in DG Pir�ila et al., 2004
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death (Conover et al., 1995; Liebl et al., 1997). There-
fore either heterozygous (Lyons et al., 1999; Chour-
baji et al., 2004) or inducible/restricted (Gorski et al., 
2003; Baquet et al., 2004; Monteggia et al., 2004) sys-
tems were used in subsequent studies. 

Heterozygous BDNF+/– mice have a normal life 
span. These animals develop enhanced intermale ag-
gressiveness and hyperphagia accompanied by signifi-
cant weight gain in early adulthood (Lyons et al., 1999), 
while others report that BDNF+/– mice are indistin-
guishable from wild-type li�ermates in locomotor ac-
tivity, exploration, anxiety, fear-associated learning, and 
behavioral despair (Chourbaji et al., 2004). The newly 
generated neurons in DG contain BDNF. The number 
of dividing cells is reduced in DG of BDNF+/– mice. 
This reduction is associated with a significant decrease 
in DG volume (Lee et al., 2002).

Basic fibroblast growth factor (bFGF, Fgf2), 
a neurotrophic factor, is involved in the develop-
ment, maintenance, and survival/regeneration of the 
nervous system. It is broadly expressed in numer-
ous precursor populations exhibiting spatiotemporal 
regulation during ontogeny (Powell et al., 1991; Riva 
& Mocche�i, 1991; Fayein et al., 1992; Ozawa et al., 
1997; for a review, see Reuss & von Bohlen und Hal-
bach, 2003).

Fgf2 KO are morphologically normal, viable 
and fertile, however, they display decreased vascu-
lar smooth muscle contractility, low blood pressure 
and thrombocytosis (Dono et al., 1998; Zhou et al., 
1998). They also demonstrate mild cardiovascular 
and skeletal alterations, a significant reduction in 
the number of cortical neurons and disturbed cor-
tical layering while neuronal cell density is normal 
in the striatum and the hippocampus (Dono et al., 
1998; Ortega et al., 1998). Moreover, astrocytes of 
Fgf2 KO mice show drastically reduced glial fibril-
lary acidic protein (GFAP) in gray, but not white 
ma�er of the forebrain (Reuss et al., 2003). Possibly 
as a consequence of these changes mice have a leaky 
blood–brain barrier. Finally, Fgf2 KO mice show en-
larged infarct volume and loss of brain-derived neu-
rotrophic factor (BDNF) mRNA induction following 
brain ischemia (Kiprianova et al., 2004).

Roles for Fgf2 in regulating neuronal pro-
duction are suggested by pa�erns of ligand/recep-
tor expression and proliferative effects in cultured 
precursors, including those from prenatal cerebral 
cortex, postnatal cerebellum as well as neonatal and 
adult hippocampal and SVZ formation (Gensburger 
et al., 1987; Gao et al., 1991; Riva & Mocche�i, 1991; 
Wanaka et al., 1991; Ray et al., 1993; Tao et al., 1996;  
Ozawa et al., 1997; Gri�i et al., 1999; Palmer et al., 
1999).

Fgf2 and Fgf receptor (FgfR) proteins are 
expressed within ANGE areas. Moreover, environ-
mental levels of Fgf2 regulate neonatal hippocam-
pal neurogenesis (Cheng et al., 2002) with distinct, 

stage-specific roles of Fgf2 in the DG granule cell 
lineage. In Fgf2 KO mice there is a 30% decrease in 
DG neuron number at P21. Adult Fgf2 KO have a 
50% reduction in SVZ dividing progenitors without 
changing their cell cycle time. As a result, Fgf2 KO 
mice have smaller OB (Zheng et al., 2004).

Insulin-like growth factor 1 (IGF1) is a 
polypeptide related to insulin, synthesized locally in 
many tissues, including the brain, where it is highly 
expressed and is essential for normal brain develop-
ment. IGF1 promotes neuronal survival (mainly in 
the hippocampal and olfactory systems), projection 
neuron growth, dendritic arborization, synaptogene-
sis as well as glucose utilization (reviewed in Bondy 
& Cheng, 2004).

IGF1 KO mice show strongly reduced perina-
tal survival (< 5%) and dwarfism (Baker et al., 1993; 
Liu et al., 1993; Powell-Braxton et al., 1993). Adult 
IGF1 KO have reduced brain weights, with reduc-
tions evenly affecting all major brain areas apart 
from DG granule cell layer volume that is reduced 
in excess (Beck et al., 1995). The proliferation of DG 
progenitors in IGF1 KO appears to be enhanced, as 
shown by increased cell numbers and increased cell 
proliferation in the IGF1 KO SGZ. The incidence 
of apoptosis is also increased, however, suggesting 
that impaired survival rather than impaired prolif-
eration accounts for the reduction in DG granule 
neuron number in the IGF1 KO brain. This effect is 
observed in both developing and adult brain (Cheng 
et al., 2001).

RECEPTORS

The endocannabinoid system consists of a 
small family of endogenous ligands, ligand recep-
tors, and ligand-metabolizing enzymes. Endocan-
nabinoids are defined as endogenous cannabimimet-
ic compounds capable of binding to and function-
ally activating cannabinoid (CB) receptors (reviewed 
in McPartland, 2004). Two known CB receptors are 
metabotropic G-protein-coupled receptors. CB1 can-
nabinoid receptor (CB1R) predominates in CNS, 
whereas CB2 is largely restricted to cells of immune 
function (Felder & Glass, 1998).

VR1 vanilloid receptor (transient receptor po-
tential vanilloid channel 1, capsaicin receptor), an 
ionotropic cation channel, also signals as an endo-
cannabinoid receptor (Zygmunt et al., 1999). Heter-
ologously expressed VR1 can be activated by vanil-
loid compounds, protons, or heat in vitro (Caterina 
et al., 2000). VR1 antagonists inhibit the proapoptotic 
effect of VR1 receptor activation in neuroblastoma 
and lymphoma cells (Maccarrone et al., 2000).

Endogenous cannabinoid signaling pathways 
have been implicated in a broad range of physiolog-
ical functions, including memory and survival a�er 
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brain injury (Jin et al., 2000; Mechoulam et al., 2002). 
In addition, cannabinergic systems may also have 
an important role in brain development, possibly by 
influencing the expression of the Bcl-2/Bax system 
(Fernandez-Ruiz et al., 2000). Finally, cannabinoids 
promote the survival of oligodendrocyte progenitors 
(Molina-Holgado et al., 2002). 

CB1R KO mice do not show effects of cannab-
inoid drugs, i.e., analgesia, reinforcement, hypother-
mia, hypolocomotion, and hypotension. These mice 
present a mild impairment in the adaptation to new 
environment (Ledent et al., 1999). CB1R KO reduced 
ANGE by 50% in DG and SVZ. Moreover, dividing 
cells in SGZ and SVZ of WT mice expressed CB1R 
(Morales & Backman, 2002; Jin et al., 2004).

VR1 KO mice are viable, fertile, with no dif-
ferences in general appearance, gross anatomy, 
body weight, locomotion, or overt behavior. These 
mice show normal responses to noxious mechanical 
stimuli but exhibit no vanilloid-evoked pain behav-
ior, are impaired in the detection of painful heat, 
and demonstrate li�le thermal hypersensitivity in 
the se�ing of inflammation (Caterina et al., 2000). Jin 
et al. (2004) showed that blockade of VR1 promotes 
ANGE in DG and SVZ.

Gastric inhibitory polypeptide (GIP), a glu-
cose-dependent insulinotropic polypeptide (42 aa), is 
a member of the vasoactive intestinal peptide-VIP/se-
cretin/glucagon family of gastrointestinal regulatory 
polypeptides. GIP was found to be mitogenic in sev-
eral cell types (summarized in Nyberg et al., 2005). Ex-
pression of the gastric inhibitory polypeptide receptor 
(GIPR) gene and GIP binding sites have been described 
in the adult brain, including the hippocampus (Kaplan 
& Vigna, 1994; Usdin et al., 1993).

GIPR KO mice show no gross abnormalities 
in general behavior, feeding, body weight and no 
histological abnormalities, though they have higher 
blood glucose levels with impaired initial insulin re-
sponse a�er oral glucose load and even a�er high-
fat diet (Miyawaki et al., 1999). Nyberg et al. (2005) 
observed that GIPR KO mice produce significantly 
fewer cells in the adult granule cell layer of DG 
compared with wild-type mice. Also, exogenously 
delivered GIP induced proliferation of adult-derived 
hippocampal progenitors in vivo as well as in vitro.

Corticosteroids act via intracellular receptors 
that recognize specific palindromic DNA sequences 
in the promoter region of target genes and thereby 
modulate transcription. Two receptor subtypes are ef-
fective in the brain: mineralocorticoid receptor (MR; 
type 1) and glucocorticoid receptor (GR; type 2) 
(Beato et al., 1995).

When untreated, MR KO mice develop pseu-
dohypoaldosteronism a�er birth and die due to se-
vere renal loss of sodium and water (Berger et al., 
1998). MR KO animals, however, can be rescued by 
exogenous NaCl administration and subsequently 

studied during adulthood (Bleich et al., 1999). Since 
most mice with overall disruption of the GR gene 
die perinatally due to respiratory failure (Cole et 
al., 1995), the role of GR was studied in GRNesCre 
mice. GRNesCre mice have a brain-specific disrup-
tion of the GR gene using the Cre/loxP-recombina-
tion system, with the Cre recombinase under the 
control of the rat nestin promoter, which inactivates 
the GR gene early during development in neuronal 
and glial cell precursors (Tronche et al., 1999). Neu-
ropathological analyses revealed changes in the hip-
pocampus of adult NaCl-rescued MR KO mice but 
not in GRNesCre mice. Outside the hippocampus, 
neither MR KO nor GRNesCre mice exhibited any 
neuropathological changes. Finally, corticosteroid 
receptor mutant mice show alterations in their emo-
tional behavior (Urani & Gass, 2003).

Adult MR KO mice demonstrate a significant 
reduction of granule cell neurogenesis to 65% of 
wild-type li�ermates. Interestingly, at postnatal day 
8 no difference in granule cell proliferation could be 
demonstrated between MR KO and wild-type mice. 
Neurogenesis was undisturbed in adult GRNesCre 
mice, indicating that the basal rate of granule cell 
proliferation does not depend on corticosterone-
evoked signaling mediated by GR and a�ributing 
long-term trophic effects of adrenal steroids on DG 
cells to MR (Gass et al., 2000).

The neurokinin-1 receptor (NK1R) is the pre-
ferred receptor for the neuropeptide substance P 
(SP). SP and NK1Rs have a role in the pathophysiol-
ogy of depression and/or anxiety disorders. Admin-
istered SP, via NK1R, can have memory-promoting, 
reinforcing and anxiolytic-like effects when adminis-
tered systemically or into the nucleus basalis of the 
ventral pallidum (Hasenohrl et al., 2000).

NK1R KO mice are remarkably similar both 
behaviorally and neurochemically to mice and other 
rodents treated chronically with established antide-
pressants (Rupniak et al., 2001), i.e., KO mice are 
comparable to antidepressant-treated mice in neo-
natal separation, tail suspension, resident-intruder 
and forced-swim tests, assays which monitor stress 
responses relevant to anxiety and depression and 
which are widely used to test the efficacy of antide-
pressant drugs (De Felipe et al., 1998; Rupniak et al., 
2000; 2001; Santarelli et al., 2001). NK1R KO mice are 
normal in hippocampus-dependent fear condition-
ing and they display a mild improvement in spatial 
learning in the water maze task (Morcuende et al., 
2003).

Adult NK1R KO mice showed 29.3% en-
hancement in ANGE, mostly in SGZ. This increase, 
however, was not accompanied by an increase in 
cell survival since the enhancement was observed 1 
day following production of marked cells but was 
gone 7, 14 or 28 days later. This suggests that there 
is a period of rapid cell death in NK1R KO mice be-
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tween 1 and 7 days a�er production. Finally, chron-
ic treatment with antidepressants (despiramine or 
citalopram) increased ANGE in wild-type mice but 
failed to increase the number of newborn cells in the 
NK1R KO animals (Morcuende et al., 2003).

mCD24 (mouse Cluster and Differentiation 
24/heat stable antigen – HSA, p31, nectadrin), a 
glycosylphosphatidylinositol-anchored molecule, is 
a membrane associated, highly glycosylated, 30-aa 
peptide that probably transduces signals in a range 
of cell types using protein tyrosine kinases (Stefano-
va et al., 1991). 

It is expressed in differentiating neurons dur-
ing development (Kuchler et al., 1989; Nedelec et al., 
1992; Shirasawa et al., 1993) where it acts as an in-
hibitor of neurite outgrowth and cell proliferation 
(Shewan et al., 1996; Nieoullon et al., 2005). mCD24 
is also found in ANGE zones (Calaora et al., 1996; 
Chazal et al., 2000).

mCD24 KO mice show a leaky block in lym-
phocytes B development and altered erythrocytes 
(Nielsen et al., 1997). In the adult brain, these mice 
reveal an increase in both rapid (in SVZ and DG) 
and slow (SVZ) proliferating cells together with a 
global reduction of cell cycle duration of rapidly 
proliferating precursors and increased apoptosis in 
SVZ (Belvindrah et al., 2002).

TRANSCRIPTION FACTORS

High-mobility-group (HMG) proteins bind 
DNA non-sequence-specifically, but specifically rec-
ognize DNA structures. These small proteins can 
enhance the structural flexibility of DNA influencing 
various processes such as transcription and recombi-
nation (Grasser, 2003). Sox2, with Sox1 and Sox3, are 
members of the SRY-related HMG box gene family 
encoding transcription factors with a single HMG 
DNA-binding domain, regulating crucial develop-
mental decisions in different systems (Kamachi et al., 
2000).

Sox2 is expressed in embryonic neural stem 
cells, it is expressed in, and is essential for, totipotent 
inner cell mass stem cells and other early multipo-
tent cell lineages, and its ablation in Sox2 KO mice 
(Sox2β-geo ‘knock-in’) causes early embryonic lethality 
shortly a�er implantation (Avilion et al., 2003; Zap-
pone et al., 2000). In the adult, Sox2 is expressed in 
the vast majority of dividing precursors in the neu-
rogenic regions: SVZ, rostral migratory stream and 
SGZ (Ferri et al., 2004; Komitova & Eriksson, 2004).

Compound Sox2β-geo/ΔENH heterozygotes with 
a regulatory mutant allele (Sox2ΔENH), in which a 
neural cell-specific enhancer (Zappone et al., 2000) 
is deleted, are born in reduced numbers compared 
with the expected frequency, and their number fur-
ther decline in postnatal life. They show growth 

retardation, normally compensated by six weeks of 
age, slowed reactivity, feet-clasping phenotype, cir-
cling behavior and epilepsy. Moreover, they have 
important cerebral malformations, with parenchy-
mal loss and ventricle enlargement, degeneration, 
and cytoplasmic protein aggregates observed in tha-
lamus, striatum and septum neurons. Finally, pre-
cursor cell proliferation and the generation of new 
neurons in SGZ (about 65% reduction) and in SVZ 
(~55% reduction) are decreased while GFAP/nestin-
positive hippocampal cells are strikingly diminished 
(Ferri et al., 2004).

OTHER PROTEINS

Cyclin-dependent kinase inhibitor p27Kip1, 
together with p21Waf1 and p57Kip2 is a member 
of the Kip (Cip) family of proteins that act as nega-
tive regulators of G1 cyclin-dependent kinases (G1 
CDKs) affecting the duration of the G1 phase of the 
cell cycle (Sherr & Roberts, 1995). P27Kip1 is ex-
pressed in the SVZ (van Lookeren Campagne & Gill, 
1998) and regulates the length of the G1 phase of the 
cell cycle in embryonic CNS progenitors (Mitsuhashi 
et al., 2001).

p27Kip1 KO mice grow to a greater size than 
controls. Mutant female mice are infertile (Kiyokawa 
et al., 1996). p27Kip1 KO mice show impaired exit 
from the cell cycle of glial progenitors, as a defective 
growth arrest was observed for both oligodendro-
cytes and astrocytes resulting in expanded pools of 
glial cells in the cortex and in the cerebellum (Casac-
cia-Bonnefil et al., 1997; 1999).

Deleting p27Kip1 has very specific effects on 
a population of CNS progenitors responsible for 
ANGE in SVZ (Doetsch et al., 2002). Loss of p27Kip1 
has no effect on the number of stem cells but results 
in a selective increase of the transit-amplifying type 
C cells, decrease in the number of type A neurob-
lasts, and increased apoptosis. Therefore, the role of 
p27Kip1 is not equivalent in the different cell popu-
lations of SVZ, and the cell-cycle regulation of SVZ 
adult progenitors is remarkably cell-type specific. 
p27Kip1 appears to be a key regulator of the cell di-
vision of the transit-amplifying progenitors.

The Sanfilippo syndrome type B (mucopoly-
saccharidosis III B, MPS III B) is an autosomal re-
cessive disorder caused by a lack of activity of α-N-
acetylglucosaminidase (Naglu), one of the lysosomal 
enzymes needed to degrade heparan sulfate, and the 
resulting accumulation of this glycosaminoglycan. In 
MPS III B, CNS is particularly affected with progres-
sive mental retardation accompanied by intense hy-
peractivity and early death (Li et al., 2002).

Naglu KO mice (Li et al., 1999) are healthy 
and fertile while young and can survive for 8–12 
months, although they show vacuolation in many 
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cells, including macrophages, epithelial cells, and 
neurons. Surprisingly, Naglu KO mice manifest ab-
normal hypoactive behavior in an open field test 
(hyperactivity is not observed) and show normal 
response to fear conditioning test. ANGE in SVZ is 
inhibited in Naglu KO mouse brain at both young 
and adult ages, while ANGE in SGZ is decreased in 
6-month-old but not in 3-month-old Naglu KO mice 
(Li et al., 2002).

Cystatins constitute a superfamily of cysteine 
protease inhibitors (Barre� et al., 1986). Their altered 
activities have been implicated in human disorders 
such as cancer, rheumatoid arthritis, sepsis, and os-
teoporosis. Cystatin C (a major mammalian cysteine 
protease inhibitor) is a potent inhibitor of cathep-
sins. It is a secreted protein composed of 120aa (Ab-
rahamson et al., 1990; Huh et al., 1995). Cystatin C is 
present in virtually all mammalian tissues, although 
the inhibitor is found at particularly high concentra-
tions in the cerebrospinal fluid of CNS (Lo
erg & 
Grubb, 1979).

Cystatin C KO mice are fertile and show no 
gross pathological abnormality. They also show de-
creased metastatic spread (Huh et al., 1999). In cysta-
tin C KO mice the level of dividing cells in the SGZ 
was decreased as compared to wild-type li�ermates. 
Interestingly, the migration of newly born cells to 
the upper parts of the DG granule cell layer follow-
ing status epilepticus was decreased in cystatin C KO 
mice (Pir�ila et al., 2004).

Programmed cell death in the adult brain 
plays a significant role in the regulation of multiple 
aspects of ANGE. Bax (Oltvai et al., 1993), a proa-
poptotic member of the Bcl-2 family (reviewed in 
Heiser et al., 2004), is essential for programmed cell 
death (Lindsten et al., 2000), e.g., it mediates target-
dependent apoptosis of neurons during embryonic 
development (Deckwerth et al., 1996; White et al., 
1998; Sun et al., 2003; Sun & Oppenheim, 2003). Bax 
normally resides in the cytoplasm, but translocates 
to the outer mitochondrial membrane during apop-
tosis. Once associated with mitochondria, Bax causes 
a release of apoptogenic factors from the mitochon-
dria into the cytoplasm (Kirkland & Franklin, 2003). 

Bax KO mice do not exhibit developmental 
apoptosis of dorsal root ganglion sensory neurons, 
superior cervical ganglion sympathetic neurons, or 
motoneurons (Deckwerth et al., 1996; Lentz et al., 
1999; White et al., 1998; Sun et al., 2003). Apoptosis 
in the adult hippocampus is also virtually absent or 
greatly reduced in Bax KO mice since the number 
of marked (dividing) cells was virtually the same 
in their SGZ a�er one month, compared with 70% 
reduction of these cells in wild-type mice. The Bax-
dependent pathway appears essential for apoptosis 
of adult-generated hippocampal neurons (Sun et al., 
2004).

GENETIC DEFICITS AFFECTING ANGE ONLY IN 
SPECIFIC CONDITIONS

In several reports, genetic model organisms 
show alterations in ANGE only in specific experi-
mental situations, i.e., their constitutive ANGE is 
usually not changed whereas the inducible ANGE is 
altered. Some cases of altered inducible ANGE were 
already mentioned (iNOS, NK1R, and cystatin C KO 
mice). 

Presenilin-1 (PS1) is a polytopic membrane 
protein which plays a critical role in facilitating in-
tramembranous processing of Notch, a signaling re-
ceptor that is essential for neuronal fate specification 
and differentiation. Presenilins are expressed during 
neuronal development and are present in neuronal 
cells in the hippocampus and the cortex (Lee et al., 
1996). PS1 KO in mice is associated with severe de-
velopmental abnormalities and neonatal embryonic 
lethality (Shen et al., 1997; Wong et al., 1997; Han-
dler et al., 2000), suggesting an essential role of PS1 
in development. 

Conditional double knockout mice lacking 
both presenilins in the postnatal forebrain exhibit 
impairments in hippocampal memory and synaptic 
plasticity followed by neurodegeneration (Saura et 
al., 2004). Feng et al. (2004) showed that forebrain-
specific PS1 (PS1 FB-KO) deletion results in reduced 
enrichment-induced neurogenesis in DG. The PS1 
FB-KO mice show no anatomical differences in brain 
structure; they normally mate, grow, and exhibit 
normal open field behavior. The numbers of new-
born cells in DG show no differences between PS1 
FB-KO and control mice. However, a�er two weeks 
of exposition to enriched environment KO mice 
show a significantly lower level of dividing cells in 
DG (37% less) compared with control mice. It con-
firms that loss of PS1 leads to a significant deficien-
cy in enrichment-induced neurogenesis in FB-KO 
mice. This defect in neurogenesis is associated with 
enhanced fear memory of contextual cues when the 
animals are subjected to enrichment between train-
ing and testing. The authors suggest that neuro-
genesis in adult DG may serve to clear out outdat-
ed memory traces from the hippocampus a�er the 
memory is transferred and consolidated in the cor-
tex, thus leaving the hippocampus available for new 
memory processing. 

Exercise induces BDNF mRNA in the hip-
pocampus (Neeper et al., 1995), and BDNF pro-
motes ANGE (Benraiss et al., 2001; Pencea et al., 
2001). BDNF is an activity-induced gene regulated 
at the transcriptional level, and these transcriptional 
changes are initiated by calcium increases generated 
through the activation of NMDA receptors or volt-
age-sensitive calcium channels (Shieh et al., 1998; Tao 
et al., 1998). The NMDA receptor epsilon 1 subunit is 
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expressed both in the dentate granule cells and py-
ramidal neurons in the normal mouse hippocampus 
(Sakimura et al., 1995). 

NMDAR epsilon 1 KO does not cause any de-
tectable changes in the shape and volume in the hip-
pocampal granule cell layer (Kitamura et al., 2003). 
NMDAR epsilon 1 KO show significant reduction of 
the NMDA receptor channel current and LTP at the 
hippocampal CA1 synapses as well as an increase of 
locomotor activity in a novel environment and an 
impairment of spatial, contextual, and latent learn-
ing (Sakimura et al., 1995; Miyamoto & Nabeshima, 
2002). 

There is no difference in neurogenesis in 
SGZ between WT and NMDAR epsilon 1 KO con-
trol mice. The hippocampal neurogenesis as well 
as BDNF expression are enhanced when wild-type 
mice are raised in cages with running wheels for 3 
weeks. In NMDAR epsilon 1 KO mice, no difference 
in neurogenesis or BDNF levels was detected be-
tween the exercise and control groups. The exercise-
induced cellular proliferation in the hippocampus, 
but not basal proliferation, is dependent on NMDA 
receptors (Kitamura et al., 2003).

The cyclooxygenase (Cox) enzymes catalyze a 
key step in the conversion of arachidonate to pros-
taglandin H2, the immediate substrate for a series 
of cell-specific prostaglandin and thromboxane syn-
thases. Prostaglandins play critical roles in numer-
ous biologic processes, including the regulation of 
immune function, kidney development, reproduc-
tive biology, and gastrointestinal integrity. There are 
two isoforms: Cox-1 is constitutively expressed in 
most tissues and responsible for tissue homeostasis, 
whereas Cox-2 is usually absent, but is induced by 
numerous physiologic stimuli, e.g., plays an impor-
tant role in inflammation and tumorigenesis (Wil-
liams et al., 1999; Simmons et al., 2004).

Cox-2 KO mice show reproductive anomalies 
and defects in kidney development (Williams et al., 
1999). In the postischemic DG of heterozygous and 
homozygous Cox-2 KO mice, proliferating cells were 
significantly fewer than in wild-type li�ermates (Sa-
saki et al., 2003).

Among the 14 known serotonin (5-HT) re-
ceptor subtypes, the 5-HT1A receptor (5-HT1AR) 
has been implicated in the modulation of mood 
and anxiety-related behaviors (Buhot, 1997; Hoyer 
et al., 1994; Menard & Treit, 1999). Brain 5-HT1ARs 
are located pre- and postsynaptically. Presynaptic 
5-HT1ARs are found in the dorsal and median ra-
phe nuclei and serve to negatively regulate seroton-
ergic cell firing. Postsynaptic 5-HT1ARs are found 
on nonserotonergic neurons in limbic regions (e.g., 
hippocampus, septum, cerebral cortex and amy-
gdala). Activation of postsynaptic 5-HT1AR is be-
lieved to induce a decrease in the firing rate of the 

postsynaptic cell (Pazos & Palacios, 1985; Blier et al., 
1987; Sprouse & Aghajanian, 1988; Pompeiano et al., 
1992;). Agonists of 5-HT1AR have anxiolytic proper-
ties both in humans and in animal models (Feighner 
& Boyer, 1989; Barre� & Vanover, 1993; Lucki et al., 
1994; De Vry, 1995; Menard & Treit, 1999).

5-HT1AR KO mice have normal growth and 
viability and do not display any obvious morpholog-
ical or behavioral abnormalities as well as no abnor-
malities of serotonin system development. However, 
these mice show increased anxiety-like behavior in a 
variety of tests (Heisler et al., 1998; Parks et al., 1998; 
Ramboz et al., 1998; Gross et al., 2002; reviewed in: 
Zhuang et al., 1999; Gross et al., 2000; Groenink et al., 
2003a; 2003b; Overstreet et al., 2003). Additionally, in 
the hippocampal-dependent spatial reference memo-
ry version of the Morris water maze young-adult 5-
HT1A KO mice exhibit impairment in learning and 
retention of the spatial task. This genotype effect 
does not persist during aging. In fact, aged 5-HT1A 
KO mice seem to be slightly facilitated during the 
early stages of learning (Wolff et al., 2004). 

Administration of fluoxetine, an antidepres-
sant, causes a doubling of the number of dividing 
cells in wild-type mice but has no effect in 5-HT1AR 
KO mice, while chronic treatment with another anti-
depressant, imipramine, induces neurogenesis in 
both DG of the wild-type and 5-HT1AR KO mice. 
These results indicate that 5-HT 1A receptors are 
required for fluoxetine-induced but not imipramine-
induced neurogenesis (Santarelli et al., 2003).

CONCLUSION

Transgenic mice have become an increasing-
ly important tool used to investigate neurogenesis. 
Their application in research has already allowed re-
vealing a number of genes whose protein products 
play an important role in ANGE and more of those 
are expected to come. Furthermore, it is predictable 
that the field of identifying novel genes and proteins 
pivotal for ANGE will grow rapidly in the nearest 
future. Combination of genetic and other molecular 
and cell biology approaches is a prerequisite for this 
rapid development.

One of the most important recent discoveries 
in the field was to reveal genes and proteins that are 
indispensable for the neurogenesis in the adult brain 
but not during the brain development. Hence, these 
results open a new avenue of research on targeting 
these proteins in search of specific activators and 
inhibitors of ANGE to develop treatment of vari-
ous brain diseases. Possible involvement of ANGE 
has been proposed in neurodegenerative diseases, 
stroke, brain injury, gliomas, etc.
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