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Several different isolates of Tomato black ring virus (TBRV) have been collected in
Poland from cucumber, tomato, potato and black locust plants. Biological tests
showed some differences in the range of infected plants and the type of symptoms,
which was the basis for selection of seven the most biologically different TBRV iso-
lates. According to the sequence of TBRV-MJ, several primer pairs were designed
and almost the entire sequence of both genomic RNAs was amplified. The RT-PCR
products derived from all tested TBRV isolates were digested by restriction en-
zymes. On the basis of the restriction patterns, the variable and the conserved re-
gions of the TBRV genome were defined and the relationships between the Polish
TBRV isolates established.

Tomato black ring virus (TBRV) belongs to
the Nepovirus genus of positive, single
stranded RNA plant viruses. Its genome is di-
vided into two RNAs: RNA1 containing the
genes important for virus replication and
polyprotein processing and RNA2 containing
genes responsible for the synthesis of viral
capsid protein and the movement of the virus
in plants (Demangeat et al., 1990; 1991; Grief

et al., 1988; Mayer et al., 1986; Le Gall et al.,
1995a). Earlier, some Polish TBRV isolates
were found in potato (Chrzanowska &
Śniegowski, 1965), tomato (Twardowicz-
Jakusz, 1969), celery (Twardowicz-Jakusz,
1976), carrot (Twardowicz-Jakusz et al.,
1977a), horseradish (Twardowicz-Jakusz et
al., 1977b), privet (Błaszczak & Pospieszny
1987), forsythia (Kamińska & Sobiło, 1983),
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gladiolus and flox (Kamińska & Woś, 1978).
Those isolates, except the one from potato,
are no longer available. Recently, we have col-
lected some new TBRV isolates in Poland.
Most of them were isolated from old black lo-
cust plants (Pospieszny & Borodynko, 1999;
Borodynko et al., 2001), one isolate from to-
mato (Pospieszny & Borodynko, 1999) and
one from cucumber (Pospieszny et al., 2003).
In contrast to their biological variability, all
the Polish TBRV isolates tested appeared se-
rologically similar to each other (Borodynko
et al., 2001).
RNA viruses have a high capability of rapid

genetic changes due to the frequent point mu-
tations and genome rearrangement that are
held to be the main mechanism in the evolu-
tion of RNA viruses (Drake 1993; Dolja & Car-
rington, 1992; Domingo & Holland, 1997,
Roossinck, 1997). The majority of the point
mutations in the viral genomes are neutral
for the encoded amino-acid sequence but
probably they might influence the RNA struc-
ture and adaptation to the host translation
machinery (Huynen et al., 1996; Leisner &
Neher, 2002; Roossinck, 2002). RNA recombi-
nation might be responsible for the viral se-
quence variability, repair of some defective
RNA molecules as well as production of short-
ened form of viral RNA, called defective inter-
fering RNAs (Bruyere et al., 2000; Kim & Kao
2001; Nagy & Bujarski, 1998). These trun-
cated RNA molecules might interfere with vi-
rus replication and change the symptoms se-
verity in infected plants (Graves et al., 1996;
Hernandez et al., 1996; Cheng et al., 2002;
Szittya et al., 2002).
The variability of RNA viruses is also con-

nected with specified parts of their genomes.
Generally, the most conservative is the region
encoding polymerase (Dolja & Carrington,
1992; Zaccomer et al., 1995; Koonin 1991).
The coat protein gene is usually variable and
virus species specific, and due to its responsi-
bility for the specification of the viral
serotype and species it is frequently used in
phylogenic analyses (Dolja & Carrington,

1992; Zaccomer et al., 1995; Petrzik & Lenz,
2002; Canizares et al., 2001). Many other vi-
ral proteins, especially those of unknown
function, are only rarely used in viral phylog-
eny due to their often one-species-specific na-
ture and a lack of counterparts in other viral
species (Zaccomer et al., 1995).
The knowledge of virus population diversity

and the distribution of the variable and con-
served regions within the viral genomes may
be useful in sequence-specific detection of vi-
ruses, the prediction of occurrence of resis-
tance-breaking viral phenotypes as well as in
developing new methods of plant protection.
In this paper we report the genetic variabil-

ity of Polish TBRV isolates on the basis of re-
striction analysis of almost full-length cDNA
derived from both viral RNAs.

MATERIALS AND METHODS

TBRV isolates. The TBRV isolates studied
originated from the following plant species:
cucumber (TBRV-Cuc), tomato (TBRV-Tom),
black locust (TBRV-L10, TBRV-MJ, TBRV-N1,
TBRV-Pn) and potato (TBRV-Pot). TBRV-Pot
was kindly supplied by Prof. M. Chrzanowska
(IHAR, Radzików, Poland), the other isolates
were from our collection. The biological prop-
erties of the TBRV isolates were studied by
mechanical inoculation of various plant spe-
cies. The host range and symptoms allowed
selection of the isolates displaying the most
distinct properties. All the isolates were main-
tained and propagated in Chenopodium
quinoa in the greenhouse.
Purification of viral RNA. The TBRV iso-

lates were propagated in C. quinoa and puri-
fied as described before (Pospieszny &
Borodynko, 1999). The purified viral particles
were digested with proteinase K and RNA
was isolated according to the phenol/chloro-
form protocol (Sambrook et al., 1989), precip-
itated with 96% ethanol and pellet was dis-
solved in RNase-free water, then 2 �l of RNA
solution were mixed with 10 �l of Formazol
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(MRC) and separated on 1% agarose non-de-
naturing gel.
RT-PCR amplification of RNA1 and

RNA2. The purified viral RNA was reverse
transcribed using SuperScript II reverse tran-
scriptase (Invitrogen) according to manufac-
turer’s instructions. The primer used for the
first strand synthesis was oligo d(T)22 and the
full-length cDNAs obtained were amplified us-
ing four pairs of primers designed according
to the TBRV-MJ sequence (Accession num-
ber: NC 004439 and NC 004440 for RNA1 and
RNA2, respectively). The first primer pair
(P-128 and 1MP2) amplified the 5� part of
RNA1 about 2900 nt in length, the second one
(1MP3 and 3ter) about 3600 nt from the 3�

part of RNA1, the third (P-128 and 2MP2) the
5� part of RNA2 of about 3200 nt and the last
pair (2MP5 and 3ter) amplified the 3� part of
RNA2 about 2300 nt in length (Table 1). The
obtained PCR products covered the entire
coding sequence of RNA2 and almost entire
sequence of RNA1, excluding about 800 nt
from the region coding for NTP-binding pro-
tein. The amplification of cDNA obtained
from seven Polish TBRV isolates was per-
formed using ExpandLong PCR System
(Roche) according to the manufacturer’s in-
struction.
Restriction digestion of PCR derived

products. The restriction enzymes were cho-
sen on the basis of TBRV-MJ sequence using
the MapDraw program from the DNA Star
package (kindly made available by Institute of
Biochemistry and Biophysics, Polish Acad-

emy of Sciences, Warszawa, Poland). Each
RT-PCR product was digested by two differ-
ent enzymes in two distinct restriction experi-
ments and the digestion products were re-
solved on 2.5% NuSieve 3:1 agarose gel
(BMA). The patterns obtained were analyzed
in two aspects: firstly, a comparative analysis
of conserved and variable regions was per-
formed according to the bands of known size
derived from TBRV-MJ and secondly, on the
basis of the restriction fragments, 124 charac-
ters for phylogenetic analysis of the Polish
TBRV isolates were obtained. The clustering
and genetic distances assessment was per-
formed using the program FreeTree (Pavlicek
et al., 1999). The phylogeny tree was boot-
straped 1000 times and constructed using the
TreeView program (Page, 1996). The genomic
mapping of the restriction bands obtained
was established by comparison with
TBRV-MJ patterns.

RESULTS

Analysis of viral RNA

Analysis of purified viral RNA showed two
RNA bands of a size typical for TBRV. For the
majority of the isolates some additional bands
of small non-genomic RNA appeared (Fig. 1).
The origin of these small RNAs is unclear.
The RNAs expected for TBRV satellite are
about 1350 nucleotides in length (Hemmer et
al., 1993; Fritsch et al., 1984; 1993) and the
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Primer Sequence

P128 (+) caa atc ctg taa cca act ag

3ter (–) (t)18 ttg ctt ttt gca gaa aac att tta tca
tat aca aa

1MP2 (–) tgg att ttc cgg gtc ata ga

1MP3 (+) ttc tgg atg ggg att ctg g

2MP2 (–) tgg gat atg tca atg ggt tc

2MP5 (+) act tca ggg ctt tcc gct

Table 1. The sequences of used primers



observed bands are mostly smaller. We also
observed that those small, non-genomic
RNAs could emerge during prolonged propa-
gation of the isolates originally devoid of
them (not shown).

RT-PCR amplification of RNA1 and RNA2

In RT-PCR amplification four products were
obtained for each tested TBRV isolate. Two of
them correspond to the RNA1 sequence and
two others to RNA2. All the products ob-
tained were of comparable size. The putative
organization of the RT-PCR products is
shown in Fig. 2. The displayed numbers of nu-
cleotides corresponding to the cleavage sites
for both TBRV-MJ polyproteins have been dis-
cussed elsewhere (Jończyk et al., 2004).

Restriction digestion of PCR derived prod-
ucts

Restriction analyses of the RT-PCR prod-
ucts showed differences among the TBRV iso-
lates. A higher diversity in the restriction pat-
terns was observed for RNA1 and the restric-
tion patterns were more diverse for the
RT-PCR products corresponding to the genes
in the 5' end proximity of both genomic
RNAs. Figures 3a and 3b show examples of
the restriction patterns of the isolates in com-
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Figure 1. Electrophoretic patterns of RNAs of
Polish TBRV isolates.

Lane 1, RNA ladder (6000, 4000, 3000, 2000, 1500,
1000, 500, 200 nt); lane 2, TBRV-L10; lane 3,
TBRV-MJ; lane 4, TBRV-N1; lane 5, TBRV-Cuc; lane 6;
TBRV-Tom; lane 7, TBRV-Pn; lane 8, TBRV-Pot.

Figure 2. TBRV genome organization and location of primers and RT-PCR products.

RdRp, RNA-dependent RNA polymerase; Cof.Prot, protease cofactor; NTB, NTP-binding protein; Prot,
protease; 2a, 2a protein; MP, movement protein; CP, coat protein. The numbers presented in regular nu-
merals indicated the nucleotides corresponding to putative cleavage sites for TBRV polyproteins and the
numbers in italics and underlined correspond to the sites of primer annealing.



parison with those of TBRV-MJ for which the
full-length sequence of both RNAs was al-
ready known.

The obtained restriction patterns allowed
creation of a dendrogram of the relationship
for the Polish TBRV isolates (Fig. 4). The re-
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Figure 3a. RT-PCR products of the 3' part of RNA1 digested by Hinf.

Lane 1 and 9, 1 Kb DNA ladder (GibcoBRL); lane 2, TBRV-L10; lane 3, TBRV-MJ; lane 4, TBRV-N1; lane 5,
TBRV-Cuc; lane 6, TBRV-Tom; lane 7, TBRV-Pn; lane 8, TBRV-Pot.

Figure 3b. RT-PCR products of the 5' part of RNA2 digested by Hinf.

For details see legends to Fig. 3a.



sulting tree was not supported by high boot-
strap values for the isolates from crops. Four
TBRV isolates from black locust were clus-
tered into two pairs: TBRV-Pn with TBRV-MJ
and TBRV-N1 with TBRV-L10. The genetic
distance (Nei and Li) within a pair was much
lower (e.g. 0.20879 between TBRV-MJ and
TBRV-Pn) than between the pairs (e.g. 0.5713
between TBRV-N1 and TBRV-MJ). The iso-

lates from crop plants were more similar to
each other than to the isolates from black lo-
cust. The most different among the isolates
originating from crops was TBRV-Pot.

DISCUSSION

The Polish TBRV population is an interest-
ing example of RNA virus diversity in a few
plant species. The presented restriction anal-
ysis gave an overall view into the genetic vari-
ability of the isolates and allowed prediction
of distribution of mutations within the TBRV
genome. The restriction tests performed cre-
ate a basis for phylogenic analyses of the Pol-
ish TBRV isolates as well as permit a predic-
tion of their likely evolution in Poland.

Contrary to our expectation, the restriction
analyses showed diverse patterns for RNA1
and quite homogenous ones for RNA2. RNA1
encodes all the proteins thought to be highly
conserved (e.g., RNA-dependent RNA poly-
merase or protease) and RNA2 encodes a
capsid and a movement protein. While the
movement protein is often considered con-
served (Mushegian 1994; Melcher 2000), the
coat protein usually varies within species
(Steinkellner et al., 1992; Petrzik & Lenz
2002; Canizares et al., 2001). In fact, all Pol-
ish TBRV isolates were serologically similar,
if not identical, in the tests performed such as
ELISA or double-diffusion test (Borodynko et
al., 2001).
The sequences in the 5' end proximity of

both RNAs, coding for a putative protease co-
factor and 2a protein on RNA1 and RNA2, re-
spectively, appeared to have more variable re-
striction patterns in comparison with the se-
quences in the 3' end proximity of the RNAs.
The role of the former proteins in the TBRV
life cycle is not clear. Protein 2a, similarly to
2a protein of Grapevine fanleaf virus (GFLV),
might participate in replication of RNA2
(Gaire et al., 1999) and the putative protease
cofactor might modulate the activity of viral
protease especially for polyprotein 2 matura-
tion (Hemmer et al., 1995). Unfortunately,
the mechanisms of RNA2 replication and
polyprotein 2 maturation are not completely
understood for TBRV and it cannot be ex-
cluded that 2a protein and the putative prote-
ase cofactor have quite different functions in
the TBRV life cycle.
Restriction analysis cannot provide infor-

mation concerning amino-acid variability or
their influence on the viral proteins’ proper-
ties. However, it should be considered that
even the silent mutations that do not influ-
ence the amino-acid sequence, can modulate
RNA structure. Single nucleotide substitu-
tions might also facilitate virus adaptation to
the host translation machinery due to the cor-
relation of the viral amino-acid codons with
the ones used by the host plant (Roossinck
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Figure 4. Dendrogram of the relationships be-
tween Polish TBRV isolates.



2002; Leisner & Neher, 2002). The tests per-
formed allowed establishing the existence of a
genetic diversity of the Polish TBRV isolates
and indicated which part of their genomes
probably gathered or/and maintained the di-
versity.
The phylogenic relationships between the

Polish TBRV isolates were established on the
basis of restriction fragment length polymor-
phism analysis. The resulting dendrogram
clustered the isolates from black locust into
two groups and such clustering was sup-
ported by high bootstrap values (Fig. 4). The
situation was different for the isolates from
crops because the very low bootstrap values
prevented us from identification of the most
likely relationships.
Most of the Polish TBRV isolates have some

additional RNA particles associated and
encapsidated with the viral RNAs. Their atyp-
ical size and also abundant amount suggested
their defective rather than satellite nature.
This suggestion was supported by the obser-
vation that the small RNAs originated during
serial passages of a non-genomic-RNA-free
isolate in C. quinoa (not shown). The isolates
after passages usually displayed decreased se-
verity.
The best method for estimation of real varia-

tion among viral genomes is sequencing.
However, this is usually done for a short part
of the coding sequence and is typically limited
to one or sometimes two most typical viral
proteins. The restriction tests performed en-
abled a preliminary characterization of the
Polish TBRV population according to almost
entire genomic sequence and indicated in
which part of the genome the variability was
localized.

The authors are grateful to Dr Andrzej
Pałucha (Institute of Biochemistry and Bio-
physics, Polish Academy of Sciences,
Warszawa, Poland) for his kind help in se-
quence analysis and for helpful discussion.
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