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We present here a simple method for fast and accurate comparison of proteins us-
ing their structures. The algorithm is based on structural alignment of segments of
Ca chains (with size of 99 or 199 residues). The method is optimized in terms of
speed and accuracy. We test it on 97 representative proteins with the similarity mea-
sure based on the SCOP classification. We compare our algorithm with the LGscore2
automatic method. Our method has the same accuracy as the LGscore2 algorithm
with much faster processing of the whole test set, which is promising. A second test
is done using the ToolShop structure prediction evaluation program and shows that
our tool is on average slightly less sensitive than the DALI server. Both algorithms
give a similar number of correct models, however, the final alignment quality is
better in the case of DALI. Our method was implemented under the name 3D-Hit as a
web server at http://3dhit.bioinfo.pl/ free for academic use, with a weekly updated
database containing a set of 5000 structures from the Protein Data Bank with

non-homologous sequences.

The three dimensional structure of proteins & Lesk 1986). Comparison of 3D structures
is highly conserved during evolution (Chothia makes it possible to establish distant relation-
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ships, even between protein families distinct
in terms of sequence comparison alone. This
is why structural alignment of proteins in-
creases our understanding of more distant
evolutionary relationships (Bujnicki, 2000;
Johnson et al., 1990). The link between struc-
tural classification and sequence families en-
ables us to study functions of various folds, or
whole proteins. It is a very promising part of
bioinformatics, so the interest in the struc-
tural information of proteins is justified.
The main problem in the area is to distin-
guish between the similarities of 3D struc-
tures of proteins that come from evolutionary
relationships and those that arise from com-
mon properties, or chemical constraints on
protein folding. Not only in the case of se-
quence similarity but also for structural simi-
larity, there is a twilight zone, where one can-
not determine whether the similarity arises
from biological relationship or from physical
constraints. A structural motif may happen to
be more similar to another one, and it is very
difficult to compute the relative probability of
such a situation. Genetic mechanisms rarely
produce changes in the topological connectiv-
ity between secondary structure elements
(Pointing & Russel, 1995). Sometimes (as in
the case of formation of B sheets and their
packing into three dimensional layers) chemi-
cal forces may drive the formation of large
structural motifs which gives false (non-evolu-
tionary) similarities of structures (Murzin,
1994). In such a case there may be no similar-
ity in the chain ordering of secondary struc-
ture elements. In order to avoid this problem
and properly recognize the fold classification
it is crucial to analyze longer parts, or whole
Ca chain of a protein. On the other hand, lon-
ger parts of a main chain give the larger struc-
tural differences between members of protein
families which can change relative similarity
probabilities within a group. This obstacle
makes it difficult to establish a general simi-
larity measure for all known protein families.
Nevertheless, it is important to somehow
solve the problem of protein structure simi-

larity using available databases. A detailed
description of a protein provides information
about positions of all atoms, the main chain
and side chains. From this variety of data we
take only the coordinates of Ca atoms. We be-
lieve that the most important information is
contained in the backbone of a protein. The
remaining atoms give additional information,
but it is not crucial for determining the gen-
eral structural similarity within a pair of pro-
teins.

The size of the Protein Data Bank (Berman
et al., 2000) is growing rapidly (doubling ev-
ery 18 months). This amount of data needs
fast yet accurate automatic algorithms to deal
with the structural information. Algorithms
should be fast enough to enable a
structure-structure search and alignment
over all proteins in the databases in real time.
We provide here such a tool, which is fully au-
tomated, and can be used for fast pre-filtering
of large structural databases of proteins. Af-
ter such pre-processing a more detailed analy-
sis of structures (including side chain infor-
mation) and sequences of studied proteins
can be performed.

Our algorithm assigns a score to a pair of pro-
teins based on their structural similarity. This
score is computed using a structural alignment
of fragments of these proteins chosen as the
most similar. The segments have a specified
length (equal for all the proteins) to ensure the
same scale of scores for various proteins. The
similarity matrix used in the alignment is bi-
nary and is built by assigning 1 to those pairs of
Ca atoms from the two proteins chains that are
closer than a given cut-off, and zero otherwise.
The distances are measured after three dimen-
sional superimposition of the segments. The
gap penalties for the Smith-Watermann align-
ment are optimized using a specially prepared
set of proteins (87 proteins). Information about
the sequences of the query proteins is also im-
portant to speed up the process of computing
the score (almost 20 fold). An added value in
the method is its speed and accuracy (in com-
parison with existing algorithms).
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The layout of the paper is as follows. First
we describe the available servers which calcu-
late structural similarity of proteins. In the
next section we describe our method for fast
and accurate structural alignment of pro-
teins. Then we present a detailed description
of our results on a test dataset (97 proteins
from the SCOP database with various levels
of similarity) in comparison with the
LGscore2 method. In the next section we de-
scribe our Web server, which can be used for
querying proteins in terms of structural simi-
larity and a database of representative pro-
teins. In the summary we sketch the
perspectives for further development of the
method.

STRUCTURAL COMPARISON OF
PROTEINS

We would like to start by describing shortly
the existing internet servers which can be
used in comparing structures of proteins.
These methods provide search over protein
databases (like PDB) and enable identifica-
tion of statistically significant structural simi-
larities. There are a number of classification
schemes for protein structures available via
the Internet. All of them use the same source
of data (the Protein Data Bank; Berman et al.,
2000), but they differ in their basic proce-
dures. This is because the methods are based
on different assumptions about what consti-
tutes significant similarities between pro-
teins. The authors managed to establish hu-
man-based, semiautomatic or fully algorith-
mic methods with well-tuned statistical signif-
icance thresholds. The basic idea is, first,
rapid identification of pair alignments of sec-
ondary structure elements, clustering them
into groups, and scoring the best substruc-
ture alignment. The first two methods (SCOP
and CATH) provide discrete, hierarchical
classifications based on structural classes.
The next method (VAST) is based on continu-
ous distribution of domains in the fold space.

FSSP/DALI provides two levels of descrip-
tion — a coarse-grained one and one with a
fine-grained resolution. The last two methods
(CE and LGscore2) are based on a different
idea. They focus on the local geometry rather
than global features such as orientation of
secondary structures and overall topology (as
in the case of VAST or DALI). The former al-
gorithms mostly attempt to make a global op-
timization of the alignment path for some
similarity measure. They use dynamic pro-
gramming (CATH) Monte Carlo (FSSP/
DALI) graph theory (Alexandrov & Fischer,
1996) three dimensional scanning of struc-
tures like in the package “3D-SCAN” of the
WHAT-IF program (de Filippis et al., 1994) or
3D clustering (Fischer et al.,, 1992). Dynamic
programming approaches solve the optimiza-
tion task exactly, but are dependent on a tar-
get function, which focuses on specific parts
of the protein molecule. The Monte Carlo and
3D clustering algorithms allow a better choice
of target function, but they are very sensitive
to the technical details of the numeric imple-
mentation. The search space for these algo-
rithms may be extremely large and difficult to
handle. In contrast the CE and LGscore2 al-
gorithms are faster and more robust in find-
ing an accurate 3-D structure alignment. Now
we describe shortly the existing classical
methods of structural comparison of pro-
teins.

SCOP — structural classification of pro-
teins (Murzin et al.,, 1995) provided by the
MRC Laboratory of Molecular Biology and
Centre for Protein Engineering on the
internet site http://scop.berkeley.edu.

It covers augmented manual classification
in four similarity categories: class, fold,
superfamily and family. The emphasis is on
defining functionally related superfamilies. It
provides a detailed and comprehensive de-
scription of the structural and evolutionary
relationships between protein structures. The
database is constructed manually by visual in-
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spection by a protein expert (A. Murzin). The
comparison of structures is done with some
automation and considers the evolutionary
evidence provided by sequences structures
and functions of the proteins. This database
is frequently used as a valuable resource for
comparative benchmarking.

CATH - class, architecture, topology and
homologous superfamily (Orengo et al.,
1994; 1997) is a hierarchical classification
of protein domain structures provided by
the University College London
(http://www.biochem.ucl.ac.uk/bsm/cath/).

It provides the complete PDB fold classifica-
tion by domains and links to other sources of
information. This hierarchical database of
protein domain structures focuses on the defi-
nition of four architectural types. It includes
class (C) — derived from secondary structure
content; architecture (A) — which describes
the gross orientation of the secondary struc-
tures; topology (T) — according to their topo-
logical connections and numbers of second-
ary structures; and homologous superfamily
(H) — highly similar in terms of structure and
function.

VAST — vector alignment search tool (Gibrat
et al., 1996) is maintained by the National
Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov/Structure/VA
ST/vast.shtml).

It performs all-on-all structure comparisons
using the VAST algorithm. The output is a
neighbors’ list. It also contains the complete
PDB representative structure comparison
structure alignments and a structure super-
position tool. The search space for alternative
secondary structure elements depends on the
length of proteins. The basic idea is to take
into account the size of this search space.
Then it calculates statistical p-value for the
best substructure superposition in the same
way as in the case of BLAST for sequence

analysis. The VAST algorithm can be used in
threading experiments because of its smaller
RMSD differences between the query and the
template (in spite of a shorter length of the
alignments).

FSSP — fold classification based on struc-
ture — structure alignment of proteins (Cre-
ated by Liisa Holm and Chris Sander (Holm
& Sander, 1994; 1998)) and maintained by
the European Bioinformatics Institute
(http://www.ebi.ac.uk/dali/fssp/).

This classification is also based on an
all-against-all automatically maintained and
continuously updated comparison of struc-
tures in the Protein Data Bank using an auto-
matic structure alignment program (called
DALI). It continuously processes all new
structures released by the PDB. The basic
concept for this algorithm is a neighborhood
in a fold space. The exhaustive all-against-all
3D-structure comparison of protein struc-
tures uses the DALI search engine. All chains
and sequence homologs are divided into rep-
resentative sets. Than an all-against-all struc-
ture comparison is performed on representa-
tives of these subsets. This method contains
the complete PDB database a fold tree defini-
tions of domains lists of sequence neighbors
and structure superposition. The output in-
formation provides also insight into the defi-
nition of structurally conserved cores and
multiple alignments of distantly related pro-
tein families. The DALI alignment because of
its longer extension at higher RMSD can be
used in efficient homology modeling.

CE — combinatorial extension of the opti-
mal path (Shindyalov & Bourne, 1998) is
maintained by the Research Collaboratory
for Structural Bioinformatics
(http://cl.sdsc.edu/ce.html).

It is also based on the complete PDB and
provides representative structure compari-
son, structure alignments, and a structure su-
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perposition tool. Combinatorial Extension
(CE) determines an optimal alignment be-
tween aligned fragment pairs (AFPs — pairs
of segments from the proteins being com-
pared with high structural similarity). AFPs
are determined from the local geometry aver-
aged over eight Ca positions. To prevent a
combinatorial explosion the authors use some
heuristics. Final alignhments are done by dy-
namic programming. Combinations of AFPs
that represent possible continuous alignment
paths are selectively extended or discarded
leading to a single optimal alignment. The al-
gorithm is accurate in finding the optimal
structure alignment and hence suitable for
database scanning. CE provides a significant
reduction of the search space and empirically
establishes a reasonable target function. This
function assumes that the alignment path is
continuous when including gaps and that
there is only one such optimal match.

LGscore2 is a single program (Cristobal et
al., 2001) maintained now by Arne Elofsson
(http://www.sbc.su.se/” arne/lgscore/).

LGscore2 is used to calculate the signifi-
cance of the similarity between two struc-
tures after structural superposition. It detects
the most “significant” non-continuous seg-
ments of a model. The similarity between two
proteins is measured using the algorithm by
Levitt and Gerstein with structural p-values
as defined in (Levitt & Gerstein, 1998). After
such a structural superposition the most sig-
nificant subset is found giving the structural
similarity score for a pair of proteins.

Our method presented here provides an in-
teresting complement to the current struc-
ture comparison programs. Nevertheless, in-
ferring from the structure prediction field, a
consensus approach based on a combination
of various structure similarity search proce-
dures, would probably be more robust and
sensitive. Our algorithm provides fast and
continuous description of structural similar-
ity between proteins. It can be further used

for clustering of large protein databases us-
ing structure information, thereby giving op-
portunity to search for new structural do-
mains and motifs. One can also impose on
this pure- structural method some sequential
information, gaining better benchmark re-
sults together with new insights in analyzing
proteins from the twilight-zone of low se-
quence similarity.

SEGMENT STRUCTURAL
SUPERIMPOSITION

Our method is based on structural align-
ment of two proteins. We use the standard
Smith-Watermann dynamic programming al-
gorithm with a gap penalty. To describe the
structural similarity of two proteins it is
enough to compare only parts of their chains,
which are called segments. They are chosen
as the most similar substructures of Ca
chains with a fixed size (sequential 99 amino
acids in the first iteration of our algorithm, or
199 residues in the second iteration).

The procedure of choosing the right pair of
segments from two proteins chains is not
straightforward, because of time constraints.
First of all we must choose the central parts
of the segments — “seeds”, and then decide if
these seeds are similar enough to proceed
with further analysis of whole segments. By
seeds we understand very short parts of the
Ca chains with the length of 13 amino acids.
If the structural similarity of the two seeds
from the pair of being compared proteins is
high enough we start to analyze two longer
continuous parts of the main chains centered
on the seeds. The overall score for the com-
parison of a pair of structures is equal to the
best score for the whole set of pairs of seg-
ments. In order to speed up our algorithm we
make several preprocessing steps:
® The first reduction of the computing time

of our algorithm is reached by requesting

identity of the amino acids in the centers
of the two seeds. We discard those seeds
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which have different amino acids in
their centers. This condition speeds up
the program about 20 times without
loosing the accuracy.

® The second step is a comparison of the
distance measured between the ends of
one seed with the distance between the
ends of the seed from the second protein.
If the difference is larger than ENDS =
3.0 A we stop analyzing the pair of seg-
ments centered on this pair of seeds. This
speeds up our algorithm next few times.

@ In the third step we compare the whole
three dimensional structures of the seeds
that have the same amino acids in the cen-
ter and similar ends-distance. Here we
make rotation and translations of both
13 aa chains in order to minimize the
RMSD between them. If the resulting
RMSD is small enough we carry on the
analysis of large segments centered on
this pair of seeds. We take RMSD =
3.0 A as the cut-off value for this filter.
This condition removes up to 25% of input
cases.

® After analyzing seeds we end up with a ro-
tation matrix and a translation vector for
a Cartesian-space superimposition of the
two seeds. In the following step we pro-
ceed with the structural analysis of the
whole segments of 99 amino acids cen-
tered on the chosen pair of seeds. We ro-
tate and translate these large segments
based on the rotation matrix and transla-
tion vector from the minimization proce-
dure of the RMSD between the two seeds.
Then we define the similarity matrix
matrixl for the dynamic programming
algorithm in the following way. If two Ca
atoms taken from the superimposed seg-
ments are closer in space than SEGRMSD1
= 5.0 A we assign 1 as their “structural
distance”, 0 is taken otherwise. We com-
pute for the similarity matrix the number
of non-zero values. If it is less than
SEGHITS = 35 we discard this case.

This removes about 30% of incoming
cases.

® Based on the similarity matrix matrix1

we make global structural alignment
alignl between our pair of segments. If
the score of the alignment is greater than
SEGHITS = 35 we pass this pair of seg-
ments on to the next filter. This removes
most of the incoming cases (about 99%).
® In the end of this procedure we have a
pair of promising segments. Now using a
finer distance cut-off we compare the
structures of these segments. Again we ro-
tate and translate whole segments with a
new more accurate rotation matrix and
translation vector constructed using all
previously aligned pairs of residues from
the two protein segments. If the distance
between two Ca atoms from the two seg-
ments is smaller than SEGRMSD2 =
3.0 A we assign 1 in the structural simi-
larity matrix matrix2, and O otherwise.
Using this similarity matrix we make a
structural alignment with gaps align2
between two 99 aa segments and store its
score. The gap penalty for opening is equal
to paraGap = 1.0, and the gap exten-
sion cost parakExt = 0.1. These values
are computed during the optimization pro-
cedure on a representative set of proteins.

If one iteration of this procedure is per-
formed with segments of 99 residues the re-
sulting score for the pair of proteins is equal
to the best structural score of al1ign2 for all
possible pairs of similar segments which
passed all previous filters. If any pair of seg-
ments has not passed all the filters, we assign
0 as the overall score. The overall score (best
score of alignment of two segments) is always
less than 99 (because of the maximal length of
the segment), and larger or equal to 0.

In the case of the 3D-Hit internet server (see
also short description in Plewczynski et al,
2002) we perform also a second iteration of
our procedure. We align longer parts of pro-
tein chains (199 residues) based on the rota-
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tion matrix and translation vector of superim-
position of the shorter segments (99 resi-
dues). Then we calculate how many pairs of
Ca atoms are closer in space than SEGRMSD1
= 5.0 A. If this number is larger then
SEGHITS2 = 70 we carry on with the proce-
dure. In the same way as in the first iteration
we make structural alignments alignl
(with SEGHITS2 = 70 as the score cut-off)
and align2. The best resulting score (for
convenience divided by 2) for all compared
pairs of longer segments is the overall score
of comparison of the two protein structures.

3D-HIT SERVER
The Web server based on two iterations of
our algorithm is available free for academic
use on the Internet at http://3dhit.bioinfo.pl/.
Now we describe the server’s structure for a
sample query. We start the search for a query
protein given by the PDB file containing at
least the Ca atom coordinates. To improve
the speed of the algorithm we make the initial
clustering and hashing procedures. We use
two databases of proteins structures —
smaller for initial clustering of short frag-
ments one can meet in proteins, and larger as
the core structural database for searching.
The clustering procedure is used to establish
structural similarity classes of small protein
fragments (seeds), and can be performed on
the smaller representative database of pro-
tein structures. Then using those structural
clusters we simplify the search for structural
homologs of the query protein by the hashing
procedure of the larger non-redundant subset
of PDB database of template proteins.
® First of all we prepare structural clusters of
short protein fragments (seeds of 13 amino
acids). This clusterization procedure is
based on a representative set of 1507 pro-
teins taken from the PDB database. Each
cluster represents a group of possible short
seeds of Ca protein chains, with the RMSD
value for each pair of seeds in the cluster

smaller than RMSD = 3.0 A. This cluster-
ing procedure is made only once and stored
for future use during each search over the
whole large non-redundant subset of PDB
database for the query protein. The smaller
database, of proteins used in the clustering
is different from server’s main database.
This procedure only finds possible struc-
tural architectures of short fragments in
proteins. It is independent of the chosen
small database, providing it is large enough
to ensure proper general statistic. For test
purposes we make two cluster databases:
one for 1024 proteins, and other for 1507
proteins. The resulting clusters are basi-
cally the same for both sets but differently
populated.

® In the hashing procedure we connect each
cluster with a subset of seeds from all pro-
teins taken form the large database of about
5000 proteins. The hashing procedure is
made only once after each update of the
main server’s database, and stored for use
in each similarity search. Each short seed
from a protein connected to a given cluster
has the RMSD smaller than RMSD =
3.0 A with the mean cluster representa-
tive.

® The query protein itself is divided into
short seeds, and each seed is compared
with the cluster database. For each cluster
with RMSD distance between the seed and
mean cluster representative less than RMSD
= 3.0 A we make a search over all hashes
of this cluster in the large database.

® For each pair of seeds (from the query pro-
tein and hash seed from the large database)
we compute the RMSD. If it is less than
RMSD = 3.0 A and the amino acids in the
center of both seeds are the same, we pro-
ceed with two iterations of the structural
comparison algorithm. We take the pair of
longer segments of 99 amino acids (or 199
in the second iteration) centered on these
two seeds. One seed is taken from the query
protein, the other from the template pro-
tein via the hash database. The method
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used in assigning a score for these two
segments is explained in the previous sec-
tion. The result of the structural compari-
son of these two segments is then stored
in a table.

¢ After searching over all hashes from the

large protein database, all clusters from
the smaller database of clusters, and all
seeds from the query protein, we assign a
score to each pair (template and query) of
proteins. The overall score for the struc-
tural comparison of each template protein
from the large database and the query pro-
tein is equal to the largest score of com-
parison of all pairs of segments (from the
template and the query protein). The
global alignment between these two pro-
teins is also computed and stored in a ta-
ble. It is built straightforward by concate-
nating fragmentary structural alignments
of all segments from this template protein
and the query protein.

® The overall result of the search over the

whole database for the query protein is the
list of proteins taken from the large data-
base, with the total score of comparison
larger than DBCUT = 40 for one iteration
of our method. This list is then sent by
e-mail to the user of the server.

The clustering procedure gives additional
speed-up of processing of the whole database
of 5000 protein chains. It takes only up to 1
minute to search over all template proteins
for one query protein. This allows us to pro-
pose on-line service available on the Web
(Plewczynski et al., 2002). As the result of
searching the whole database of known pro-
teins we print a list of template proteins with
the structural similarity to the query protein
above a given cut-off (DBCUT = 40 for the
main score). The purpose of the similarity
threshold is to distinguish between the simi-
larity based on the evolutionary relationship,
similarity by chance, or pure chemical simi-
larity of some parts of protein chains. The re-
sult for each template and query protein pair

is presented as a text field containing the fol-
lowing information:

® template protein name;

® the internal number of a hit with SCOP

classification of the template protein;

® template protein length;

® main score for the comparison between

the query and the template protein;

® amino acid identity between the two pro-

teins (in %);

® global structural alignment for the query

and template, with the start and end of the
aligned parts of these proteins. Sign ‘- in-
dicate deletion, lowercase stands for in-
sertion;

® some additional data like the number of

Ca atoms from the query protein close in
space to the corresponding ones from the
template protein within cut-off SEG-
RMSD1 = 5.0 A score of first alignment
alignl the same numbers for cut-off
SEGRMSD2 = 3.0 A and second align-
ment align2.

It should be stressed that best results are ob-
tained for proteins longer than the chosen
segment size (99/199 amino acids). Smaller
proteins have ill-defined score for segment
comparison because of the shorter length of
possible alignment. We have not addressed
this problem by, e.g. rescaling raw similarity
scores. On the other hand, for two large pro-
teins similarity of segments can generate a lot
of alternative competing structural align-
ments, because the search space for alterna-
tive alignments grows rapidly with the size of
proteins. To sort through such alternatives
one has to somehow prepare scoring schemes
which rapidly identify the best structure
alignment. In our case the global alignment is
done simply by concatenating the local align-
ments, summing up the local score if some
parts of these alignments overlap. It is, how-
ever, important, and left to the next publica-
tion, to prepare proper weighting of scores
with the length of compared proteins, espe-
cially in the case of those shorter than 99/199
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residues. The same problem is the major dif-
ference between the LGscore and LGscore2
algorithms. We hope that such rescaling of
scores will improve the results of our method.

DATABASE

An important part of our web server is the
large database of template proteins, which
provides implementation of our comparing al-
gorithm for a wide audience over the
Internet. For practical reason (time and com-
puter resources limitations) we cannot take
the whole PDB database. There is a consider-
able redundancy in the Protein Data Bank in
terms of structure and sequence similarities.
Numerous proteins in PDB represent the
same structural or sequential family. Our aim
1s complete and economical use of this data-
base. That is why in order to speed up the pro-
cess of searching for close structural
homologs we take only a specific subset of the
whole PDB as the template database for our
searching engine. We chose about 5000
non-redundant proteins, which are collected
from the PDB and clustered at a 90% identity level.
This database is prepared by the PIECES server
(http://www.fccc.edu/research/labs/dunbra
ck/pieces/) and contains a subset of se-
quences (with full PDB representation) culled
from the entire PDB according to structure
quality and maximum mutual sequence iden-
tity. The database is updated weekly to incor-
porate fresh structures appearing in the PD.

RESULTS OF TESTS

The first test of our method is performed us-
ing one iteration structural similarity assign-
ment on a test list of 97 proteins (including
easy and hard targets). From this list we con-
struct two sets of protein pairs. The first set
consists of pairs of proteins which are similar
to each other (according to the SCOP classifi-
cation belonging to the same family). The sec-

ond one is built from pairs that have a weaker
similarity.

The overall result of this benchmark is equal
to:

where N; is the number of false-positives, i.e.
hits from the second subset of the test list
that have a score above the computed score of
Jj pair from the first subset. If N; = 0 we take 1
as the value of the fraction. B is approxi-
mately equal to the number of good hits (from
the first subset) with score above the highest
score for bad hits (from the second subset).
The value of B for the LGscore2 method is
123.66, and the result for one iteration of our
method is 120.31. The difference (2%) is negli-
gible so both algorithms give the same results
on the test list.

A comparison between our method and the
LGscore2 algorithm is presented in Fig. 1.
Both methods have the same accuracy. The
added value is almost 10 times faster execu-
tion in comparison with the much slower
LGscore2. The whole database search (com-
parison with about 5000 proteins) takes only
less than 1 minute on a standard PC.

The second benchmark was conducted for
the two-iteration version of our method using
our Web server. The 3D-Hit server was cou-
pled to the ToolShop (Rychlewski, 2001)
structure prediction and evaluation program.
The program compares protein structure pre-
diction servers using the structure similarity
server DALI (Holm & Sander, 1994; 1998) as
a reference. That is why we can directly com-
pare the DALI server with the 3D-Hit server.

The evaluated set included 100 query pro-
teins (easy and hard targets). The numbers of
correct models generated by the DALI and
3D-Hit servers were very similar as evaluated
by all model assessment methods. The final
alignment quality was better in the case of the
DALI server in comparison with our method.
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Figure 1. Comparison between the one iteration version of our method and the LGscore2 structural

alignment.

The results are presented for a test set of 97 proteins. Diamonds represent scores for pairs of proteins that are sim-
ilar in terms of SCOP classification index. Black circles represent scores for pairs of proteins from different sub-
groups of SCOP. Our method gives the overall result similar to LGscore2. Protein pairs that have no segments
which are able to pass our filters (structural similarity score 0) are not shown.

In the case of distant structural cousins the
results vary with the evaluation method used.
3D-Hit gets better ratings in all categories (es-
pecially in the specificity analysis) in the case
of MaxSub (Siew et al., 2000). Due to differ-
ences in the evaluation strategy, this picture
changes in the case of the other two methods,
Touch (Bujnicki et al., 2001) and LGscore
(Cristobal et al., 2001). Touch evaluates simi-
larities in contact space, which is more simi-
lar to the idea of the DALI server. LGscore fo-
cuses on closer structural similarity than 5 A
distance between pairs of aligned residues.
To conclude, the Web server based on our
method is on average slightly less sensitive
than the DALI server, nevertheless it repre-
sents an interesting complement to the cur-
rently available structure comparison pro-
grams (CE, Shindyalov & Bourne, 1998;
VAST, Gibrat et al., 1996). Inferring from the
structure prediction field, a consensus ap-
proach based on a combination of various

structure similarity search procedures would
be probably more sensitive.

SUMMARY

The main advantage of our algorithm is its
speed and accuracy in comparison with previ-
ous methods. Its speed is the result of the
pre-filtering procedure (introduction of short
seeds) and simplicity of the method (we com-
pare segments of protein backbones). The ac-
curacy is tuned by choosing the size of seg-
ments (99 or 199 residues), and adjusting dis-
tance cut-offs and gap penalties using a small
representative subset of proteins structures.

The Web server based on the proposed
method performs a 3D similarity search in
the database of known structures using the
atomic coordinates of a 3D protein model as
input. The size of the database is practically
unlimited because of the speed of the algo-



Vol. 51

Comparison of proteins based on segments structural similarity 171

rithm. For practical reasons we use a repre-
sentative set of about 5000 proteins from
PDB database. The complete search of the da-
tabase takes about 1 minute on a standard PC
(2 GHz) computer. It is possible to use this
server as an on-line resource.

The method is useful also for analyzing
similarity of proteins in a structural con-
text, for defining structurally meaningful
patterns or segments, and in general for
studying protein evolution folding and de-
sign. Our clustering procedure can be use-
ful for searching basic structural blocks of
proteins (like I-sites protein motifs library,
Bystroff & Baker, 1998; BLOCKs server by
de Brevern et al., 2000; or generalized sec-
ondary structure elements).

The main reason for developing structural
classifications of proteins is to maximize the
information return from experimental struc-
ture determination. If we know the structure
of a query protein we are able to list all its
structurally homologous proteins. That infor-
mation provides an insight into the unknown
function and role of the protein in the living
organism. It is also very useful for evolution-
ary unification of protein families and analy-
sis of folding principles. In molecular model-
ing it is important to compare sequences at
functionally important sites, not whole pro-
teins. That is why choosing only part of a pro-
tein for a detailed analysis, as in our method,
seems to be the right choice giving proper ac-
curacy and fast processing of the whole data-
base of proteins.

Future developments of our method can
cover also automatic search of functional evi-
dence of plausible evolutionary relationships,
based on structural and sequential similarity
of proteins. The structural information linked
to sequential data and associated functions,
can be a rich source of biologically interesting
observations. Strong structural similarity de-
spite low overall sequence similarity is a hint
of possible distant evolutionary relationship.
These relations are undetectable using only
sequential information, so those proteins can

have unsuspected functional properties.
These similarities define also the conserved
structural core of protein families, which is a
critical information in identifying distant
homologs by fold recognition techniques.
This direction of research is very promising
because of great impact on the drug industry.

It is also worth to point out that the cluster-
ing procedure is alone a very interesting part
of this research. In many applications it is
useful to work with discrete classification. To
provide such disjoint clustering one can use
all-on-all structure comparison to derive inter-
esting results. For example one can prepare a
fold tree of proteins (dendrogram type). In
that case one needs to use an average linkage
procedure and hierarchical clustering. The
basic structural motifs of our long segments
are then defined by cutting the fold tree at a
chosen cutoff to ensure that similar proteins
share the same cluster.
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