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PDZ domains are ubiquitous protein interaction modules that play a key role in cel-
lular signaling. Their binding specificity involves recognition of the carboxyl-termi-
nus of various proteins, often belonging to receptor and ion channel families. PDZ
domains also mediate more complicated molecular networks through PDZ–PDZ in-
teractions, recognition of internal protein sequences or phosphatidylinositol moi-
eties. The domains often form a tandem of multiple copies, but equally often such
tandems or single PDZ domain occur in combination with other signaling domains
(for example SH3, DH/PH, GUK, LIM, CaMK). Common occurrence of PDZ domains
in Metazoans strongly suggests that their evolutionary appearance results from the
complication of signaling mechanisms in multicellular organisms. Here, we focus on
their structure, specificity and role in signaling pathways.
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PDZ domains are the most common protein
interaction modules representing 0.2 to 0.5%
of open reading frames in three currently se-
quenced metazoan genomes (Schultz et al.,
1998b; 2000). Originally PDZ domains were
recognized in the postsynaptic density pro-
tein PSD-95/SAP90 (Tsunoda et al., 1998),
Drosophila septate junction protein
Discs-large and the epithelial tight junction
protein ZO-1 (Kennedy, 1995), hence the acro-
nym PDZ. PDZ domains are also known as
the Discs-large homology regions (DHRs) or
GLGF repeats (after the highly conserved
four-residue motif within the domain).
PDZ domains are built of 80–100

amino-acid residues, specialized for binding
of C-termini in partner proteins, most often
transmembrane receptors and channel pro-
teins, and/or other PDZ domains. Such inter-
actions localize membrane proteins to spe-
cific subcellular domains, thus enabling as-
sembly of supramolecular complexes. This is
supported by the fact that overwhelming ma-
jority of the PDZ-containing proteins is asso-
ciated with the plasma membrane (Fanning &

Anderson, 1999). The role of PDZ domains in
clustering and localization of proteins at the
plasma membrane has important biological
implications, e.g., in signaling, mediating the
adhesive properties of particular cells, ion
transport, and formation of the paracellular
barriers also known as tight junctions.
PDZ domains often occur in multiple copies

within a single polypeptide chain, for exam-
ple, MUPP1 (multi-PDZ domain protein 1) is
a tandem of 13 PDZ domains. The multiplic-
ity of PDZ domains suggests their role as
“glue” combining many different proteins in a
form of supramolecular complexes (Schultz et
al., 1998b; 2000).

OCCURRENCE OF PDZ DOMAINS

All the putative biological functions of PDZ
domain containing proteins — signaling, ad-
hesion, transport, etc. — are of crucial signifi-
cance to multicellular organisms. It is possi-
ble that PDZ domains coevolved with multi-
cellularity and development of intercellular
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guanylate kinase-interacting protein 1; MAGUK, membrane-associated guanylate kinase; mGluRs,
metabotropic glutamate receptors; Mint1-1, Msx2 interacting nuclear target; MRE, Maguk
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exchanger regulatory factor; nNOS, neuronal nitric oxide synthase; NorpA, no receptor potential A;
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growth factor receptor; PDZK1, PDZ domain containing-protein; PICK1, protein interacting with
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postsynaptic density; PRK2, protein kinase C-related kinase 2; PTP-BL, protein tyrosine phosphatase
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main-containing protein; SOC, store-operated calcium channels; SSTR2, somatostatin receptor type 2;
SAM, sterile alpha motif domain; TAZ, transcriptional co-activator with PDZ-binding motif; Tiam-1,
T-lymphoma invasion and metastasis inducing protein 1; TRP, transient receptor potential channel;
TRIP-6, thyroid receptor interacting protein 6; Tsp, tail-specific protease; YAP, Yes-associated protein;
ZO, zonula occludens.



signaling. This structural motif is widespread
among metazoans, but rare in single cellular
organisms — SMART (a Simple Modular Ar-
chitecture Research Tool) database lists 1163
PDZ domains in 484 human proteins, 259 do-
mains in 153 proteins of Drosophila melano-
gaster and 130 PDZ domains in 95 Caenor-
habditis elegans proteins, 26 in 23 proteins of
Arabidopsis thaliana while only 3 in
Saccharomyces cerevisiae and 5 in Escherichia
coli (Schultz et al., 1998b; 2000). Estimated
occurence values vary significantly depend-
ing on the tools used for the calculations, nev-
ertheless PDZ domains are always abundant
in animals, yet scarce in yeast and bacteria
(Ponting, 1997). Interestingly, as indicated
above, PDZ domains are also rare in plants.
Since the plant cell wall is a barrier in the
cell–to–cell communication, plants may have
developed other signaling mechanism
(Venter et al., 2001). Using database search-
ing tools Ponting found 19 bacterial protein
segments of significant similarity to previ-
ously described metazoan PDZ domains
(Ponting, 1997). Each of them was homolo-
gous to either of the two Escherichia coli
periplasmic proteases: high temperature
requirement A (htrA or protease Do)
(Lipinska et al., 1989) and Tsp (tail-specific)
protease (Silber et al., 1992). HtrA and Tsp
homologues were previously shown to occur
in humans and in higher plants (Oelmuller et
al., 1996), respectively. Further searches re-
vealed three additional ‘PDZ-like’ families:
the yeast htrA-like hypothetical protein
(N1897), Escherichia coli Yael proteins, and
the Bacillus subtilis stage IV sporulation pro-
tein B (spoIVB) (Ponting, 1997). A PDZ-like
domain was also found in the photosystem II
D1 C-terminal protease (Liao et al., 2000). A
strong similarity between bacterial and mam-
malian PDZ domains suggests a horizontal
mode of transmission, since primordial PDZs
arose probably relatively late in the
eukaryotic evolution (Ponting, 1997).

STRUCTURAL BASIS OF LIGAND
RECOGNITION

The structure of PDZ domain comprises six
�-strands (�A–�F) and two �-helices (�A and
�B), which fold into a six-stranded �-sand-
wich domain (Fig. 1A). The amino- and car-
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Figure 1. Structure of the PDZ domain bound to
peptide and internal peptide motif.

A. Ribbon representation of the third PDZ domain of
PSD95 (blue) with KQTSV peptide forming anti-
parallel �-sheet with �B strand (red arrow) (PDB code
1be9). Numering of �-strands and �-helices is shown.
B. Complex of the syntrophin PDZ domain (shown as
blue and green solvent-accessible surface representa-
tion) and nNOS PDZ domain (shown as red ribbon rep-
resentation with �-finger indicated) (PDB code 1qav).
The figure was made using program PyMOL (DeLano).



boxyl-termini of PDZ domains are close to-
gether, facilitating incorporation of the do-
main into different multi-domain proteins
(Harris & Lim, 2001).
PDZ domains specifically recognize short

(typically about five residues long) carboxyl-
terminal peptide motifs. These sequences are

often found in the cytoplasmic tails of
transmembrane receptors and channels
(Kornau et al., 1995). Peptide ligands bind in
an extended groove between strand �B and
helix �B thus serving as an additional
antiparallel �-strand within the PDZ domain
(Figs. 1, 3). This mechanism is referred to as
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Figure 2. Ribbon representation of PDZ and PDZ-like domains with six �-strands and two �-helices
demonstrated.

The N and C termini are depicted to highlight their proximity. A. The structure of the second PDZ domain of
PSD95 (PDB code 1qlc). B. PDZ domain of Htr protease with the extra �-helical fragment visible (PDB code 1lcy).
C. The interleukin 16 lacking one �-helix and Trp99 blocking the peptide binding pocket (olive) (PDB code 1i16).
D. The photosystem II D1 C-terminal processing protease, the structure is perturbed, when compared to other
PDZ domains but fold remains the same (PDB code 1fc9). The figure was made using program PyMOL (DeLano).



�-strand addition (Harrison, 1996). The struc-
ture of the PDZ domain does not change sig-
nificantly upon ligand binding. The crystal
structures of complexed and peptide-free
third PDZ domain of PSD-95 are almost iden-
tical, showing RMSD between the � carbon
atoms of 0.9 � (Doyle et al., 1996).
Studies on the molecular basis of ligand rec-

ognition demonstrate that valine residue at
the C-terminal (0) position of the peptide is
important for binding (Doyle et al., 1996), but
peptides carrying isoleucine or leucine at this
position can also be tolerated by certain PDZ
domains (Brakeman et al., 1997; Dong et al.,
1997). This could be explained by a relatively
small size of the hydrophobic pocket, which is
generally not appropriate for aromatic side
chains accommodation (Doyle et al., 1996). A
conserved “carboxylate-binding loop” (R/K-
XXX-G-�G� or GLGF motif) is found within
a loop connecting strands �A and �B, creat-
ing a hydrophobic cavity surrounding the typ-
ically hydrophobic C-termini of partner pro-
teins. The terminal carboxylate of the ligand
forms hydrogen bonds with main chain
amides of the last three residues in the GLGF
motif. The negatively charged carboxylate
group of the binding partner is neutralized by
the interaction with a conserved arginine (or
lysine) residue found 3–4 residues upstream
of the GLGF motif (Fig. 3), although the sig-
nificance of this electrostatic interaction has
recently been questioned (Harris et al., 2003).
In some PDZ domains, the first Gly in the
GLGF motif can be substituted by Pro, Thr or
Ser, whereas the second Gly is absolutely con-
served.
The position (–1) of the partner peptide was

predicted by site-directed mutagenesis to be
non-essential for the interaction (Kim et al.,
1995). Substitutions at this site usually do not
affect binding and, if they do, the effect is
much smaller than of the adjacent amino ac-
ids (Songyang et al., 1997). Residues (–2) and
(–3) of the binding peptide are stabilized by
hydrogen bonds with specific amino acids in
the strand �B and the helix �B of the PDZ do-

main. These residues are crucial for the speci-
ficity of different PDZ domains (Doyle et al.,
1996; Songyang et al., 1997). Crystallo-
graphic data indicate that side chain of the
(–3) residue directly contacts the binding
groove (Doyle et al., 1996; Karthikeyan et al.,
2001), and this amino acid is important in de-
termining the binding of ligands selected
from the peptide library (Songyang et al.,
1997). It has also been demonstrated that
ligand residues more distant from the C-ter-
minus, up to position (–8), can influence the
binding energy (Songyang et al., 1997;
Niethammer et al., 1998; Kozlov et al., 2000).
PDZ-like domains found in plants and bacte-

ria display similar secondary and tertiary
structures, but of somewhat different topol-
ogy. In both photosystem II D1 C-terminal
protease (Liao et al., 2000) and Tsp protease
from Escherichia coli (Beebe et al., 2000) the
strand �A is derived from the carboxyl-termi-
nus of the domain instead of the N-terminal
sequence, like in conventional PDZ domains.
Despite this difference, the fold retains the
ability to recognize the C-terminal sequences
of target proteins (Beebe et al., 2000).

CLASSIFICATION OF
PDZ-CONTAINING PROTEINS

Rapidly growing number of known PDZ do-
mains and their recognized physiological lig-
ands led to classification problems. Initially
three specificity classes were proposed (Ta-
ble 1). In class I, including PSD-95, Dlg and
ZO1 proteins, a serine or threonine residue is
found at the (–2) position of the peptide
ligand (Songyang et al., 1997). Its side chain
hydroxyl group forms a hydrogen bond with
the N-3 nitrogen of the histidine residue at po-
sition �B1 that is conserved among class I
PDZ domains (Doyle et al., 1996). The second
class of PDZ domains, characterized by hy-
drophobic residues occupying both the (–2)
position of the partner protein and the �B1
position of the PDZ domain, was identified by
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analysis of ligand specificity of CASK
(calcium/calmodulin-dependent serine pro-
tein kinase) PDZ-containing protein (Song-

yang et al., 1997). The third class of PDZ do-
mains includes nNOS (neuronal nitric oxide
synthase) and has a preference for negatively
charged amino acids at the (–2) position and
a tyrosine residue at the position �B1 of the
PDZ domain (Stricker et al., 1997). The speci-
ficity in this group is determined by a hydro-
gen bond between the hydroxyl group of tyro-
sine from the PDZ domain and side chain
carboxylate of the peptide (–2) residue
(Stricker et al., 1997; Tochio et al., 1999).
There is some confusion regarding the third
specificity class, since it was proposed that it
comprises also ligand sequence E/D-X-
W-C/S-COOH (or X-X-C-COOH) present in
N-type Ca2+ channel bound by Mint1-1 (Msx2
interacting nuclear target) PDZ domain
(Maximov et al., 1999). Other authors suggest

that the third class includes the recognition of
an internal peptide sequence only (Fuh et al.,
2000). Still there are PDZ domains showing

specificity other than those of particular
classes, like MAGI (membrane-associated
guanylate kinase-related) PDZ-2 which binds
S/T-W-V-COOH consensus sequence, with
Trp(–1) being the affinity determining posi-
tion (Fuh et al., 2000). The specificity of PDZ
domains can be engineered and some of the
novel ligands are different from those repre-
senting the three classes, like the K/R-Y-
V-COOH (Schneider et al., 1999).
The second approach to classify PDZ do-

mains is based on the nature of amino acids
in the two critical positions of the PDZ do-
main – �B1 and residue that immediately fol-
lows �B strand. Using this principle PDZ do-
mains were divided into 25 groups based on
their two amino acids polarity and/or bulki-
ness (Bezprozvanny & Maximov, 2001). This
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Table 1.  Classification of PDZ domains based on the C-terminal sequence of their binding part-
ners.

(�-hydrophobic,  X-unspecified )



classification provides a method for predict-
ing specificity of all PDZ domains and relies
on a close connection between ligand prefer-
ence and the amino-acid residues at given po-
sitions in PDZ domain. However, Vaccaro
and Dente (2002) pointed out that within
these 25 groups, the first group covers PDZ
domains that bind class I peptides and the re-
maining groups are less clearly determined.
Two of them do not correspond to any known
PDZ domains; 14 are not correlated with any
ligand sequence, four groups can be unified
into canonical class II domains, and one
group includes PDZ domains that are known
to have dual specificity (Vaccaro & Dente,
2002). Most probably, the classification of
PDZ domains will be revised in the future, as
number of sequences and binding data in-
creases.

PDZ DOMAIN SPECIFICITY

The binding affinities for PDZ domains and
their ligands are moderate — dissociation con-
stants (Kds) range is typically in low
nanomolar to high micromolar (Harris &
Lim, 2001). The average Kd is low
micromolar, similarly like those of SH2 and
SH3 (Src homology 2 and 3) domains. Such
moderate values are suitable for regulatory
functions, since binding can be reversible and
dependent on intracellular conditions.
Interactions of various PDZ domains with

their ligands were typically observed using
yeast two-hybrid system (Xia et al., 1997;
Chetkovich et al., 2002; Hirbec et al., 2002;
Miyagi et al., 2002; Mok et al., 2002),
pull-down assay (Hirbec et al., 2002; Mok et
al., 2002), coimmunoprecipitation experi-
ments (Poulat et al., 1997; Chetkovich et al.,
2002; Miyagi et al., 2002; Mok et al., 2002;
Pupo & Minneman, 2002), biochemical analy-
ses (Xia et al., 1997; Mok et al., 2002), func-
tional approaches (Pupo & Minneman, 2002),
competition experiments and overlay assays
(Zimmermann et al., 2002), target-assisted it-

erative screening (Kurakin & Bredesen,
2002), proteomic approach based on a peptide
affinity chromatography followed by mass
spectrometry and immunoblotting (Becamel
et al., 2002), phage display (Fuh et al., 2000),
in situ hybridization and post-embedding
immunogold technique (Miyagi et al., 2002),
surface plasmon resonance (Grootjans et al.,
2000; Koroll et al., 2001; Miyagi et al., 2002),
Western blotting (Grootjans et al., 2000),
NMR experiments (Kozlov et al., 2002), and
isothermal titration calorimetry (Grootjans et
al., 2000; Kang et al., 2003). These experi-
ments show that PDZ domains bind a variety
of ligands, however, the role of these numer-
ous interactions often remains to be revealed.
It is possible that in vivo the binding affinity

can be much higher due to a presence of many
PDZ domains within one polypeptide chain
and simultanous interactions of other pro-
tein–protein interaction domains. Similarly,
the excluded volume effects resulting from
the highly crowded nature of the cytosol (300
to 400 g/liter of proteins and other macro-
molecules in Escherichia coli) (Ellis, 2001)
should lead to a stronger association in a cell,
compared with in vitro assays. Crowding gen-
erally provides a nonspecific force for
macromolecular compaction and association
(Minton, 2000), which may be crucial to the
formation of large protein complexes.
PDZ domains can also recognize an internal

sequence that structurally mimics the C-termi-
nus. Such interactions, most intesively studied
for the binding of nNOS PDZ domain by either
the PDZ domain from �1-syntrophin or the
second PDZ domain from PSD-95
(Christopherson et al., 1999) are biologically
important in localizing nNOS to the neuro-
muscular junction or the postsynaptic density
(Brenman et al., 1995). In order to interact
with other PDZ domains, the nNOS PDZ do-
main has a 30-amino-acid extension folded into
a stable �-hairpin (called the �-finger) immedi-
ately followed by a sharp type II �-turn. This
unusual motif was shown to bind on the same
surface groove of the syntrophin PDZ domain
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as the C-terminal peptide ligand, with its
�-turn positioned directly in place of the pep-
tide’s carboxyl-terminus (Hillier et al., 1999).
Closer insight into this interaction reveals that
the �-finger of nNOS contains an internal pep-
tide whose sequence and binding orientation
are very similar to those of canonical C-termi-
nal peptide ligands (Fig. 1B). In addition, there
is an extensive area of contacts between the
core PDZ domains of syntrophin and nNOS
(Harris et al., 2001). Thus, binding of the two
different regions of nNOS by syntrophin is far
more specific than recognition through a short
C-terminal sequence.
The multi-domain scaffolding protein INAD

(inactivation no after-potential D) contains
five PDZ domains which independently bind
various proteins including NorpA (no
receptor potential A) and the phospholipase
C-� isoenzyme. These interactions are re-
quired for the proper intracellular targeting
and spatial arrangement of proteins involved
in the fly phototransduction. The structure of
the N-terminal PDZ domain of INAD with the
C-terminal heptapeptide (GKTEFCA) derived
from NorpA reveals an intermolecular
disulfide bond necessary for the interaction
(Kimple et al., 2001). Since other proteins
also possess similar, cysteine-containing con-
sensus sequences adequate for binding to the
PDZ domains, this disulfide-mediated interac-
tion may be a common mode of interaction be-
tween PDZ domains and their target proteins.
Moreover, there are also other important dif-
ferences in INAD(PDZ1)-NorpA interaction.
The NorpA peptide contains an abrupt turn at
Phe(–2), while all other peptides are in an ex-
tended conformation (Doyle et al., 1996;
Daniels et al., 1998; Schultz et al., 1998a).
Furthermore, even though PDZ1 of INAD
possesses a characteristic hydrophobic cleft
that normally buries the side chain of the ter-
minal residue of the peptide, position (0) of
the NorpA derived peptide is exposed to a sol-
vent (Kimple et al., 2001).
Erbin interacts with the receptor tyrosine

kinase ErbB2 and plays a role in its localiza-

tion at the basolateral membrane of epithelial
cells (Borg et al., 2000). The protein is also
highly concentrated at neuronal postsynaptic
membranes and neuromuscular junctions.
The crystal structure of the Erbin and
ErbB2-derived peptide reveals an interaction
of the peptidic Tyr(–7) with the extended
�2–�3 loop of the Erbin PDZ (Birrane et al.,
2003). The second crystal structure of this do-
main bound to the phosphotyrosine-contain-
ing ErbB2 peptide shows that phosphory-
lation of Tyr(–7) abolishes its interaction
with the �2–�3 loop. Phosphorylation of the
Tyr(–7) residue reduces 2.5-fold the affinity
of the Erbin-ErbB2 interaction (Birrane et al.,
2003).
IL-16 has no significant sequence homology

to other interleukins or any other member of
the chemokine family and is the first known
extracellular protein with the PDZ-do-
main-like fold. However, the protein does not
exhibit any peptide binding properties of PDZ
domains (Muhlhahn et al., 1998), since its
GLGF cleft is smaller and blocked with a
bulky Trp side chain at its center.
Recently solved NMR structure of the sec-

ond PDZ domain of PTP-BL (protein tyrosine
phosphatase BL) shows a unique feature,
compared to the canonical PDZ fold. An ex-
tended flexible loop at the base of the binding
pocket, called L1, folds back onto the protein
backbone and modulates the domain selectiv-
ity (Walma et al., 2002).
The specificity of a PDZ domain can be eas-

ily altered by substituting residues in or di-
rectly adjacent to the strand �B and the helix
�B. Stricker et al. (1997) changed the specific-
ity of nNOS PDZ domain from D-X-V-COOH
to T-X-V- COOH by introducing only two mu-
tations — Tyr77His and Asp78Glu. Moreover,
it was reported that PDZ domains could be
engineered to specifically recognize a large
number of proteins by combining different
backbone templates with a computer-aided
protein design (Reina et al., 2002). Phage dis-
play approach was also used to alter the
specificities of PDZ domains. Schneider et al.
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(1999) selected from phage library different
mutants of the AF-6 (ALL-1 fusion partner
from chromosome 6) PDZ domain that bound
a variety of peptides. They showed that no
more than two residue substitutions localized
to either �B, �B or the carboxylate binding
loop were necessary to change the domain’s
binding specificity. Changing just a single
amino-acid residue, however, was in many
cases sufficient to alter the specificity and af-
finity of PDZ domains (Gee et al., 2000).
There is also a growing number of PDZ do-

mains with a mixed class specificity. Erbin
contains a single class I PDZ domain that
binds with a high affinity to the carboxyl ter-
minus sequence DSWV of �-catenin, ARVCF,
and p0071 (Jaulin-Bastard et al., 2002; Laura
et al., 2002). However, Erbin PDZ domain
also recognizes ErbB2 sequence EYLG-
LDVPV, the class II ligand (Jaulin-Bastard et
al., 2001; Laura et al., 2002). Syntenin con-
sists of two PDZ domains and the N-terminal
fragment of unknown properties. Each do-
main is able to bind peptides belonging to two
different canonical classes: PDZ1 binds pep-
tides from the class I and III (LEDSVF — the
C-terminal fragment of IL-5 receptor � chain
and AFFEEL of merlin, respectively), while
PDZ2 interacts with the class I and II (IL-5�R
peptide and TNEFYA of syndecan 4, respec-
tively). Additionally, the N-terminal fragment
of syntenin appears to function as a regula-
tory domain, interfering in solution with the
peptide binding by PDZ2 (Kang et al., 2003).
PDZ domains can not only serve as pro-

tein–protein interaction modules, but also
are capable of binding phosphatidylinositol
4,5-bisphosphates (PIP2), as Zimmermann et
al. (2002) showed for PDZ domains of syn-
tenin, CASK, Tiam-1 (T-lymphoma invasion
and metastasis inducing protein 1) and
PTP-BL. Competition and mutagenesis ex-
periments revealed that the peptide and the
PIP2 binding sites in the PDZ domains over-
lap. Moreover, living cell studies suggest
that PDZ domain containing protein can
bind to plasma membrane in both the

PIP2-dependent and peptide-dependent man-
ner (Zimmermann et al., 2002). Garrard et
al. (2003) proposed a new type of function
for the PDZ domains as observed in Par6
(partition-defective) protein, composed of
aPKC (atypical protein kinase C) binding do-
main, semi-CRIB (Cdc42 and Rac interactive
binding) motif and a PDZ domain. The CRIB
motif in Par6 is uncapable of binding to
Cdc42 (Cell division control protein 42) in
the absence of the adjacent PDZ domain that
provides structural stability to the motif
(Garrard et al., 2003).

POSSIBLE REGULATION MECHANISM
INVOLVING PHOSPHORYLATION OF
C-TERMINUS

There are several examples showing that
phosphorylation can regulate interaction of
PDZ domain with the C-terminus of binding
partners. Interestingly, most of the C-terminal
peptides from a variety of proteins possess
serine, threonine or tyrosine residue at (–2) or
(–3) position, which are critical for the interac-
tion with the binding pocket of PDZ domain.
For example, it was demonstrated that the
C-terminus of inward rectifier K+ channel (Kir
2.3), which is a specific target for PDZ domain
of PSD-95 protein, contains a consensus se-
quence for protein kinase A (PKA). Phos-
phorylation of the (–2) position at the C-termi-
nus of Kir 2.3 channel by PKA disrupts its in-
teraction with PSD-95 PDZ domain (Cohen et
al., 1996). Another paper reported the
phosphorylation-dependent modulation of in-
teraction between the �2-adrenergic receptor
and the PDZ domain of NHERF (Na+/H+

exchanger regulatory factor) protein. In this
case, the interaction is abolished by GRK-5
(G-protein-coupled receptor kinase 5) specific
phosphorylation (Cohen et al., 1996; Cao et al.,
1999). Protein kinase C (PKC) was able to pre-
vent binding of GRIP (glutamate
receptor-interacting protein) PDZ domain to
the GluR2 (glutamate receptor) subunit of
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AMPA (�-amino-3-hydro-
xy-5-methyl-4-isoxazolepropionic acid) receptor
by phosphorylation of serine residue at the
(–3) position within the C-terminus of GluR2
(Matsuda et al., 1999). On the other hand, re-
cent studies demonstrated that phospho-
rylation can also increase the strength of the
interaction — the phosphorylated form of the
C-terminal peptide of MRP2 (mitochondrial
ribosomal protein) protein was bound stronger
to the three tested PDZ-containing proteins
PDZK1 (PDZ domain containing-protein),
IKEPP (intestinal and kidney enriched PDZ
protein) and EBP50 (ezrin-radixin-moesin
binding phosphoprotein-50) than the
dephosphorylated form (Hegedus et al., 2003).

MULTIMERIZATION OF
PDZ-CONTAINING PROTEINS

The arrangement of PDZ domains within a
multidomain protein determines the unique
function of these proteins in an assembly of
macromolecular complexes. To generate more
complex signaling scaffolds, PDZ proteins can
self-associate to form multimers and there are
several examples showing that the multi-
merization is mediated by PDZ domains. For
example, GRIP1 (multi-PDZ protein contain-
ing seven PDZ domains) form homo- and
heteromultimers via association of its PDZ4,
PDZ5 and PDZ6 domains (Srivastava et al.,
1998; Dong et al., 1999). The second example
is INAD protein (composed of five PDZ do-
mains) which plays a key role in Drosophila vi-
sion mechanism. This mechanism is facilitated
by homomultimerization of INAD through the
PDZ3 and PDZ4 domains. This multime-
rization does not prevent the binding of PDZ3
and PDZ4 domains targets suggesting that the
two types of interactions (PDZ–ligand and
PDZ–PDZ) occur through different binding in-
terfaces of PDZ domains (Xu et al., 1998). PDZ
proteins can also form multimers in the
PDZ-independent mechanisms, like in case of
PSD-95 protein, where the dimer formation is

mediated by the N-terminal region (Hsueh et
al., 1997).

COMPARISON WITH PTB DOMAINS

There is a structural and ligand binding sim-
ilarity between PDZ and PTB (phospho-
tyrosine binding) domains. PTB domains are
regions of 100–150 residues in the insulin
receptor substrates 1 and 2 (IRS-1 and IRS-2)
and in the adaptor protein Shc (Src homology
2 domain-containing protein) (Kavanaugh &
Williams, 1994). As shown by NMR (Zhou et
al., 1995; 1996) and crystallographic (Eck et
al., 1996) studies, both the Shc and IRS-1 do-
mains have essentially identical seven-strand-
ed �-sandwich framework, capped by the
C-terminal helices. Both Shc and IRS-1 PTB
domains recognize peptides containing
phosphotyrosine at the end of an NPXpY se-
quence (Wolf et al., 1995). In addition, the
IRS-1 PTB domain requires a hydrophobic
residue at position (–8), and the Shc domain,
a hydrophobic side chain at position (–5). As
in the PDZ complexes, the peptides bound to
Shc and IRS-1PTB domains form antiparallel
�-strand with the �-sheet and on the other
side pack against the �-helix. The NPXpY mo-
tif at the C-terminal end of the PTB-bound
peptide is much more extensive than the sim-
ple carboxylate at the C-terminus of the
PDZ-bound peptide. In the PTB complexes,
residues in this loop participate in an elabo-
rate network of hydrogen bonds that anchor a
�-turn formed by the NPXpY residues. Differ-
ential specificity appears to depend on the
presence of pockets for hydrophobic residue
binding at position (–5) in Shc or at position
(–8) in IRS-1.

ARRANGEMENTS OF PDZ DOMAINS
IN SIGNALING PROTEINS

PDZ domains seem to be crucial organizers
of protein complexes at the plasma mem-
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brane. They are important in transport and
targeting of different proteins to the sites of
cellular signaling thus assuring localization
and organization of both relevant receptors
and downstream effectors to proper regions
of the cell. PDZ-containing proteins create
scaffolds for the assembly of supramolecular
signaling complexes, thereby coordinating
and guiding the flow of regulatory informa-
tion. This is possible due to the ability of
PDZ-containing proteins to both bind an ar-
ray of target proteins and oligomerize into
branched networks.
According to arrangement type, all known

PDZ-containing proteins can be divided into two
groups. The first group comprises proteins con-
taining only PDZ domains, typically several PDZ
domainswith different specificities within a single
polypeptide chain called multi-PDZ proteins. Ex-
amples include single-PDZ domain proteins
PICK1 (protein interacting with C-kinase), Par6
and multi-PDZ domain proteins NHERF (2 PDZ
domains), CIPP (channel-interacting PDZ domain
protein, 4 PDZ domains), INAD (5 PDZ domains),
GRIP (7 PDZ domains), PATJ (Pals-1 associated
tight junction protein, 10 PDZ domains) and
MUPP1 (contains remarkable 13 PDZ domains).
Proteins possessing single or multiple PDZ do-
mains in combination with other functional do-
mains form the second group. Among these, the
MAGUK (membrane-associated guanylate
kinase) proteins represent a very common class
containing invariably one or three PDZ domains,
a SH3 domain and a guanylate kinase homology
(GUK) domain. Other PDZ-containing proteins
present more diversified combinations with a va-
riety of interaction domains such WW, LIM
(zinc-binding domain present in Lin-11, Isl-1,
Mec-3), CaMK (calcium/calmodulin-dependent
protein kinase domain), DH/PH (Dbl
homology/pleckstrin homology), ankyrin or
leucine-rich repeats.

PDZ-only proteins

Single-PDZ domain proteins. Despite the
presence of only a single PDZ domain, some

of them can effectively multimerize and in
consequence link partner proteins. This is il-
lustrated by PICK1, a single-PDZ domain pro-
tein expressed at synapses and originally iso-
lated due to its ability to bind the C-terminus
of protein kinase C (Staudinger et al., 1995;
1997). It was shown that PICK1 can
homooligomerize through its coiled-coil re-
gion and this self-association is essential for
clustering of the synaptic metabotropic
glutamate receptors (mGluR7a) (Staudinger
et al., 1997). Besides this interaction,
PICK1-binding partners include the GluR2
subunit of AMPA receptors (Dev et al., 1999;
Daw et al., 2000; Osten et al., 2000; Xia et al.,
1999; 2000; Iwakura et al., 2001; Kim et al.,
2001; Perez et al., 2001; Braithwaite et al.,
2002), the dopamine transporter (DAT)
(Torres et al., 2001), the ERBB2/HER2 recep-
tor (Jaulin-Bastard et al., 2001), the mito-
gen-stimulated TIS21 protein (Lin et al.,
2001) and the ASICs (acid-sensing ion
channels) (Baron et al., 2002). Taken to-
gether, it seems that PICK1 may serve as
adaptor protein that links variety of synaptic
transmembrane receptors and channels to
protein kinase C.
Another single-PDZ domain containing pro-

tein, Par6, first identified in C. elegans, plays
a critical role in the asymmetric cell division
and the polarized cell growth (Hung &
Kemphues, 1999). Later studies revealed a
family of mammalian Par6 proteins, similar
to C. elegans forms (Joberty et al., 2000). Be-
sides PDZ domain, Par6 protein contains a
semi-CRIB motif, which can bind to Cdc42
GTPase but only in the presence of an adja-
cent PDZ domain. Moreover, it was shown
that Par6 PDZ domain effects structural sta-
bility of the CRIB motif (Garrard et al., 2003).
Both PDZ and semi-CRIB motif are also nec-
essary for binding to Par3, another protein
containing three copies of PDZ domain. Func-
tional complex of Par6 with Cdc42-GTP, Par3
and with the regulatory domains of atypical
protein kinase C is implicated in the forma-
tion of tight junctions at epithelial cell–cell
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contacts (Joberty et al., 2000). This suggests
that Par6 is an adaptor protein responsible
for cross-talk between activated Cdc42 or Rac
GTPases and apical protein kinase signaling.
Multi PDZ-domain proteins. NHERF-1

and its second isoform, NHERF-2, highly ex-
pressed in epithelial cells, serve as specialized
adaptors for broad range of signaling pro-
teins. Both isoforms contain two highly ho-
mologous PDZ domains and the C-terminal
region that associates with members of the
ERM (ezrin-radixin-moesin) family of mem-
brane-cytoskeletal adapters. NHERF was first
identified as a regulator of NHE3 (type 3
Na+/H+ exchanger) activity (Weinman et al.,
2000). However, the list of functions of
NHERF protein in epithelial cell physiology
can be extended. For example, regulation of
membrane proteins such as �2AR
��2-adrenergic receptor) (Hall et al., 1998)
and CFTR (cystic fibrosis transmembrane
conductance regulator) (Raghuram et al.,
2001) is mediated by PDZ1 domain of
NHERF. Other proteins identified as poten-
tial partners for NHERF PDZ1 domain in-
clude PDGFR (platelet-derived growth factor
receptor) (Maudsley et al., 2000), GRK6A (an
isoform of G-protein-coupled receptor kinase)
(Hall et al., 1999), SOC (store-operated
calcium) channels, such as Trp4 and Trp5, as
well as the phospholipases C�1 and C�2
(Tang et al., 2000). On the other hand, besides
the binding of NHE3, the PDZ2 domain of
NHERF is reported to bind two additional tar-
gets: YAP-65 (Yes-associated protein) in
YAP-65/c-Yes complex (Mohler et al., 1999)
and phospholipase C�3 (Hwang et al., 2000).
Thus, both isoforms of two PDZ-domain pro-
tein NHERF are involved in regulation of
multiple signaling pathways such as growth
regulation, phosphoinositide metabolism, re-
ceptor modulation and targeting non-receptor
kinases (Voltz et al., 2001).
The CIPP is an example of multi-PDZ do-

main protein, which was found to interact se-
lectively with the C-termini of signaling recep-
tors in synaptic membranes. CIPP is com-

posed of four PDZ domains possessing differ-
ent specificities; PDZ2 domain binds to the
C-terminus of the inward rectifier K+ (Kir)
channel, Kir4.1, and neuroligin, PDZ3 inter-
acts with the NR2C subunit of NMDA recep-
tors and neurexin (Kurschner et al., 1998),
whereas PDZ4 domain was recently reported
to bind the ASIC3 (acid-sensing ion channel
3) (Anzai et al., 2002). Additionally, the C-ter-
mini of NR2B subunit of NMDA and Kir4.2
are specific ligands for both PDZ2 and PDZ3
domains of CIPP (Kurschner et al., 1998). In
contrast, the binding partners for PDZ1 do-
main have not yet been identified. Thus, the
CIPP protein appears to be a typical scaffold-
ing protein that links different types of
neuronal cell surface molecules to inter-
cellular signaling network in neurons.
INAD — Drosophila protein composed of five

PDZ modules plays a central role in organiza-
tion of supramolecular signaling complex in
the phototransduction cascade. All five PDZ
domains of INAD have been shown to interact
with various phototransduction proteins.
PDZ1 and PDZ5 domains of INAD were
shown to bind the phospholipase C (PLC)
(Tsunoda et al., 1997; van Huizen et al., 1998;
Xu et al., 1998), whereas PDZ2 and PDZ4 do-
mains, the C-terminus of eye-specific protein
kinase C (Huber et al., 1996b; Tsunoda et al.,
1997; Adamski et al., 1998; Xu et al., 1998).
Additionally, light-responsive, transient
receptor potential (TRP) channel is a target
for PDZ3 of INAD (Huber et al., 1996a; Shieh
& Zhu, 1996).
Three multi-PDZ domain proteins, Dlt

(Discs Lost), PATJ (Pals-1 associated tight
junction protein) and MUPP1 (multi-PDZ do-
main protein 1) are examples of proteins es-
sential in organizing protein complexes cru-
cial to maintaining polarity of epithelial and
neuronal cells. First of them, the Drosophila
Dlt contains four PDZ domains and its PDZ1
domain can interact with the C-terminal four
amino acids of the dCrumbs protein — apical
polarity determinant responsible also for po-
sitioning of the zonula adherens in Drosophila
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epithelial cells (Klebes & Knust, 2000). PATJ
and MUPP1 are mammalian homologues of
Dlt protein. PATJ was originally found as a
close human homologue of Drosophila INAD
protein — hINAD, containing seven PDZ do-
mains (Vaccaro et al., 2001). Later studies in-
dicated that the protein possesses eight
(Lemmers et al., 2002), and finally, ten PDZ
domains (Roh et al., 2002), suggesting that
previously described shorter hINAD repre-
sents an incomplete version of PATJ protein.
Moreover, it has been found that its similarity
to Dlt is higher than to INAD protein. In
mammalian cells, PATJ together with Pals-1
and CRB1 proteins, colocalize to tight junc-
tions, where all these proteins play a critical
role in establishment of epithelial cell polarity
(Roh et al., 2002). MUPP1 definitely holds a
top position among other PDZ proteins in re-
spect to the number of PDZ domains. This ex-
traordinary long protein is composed of 13
PDZ domains and concentrated at tight junc-
tions (TJs) of epithelial cells. Initially,
MUPP1 was identified as a protein that inter-
acts with the C-terminus of the serotonin
5-hydroxytryptamine type 2C (5-HT2C) recep-
tor (Ullmer et al., 1998). Later studies showed
that MUPP1 is also a cytoplasmic ligand for
the membrane-spanning proteoglycan NG2
(Barritt et al., 2000), human mast/stem cell
growth factor receptor c-Kit (Mancini et al.,
2000), and PDZ domain-binding motifs of hu-
man adenovirus type 9 and high-risk human
papillovirus (HPV) oncoproteins — E4-ORF1
and E6 (Lee et al., 2000). Moreover, PDZ10
domain of MUPP1 binds the C-terminal se-
quences of claudins and junctional adhesion
molecules (JAMs) (Hamazaki et al., 2002).
The PDZ domains of Disc Lost, PATJ and

MUPP1 are highly conserved. Interestingly,
domains PDZ2–PDZ5 of PATJ and MUPP1
can be aligned on PDZ1–PDZ4 domains of
Disc Lost. The similar domain organization
suggests that both proteins may have evolved
from the same ancestor. Recent studies re-
ported the presence of additional conserved
region at the N-termini of all these proteins,

called MRE (Maguk recruitment) domain
which enables the interactions with other pro-
teins essential for maintaining epithelial po-
larity (Roh et al., 2002).
Another interesting multi-PDZ domain pro-

tein, GRIP1 containing seven PDZ domains is
abundant in synaptic junctions of neurons.
GRIP1 is a typical scaffold protein which
plays an important role in the synaptic target-
ing of AMPA (alpha-amino-3-hydroxy-5-me-
thyl-4-isoxazolepropionic acid) receptors. The
C-termini of the GluR2/3 subunits of these re-
ceptors are targets for PDZ4 and PDZ5 do-
mains of GRIP1 (Dong et al., 1997; Srivastava
et al., 1998; Wyszynski et al., 1998). Interest-
ingly, it was shown that these two PDZ do-
mains cooperate as an integral tandem and
that covalent linkage of both domains is criti-
cal for its proper folding and binding to
GluR2/3 (Dong et al., 1999; Srivastava et al.,
1998; Zhang et al., 2001). Moreover, PDZ6 do-
main of GRIP1 was shown to interact with
EphB2/EphA7 receptor tyrosine kinases,
ephrinB1 ligand (Torres et al., 1998;
Bruckner et al., 1999; Lin et al., 1999) and
liprins-� family of multidomain proteins
(Wyszynski et al., 2002). Additional studies of
PDZ4, PDZ5 and PDZ6 from GRIP1 showed
that these domains also mediate homo- and
heterodimerization of GRIPs, confirming a
double function of PDZ domain as peptide
recognition and multimerization modules
(Dong et al., 1999). Very unusual interaction
mode presents PDZ7 domain of GRIP1 which
binds GRASP-1 (GRIP1-associated scaffold
protein 1), a Ras guanine exchange factor
that regulates the synaptic distribution of
AMPA receptors.

Proteins containing PDZ domains in combi-
nation with other signaling domains

MAGUK family. The MAGUKs are a large
family of proteins involved in sequestering
protein complexes at the plasma membrane
and formation of different cell junctions.
Members of this family occur in all multi-
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cellular organisms and have specific domain
organization — one or three PDZ domains, a
SH3 domain and GUK (guanylate kinase) do-
main. Despite partially preserved domain ar-
chitecture, MAGUKs can be divided into four
subfamilies: 1) Dlg-MAGUKs; 2) ZO-1-MA-
GUKs; 3) p55-MAGUKs and 4) Lin-2-MAG-
UKs.
The first subfamily (Dlg-MAGUKs) includes

proteins with a domain structure similar to
Drosophila tumor suppressor protein — Dlg
(Disc Large) composed of three copies of PDZ
domain, an SH3 domain and a GUK domain.
Drosophila Dlg colocalizes with one of its
subcellular ligands, fasciclin-III at septate
junctions and is required for proper localiza-
tion of this protein (Woods et al., 1996). Addi-
tionally, yeast two-hybrid experiments
showed that Dlg PDZ1 and PDZ2 domains
bind the C-terminus of Shaker K+ channel
and deletion of this C-terminal PDZ-binding
motif eliminates channel clustering (Tejedor
et al., 1997). Another member of
Dlg-MAGUKs subfamily, PSD-95, is specifi-
cally localized to the postsynaptic density
(PSD) of excitatory synapses. The
postsynaptic membrane is enriched in a vari-
ety of receptor proteins; several of them bind
to the PDZ domains of PSD-95 via their cyto-
plasmic C-termini. For example, the cytoplas-
mic tails of NMDA receptors contain a con-
served motif which mediates binding to the
first two PDZ domains of PSD-95 (Kornau et
al., 1995). Additional membrane proteins that
can bind to PSD-95 include neuroligin (binds
to PDZ3 domain of PSD-95) (Irie et al., 1997),
ErbB4 (tyrosine kinase receptor) which inter-
acts with PDZ1/2 of PSD-95 (Garcia et al.,
2000) and voltage-gated K+ channels (Kim et
al., 1995).
Mammalian ZO-1, ZO-2 and ZO-3 (zonula

occludens) represent the ZO-1-MAGUKs
subfamily and are usually localized at sites of
intercellular junctions (septate junctions in
Drosophila and tight junctions in mammals).
They organize these junctions by forming
heterodimeric complexes with each other, cre-

ating a bridge between the actin cytoskeleton
and transmembrane proteins of TJs. Besides
SH3 and GUK domains, ZO proteins contain
three PDZ domains. Moreover, they also con-
tain characteristic C-terminal proline-rich ex-
tension. TJ strands are mainly composed of
two distinct types of transmembrane pro-
teins: occludins and claudins. PDZ-1 domains
of ZO-1, ZO-2 and ZO-3 directly bind to the
C-terminal sequence of claudins (Itoh et al.,
1999a). It was shown that PDZ2 domains of
all members mediate heterodimeric interac-
tions between ZO-1/ZO-2 and ZO-1/ZO-3
(Itoh et al., 1999b). On the other hand, the
binding partners for the PDZ3 domain of ZO
proteins have not yet been identified.
The human p55, which represents the

p55-MAGUKs subfamily, is a peripheral mem-
brane protein of the erythrocyte membrane.
p55 plays an important role in maintaining
erythrocyte shape and its membrane proper-
ties. The protein contains a single copy of
PDZ domain, together with SH3 and GUK do-
mains. It has been reported that PDZ domain
of p55 binds to the C-terminus of glycophorin
C (Marfatia et al., 1997). Additionally, abnor-
mality of PDZ domain of p55 in chronic
myeloid leukemia (CML) has been reported
(Ruff et al., 1999).
Like p55 subfamily, Lin-2-MAGUKs possess

a single PDZ domain aside from SH3 and
GUK domains. Additionally, they have char-
acteristic N-terminal calcium/calmodulin-de-
pendent protein (CaM) kinase domain. In C.
elegans, Lin-2 protein is involved in localiza-
tion of Let-23, an EGF receptor-like protein
(Hoskins et al., 1996). Other members of this
subfamily, Drosophila CAMGUK (calcium/
calmodulin-dependent serine protein kinase
membrane-associated guanylate kinase), rat
CASK/Lin-2 (calcium/calmodulin-dependent
serine protein kinase) and human CASK
(hCASK) are homologous to C. elegans Lin-2
and are localized to synapses, where, as scaf-
folding proteins, participate in multiple inter-
actions. The PDZ domain of these proteins
bind to cytoplasmic tails of several cell-sur-
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face proteins. For example, the C-terminus of
neurexin I is a high affinity binding partner
for PDZ domain of CASK protein (Hata et al.,
1996) and the cytoplasmic tails of junctional
adhesion molecules are targets for
CASK/Lin2 PDZ domain (Martinez-Estrada
et al., 2001). Moreover, yeast two-hybrid
screening showed an interaction between the
human homolog hCASK and the C-terminal
sequence of the membrane protein syn-
decan-2 (Cohen et al., 1998). In another exam-
ple, the C terminus of Parkin protein, selec-
tively truncated by a Parkinson’s dis-
ease-causing mutation, can selectively bind to
the PDZ domain of CASK (Fallon et al.,
2002). Recent studies reported a new interac-
tion partner for PDZ domain of CASK protein
— plasma membrane Ca2+-ATPase (PMCA),
which is major regulator of Ca2+ homeostasis
(Schuh et al., 2003).
PDZ-LIM family. It has been suggested

that cytoskeletal proteins belonging to the
PDZ-LIM family serve as adapters for direct
LIM-binding proteins to the cytoskeleton
(Vallenius et al., 2000). They contain a PDZ
domain at the N-terminus followed by one or
three LIM domains. All six members of the
family associate with the cytoskeleton, five of
them via interactions with �-actinin and/or
�-tropomyosin. CLP-36 (C-terminal LIM do-
main protein 1) protein is expressed in epithe-
lial cells and localizes to actin stress fibers.
This localization is mediated via the PDZ do-
main of CLP-36 that associates with the
spectrin-like repeats of �-actinin. Yeast
two-hybrid analysis indicated a highly specific
association of CLP-36 and Clik1 (CLP-36
interacting kinase) (Vallenius et al., 2000).
The association is mediated by the C-terminal
part of CLP-36 containing LIM domain and
leads to relocalization of the otherwise nu-
clear Clik1 kinase to actin stress fibers
(Vallenius & Makela, 2002).
Cypher, a striated muscle-restricted protein,

has two mRNA splice variants designated
Cypher1 and Cypher2. Both proteins contain
PDZ domain at the N-terminus. Cypher1, but

not Cypher2, contains three LIM domains
close to the C-terminus. Cypher1 and Cypher2
bind to �-actinin via their PDZ domains at the
Z-lines of cardiac muscle. These data suggest
that Cypher functions as an adaptor in striated
muscle to link protein kinase C-mediated sig-
naling to the cytoskeleton (Zhou et al., 1999).
In turn, PDZ domain of Enigma, another mem-
ber of PDZ-LIM family, is present at the Z-line
in skeletal muscle and its PDZ domain binds to
the actin-binding protein tropomyosin (skele-
tal �-TM). The interaction suggests a role for
Enigma as an adapter protein that directs
LIM-binding proteins to actin filaments of
muscle cells (Guy et al., 1999).
LAP family. The LAP (leucine-rich repeats

and PDZ) family of PDZ proteins plays a role in
establishment of cell polarity, and mutation of
these proteins can have oncogenic conse-
quences. Sixteen leucine-rich repeats (LRRs) at
the N-terminus and single PDZ domain at the
C-terminus presents a characteristic architec-
ture of all members of LAP family.
The LAP protein, Erbin was identified as an

adaptor protein present in the basolateral
epithelia and involved in proper localization
of ERBB2/HER2 receptors to the basolateral
membrane of epithelial cells. This process is
mediated by Erbin PDZ domain, which was
shown to bind the C-terminus of the receptor
both in vitro and in vivo (Borg et al., 2000). It
was also reported that �-catenin and ARVCF
serve as interaction partners for Erbin PDZ
domain (Laura et al., 2002).
Another LAP family member, Densin, was

identified as a transmembrane specific adhesion
molecule mediating adhesion between pre- and
postsynaptic membranes at glutamatergic syn-
apses (Apperson et al., 1996). Screening of hu-
man brain cDNA library resulted in identifica-
tion of �-catenin/neural plakophilin-related
armadillo repeat protein (NPRAP) as a potential
binding partner of PDZ domain of Densin.
Colocalization of densin with �-catenin/NPRAP
at synapses suggested an important role in orga-
nization of the synaptic cell–cell junction (Izawa
et al., 2002). Later studies, showed binding of
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Figure 4. Modular organization of PDZ-containing proteins exemplified by representative members of
described PDZ families.

Numbers within blue squares describe sequential PDZ domains.

Figure 3. Ligand binding pockets of class I, II and III PDZ domains.

A. The third PDZ domain from the synaptic protein PSD95 in complex with a C-terminal peptide derived from
CRIPT (KQTSV). E. Erbin PDZ domain bound to the C-terminal tail of the ErbB2 receptor (EYLGLDVPV). G. The
neuronal nitric oxide synthase (nNOS) PDZ domain complexed with VVKVDSV. A, D and E. The hydrogen bond-
ing in PDZ domains (blue ribbon representation) and peptide (red sticks) complexes is shown (green dashed lines).
Water molecules are in yellow. C, F and I. Surface topology of PDZ domain bound to their peptides. The figure was
made using program PyMOL (DeLano). B, D and H. Two-dimensional representation of the interaction of PDZ do-
mains (orange) and their peptides (purple) was made using program LIGPLOT (Wallace et al., 1995) hydrogen
bonds as dashed lines and hydrophobic interactions as arcs with radial spokes. Water molecules were not included
in this presentation.



Densin PDZ domain to C-terminus of
MAGUIN-1 (membrane-associated guanylate
kinase-interacting protein 1) protein what is es-
sential for assembly of PSD-95, MAGUIN-1,
Densin ternary complex at the postsynaptic
membrane of hippocampal neurons (Ohtakara et
al., 2002). The Drosophila tumor suppressor
Scribble is a PDZ-containing protein belonging
to the LAP family and required for maintaining
epithelial cell polarity. At the larval neuro-
muscular junction, Scribble colocalizes and indi-
rectly interacts with another tumor suppressor
and PDZ protein, Dlg. Scribble was identified as
an essential regulator of synaptic architecture,
plasticity and physiology (Roche et al., 2002).
Shank family. The scaffold proteins,

Shank1, Shank2, and Shank3 (SH3 and multi-
ple ankyrin repeat domains proteins) are mem-
bers of the Shank family. These complex pro-
teins (each about 2000 aa) possess several types
of binding modules such as (from the N to C-ter-
minus) multiple ankyrin repeats, an SH3 do-
main, a PDZ domain, a long proline-rich region
and a sterile alpha motif (SAM) domain. All
Shank proteins are highly concentrated in
postsynaptic density of brain excitatory synap-
ses (Boeckers et al., 1999; Lim et al., 1999;
Naisbitt et al., 1999) where they play an impor-
tant role in assembly of signaling complexes be-
tween membrane and cytoplasmic proteins.
The Shank PDZ domain was shown to bind the
C-terminus of GKAP (guanylate kinase-asso-
ciated protein) protein, that is also abundant in
PSD of brain synapses (Boeckers et al., 1999;
Naisbitt et al., 1999; Tu et al., 1999; Yao et al.,
1999). Additionally, the C-termini of mGluRs
and of SSTR2 (somatostatin receptor type 2)
were reported to interact directly with the
Shank PDZ domain in yeast two-hybrid (Tu et
al., 1999).

PDZ-containing proteins not classified to
families

Besides PDZ-containing proteins classified
to the families and subfamilies, there are
many proteins possessing PDZ modules in a

unique arrangement with other signaling do-
mains and which cannot be simply grouped.
This situation demonstrates and confirms a
gigantic potential and spreading of PDZ do-
mains among many types of existing pro-
teins. Several interesting examples of such
proteins are briefly described below.
The protein tyrosine phosphatase, PTP-BL,

localized to the submembranous region of epi-
thelial cells is characterized by having the
N-terminal FERM (4.1, ezrin, radixin,
moesin) domain, five PDZ domains and the
C-terminal catalytic phosphatase domain. Its
PDZ domains are involved in interactions
with several partners; in particular, PDZ2
and PDZ4 interact with two LIM domain con-
taining proteins, RIL (reversion-induced LIM
protein) and TRIP-6 (thyroid receptor
interacting protein 6) (Cuppen et al., 2000),
which are found in actin-rich structures of the
cell. In addition, PDZ1 can interact with BP75
(bromodomain-containing protein) (Cuppen
et al., 1999), PDZ2 with the tumor supressor
protein APC (adenomatous polyposis coli)
(Erdmann et al., 2000) and PDZ3 with the
Rho effector kinase PRK2 (protein kinase
C-related kinase 2) (Gross et al., 2001). An-
other interesting PDZ-containing protein,
Delphilin, is the first reported protein that
contains a single PDZ domain in combination
with two forming homology (FH) domains.
This unique protein has been reported to in-
teracts with the GluR�2 C-terminus via its
PDZ domain (Miyagi et al., 2002). PDZ-Rho-
GEF and LARG (leukemia-associated Rho
guanine-nucleotide exchange factor) proteins,
essential for activation of biochemical path-
ways specific to Rho-like GTPases also pos-
sess a single N-terminal PDZ domain in their
multidomain architecture. Recent studies
have shown the interaction between PDZ do-
main of PDZ-RhoGEF and LARG and the
C-terminus of B-plexins, suggesting B-plexin-
mediated activation of Rho signaling (Swiercz
et al., 2002). Another signaling pathway, ex-
tremely important for vertebrate and non-ver-
tebrate embryogenesis, called the canonical
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Wnt signal transduction cascade, also em-
ploys the PDZ-containing protein, Dishev-
elled, with a conserved arrangement of three
domains: DAX (domain present in Dishev-
elled and axin), PDZ and DEP (Dishevelled,
Egl-10, and pleckstrin). The PDZ domain of
Dishevelled is necessary for its ability to in-
duce nuclear accumulation of �-catenin
(Kishida et al., 1999).

UNCONVENTIONAL FUNCTIONS OF
PDZ-CONTAINING PROTEINS IN A
LIVING CELL

Emphasizing a primary and critical role of
PDZ proteins in the organization of large sig-
naling complexes at the plasma membrane,
several additional functions of PDZ-contain-
ing proteins were reported.

Protein targeting

Lin2, Lin7 and Lin10 are C. elegans proteins
required for the normal basolateral localiza-

tion of LET-23 receptor in vulval epithelial
cells (Simske et al., 1996; Kim, 1997; Bredt,
1998; Whitfield et al., 1999). On the other
hand, mammalian homologues of these pro-
teins (mLin-2/CASK/PALS, mLin-7/VELI/
MALS and mLin-10/MINT/X11) are mainly
localized to neuronal cells where are responsi-
ble for trafficking of the NMDA receptors to
cell membrane. According to the proposed
mechanism of this targeting, Lin-2/CASK,
Lin-7/VELI and Lin-10/MINT have ability to
form a ternary complex (Borg et al., 1998;
Butz et al., 1998; Kaech et al., 1998). In case
of C. elegans homologue in epithelial cells,
both Lin-7 and Lin-10 bind to the Lin-2 pro-
tein (MAGUK protein) through the
non-PDZ-mediated fashion and the PDZ do-
main of Lin-7 binds directly to the C-terminus
of the LET-23 (lethal) receptor. In mamma-
lian neurons, PDZ domain of VELI protein
from the CASK/VELI/MINT complex, binds
to the C-terminus of NMDA receptor subunit
NR2B. Targeting of NMDA receptor to
plasma membrane along microtubules is de-
pendent on the PDZ domain of MINT protein
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(in CASK/VELI/MINT complex), which was
shown to bind to the kinesin superfamily mo-
tor protein KIF17 (kinesin family member 17)
(Jo et al., 1999; Setou et al., 2000).

Regulation of gene expression

TAZ (transcriptional co-activator with
PDZ-binding motif) and YAP (Yes-associated
protein) function as co-activators of transcrip-
tion factors and their activity is regulated by
interactions with 14-3-3 and PDZ containing
proteins. The transcriptional co-activation
function of both proteins is critically depend-
ent on the C-terminal residues, which
consitute a PDZ binding motif. PDZ-domain
proteins involved in binding of C-terminal
motifs of TAZ and YAP are E3KARP (NHE3
kinase A regulatory protein or NHERF-2) and
NHERF (Na+/H+ exchanger regulatory factor
or NHERF-1), both containing two tandem
PDZ domains and ERM binding region. TAZ
specifically binds to the PDZ1 domain of
E3KARP, whereas YAP interacts with the
PDZ2 domain of both NHERF and E3KARP.
Removal of the last four C-terminal amino ac-
ids from TAZ eliminates the E3KARP interac-
tion. Therefore, NHERF and E3KARP, which
also bind channels and receptors to cyto-
skeleton, positively regulate transcriptional
activation of TAZ and YAP proteins and link
membrane and cytoskeleton proteins to nu-
clear transcription (Kanai et al., 2000).

Regulation of receptors activity

Interactions between cystic fibrosis trans-
membrane conductance regulator (CFTR)
and two different PDZ-domain proteins:
NHERF-1 (Raghuram et al., 2001) and CAP70
(Wang et al., 2000) are a clear example of in-
volvement of PDZ-containing proteins in reg-
ulation of ion channels activity. The func-
tional CFTR channel is a dimer containing
two PDZ-binding motifs. It has been demon-
strated that NHERF-1 binds to the cytoplas-
mic tails of CFTR Cl– channels through either

of its two PDZ domains. This interaction
cross-links the C-termini within pre-existing
dimeric channel complexes and causes a
conformational change in the channels that
affects Cl– gating (Raghuram et al., 2001).
Another studies have found that dimeric

binding of multi-PDZ protein CAP-70 (hydro-
philic CFTR-binding protein) to the C-termini
of CFTR channels is sufficient to potentiate
the chloride current (Wang et al., 2000). They
proposed a model of CAP-70-mediated
potentiation. According to this model, in the
absence of CAP-70 protein, CFTR Cl– chan-
nels exist either as monomers or as transient
dimers. Bivalent binding mediated by CAP-70
PDZ domains increases the binding affinity
and improves the contact geometry between
the two interacting CFTR molecules.

Selection of substrates

Bacterial tail-specific proteases are peri-
plasmic enzymes, which cleave proteins with
non-polar C-termini. It was shown that sub-
strate specificity of these proteases is pro-
vided by the presence of PDZ domain inde-
pendent of the catalytic domain. Two possible
mechanisms of substrate recognition were
proposed. One assumes that the PDZ domain
initially recognizes a cognate substrate by
binding to its non-polar C-terminus and this
event recruits a substrate to the catalytic site.
In this case PDZ domain helps to increase the
enzyme affinity towards the substrate and
creates enzyme-substrate complex. An alter-
native mechanism assumes that binding of
the C-terminus of the substrate to the PDZ do-
main causes a conformational change that, in
turn, activates proteolytic domain (Beebe et
al., 2000).
Members of another family of bacterial pro-

teases, HtrA, also combine a proteolytic do-
main with at least one C-terminal PDZ do-
main (Pallen & Wren, 1997). Finally, tricorn
proteases forming proteasome-like capsids
in Archea also contain PDZ domains which
in cooperation with a �-propeller fold play a
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role in substrate selection (Pallen et al.,
2001).

EFFECTS OF PDZ DOMAIN
MALFUNCTIONS

Malfunction of many PDZ domain-contain-
ing proteins is implicated in a variety of
pathophysiological phenomena, including
cancer. Analysis of p55 MAGUK protein
mRNA from patients with acute mega-
caryoblastic CML revealed a 69 base pair de-
letion in the PDZ domain. This observation is
the first abnormality of a PDZ domain linked
to a human disease. Mutations in a gene en-
coding harmonin cause Usher syndrome type
1C, an autosomal recessive disorder charac-
terized by congenital sensorineural deafness,
vestibular dysfunction and blindness
(Bitner-Glindzicz et al., 2000; Montell, 2000;
Verpy et al., 2000). PDZ1 and PDZ2 domains
of harmonin interact with two complemen-
tary binding surfaces of the Cadherin 23
(CDH23) cytoplasmic domain. Interaction of
PDZ1 with CDH23 is perturbed by the inser-
tion of 35 amino acids within CDH23 (Sie-
mens et al., 2002). Mutations in Periaxin gene
cause Dejerine-Sottas neuropathy, a severe
demyelinating form of peripheral neuropathy
(Boerkoel et al., 2001; Sherman et al., 2001).
In flies, mutations in the gene encoding

INAD, a protein composed solely of PDZ do-
mains, disrupt the photoinduction cascade re-
sulting in the light-dependent retinal degener-
ation (Shieh & Zhu, 1996). Mutations in PDZ
domain-containing protein result in sub-
cellular mislocalization of the LET-23 protein
and the lack of vulval differentiation. The
LAP proteins are recently described family of
scaffold proteins that are involved in the for-
mation of membrane complexes and the
maintenance of epithelial and neuronal cell
shape and polarity (Bryant & Huwe, 2000).
For example, in Drosophila mutation of the
Scribble LAP protein (16 leucine rich repeats

and four PDZ domains) results in loss of epi-
thelial cell polarity and morphology as well as
uncontrolled, tumor-like growth (Bilder &
Perrimon, 2000). Moreover, disruption of
Scribble gene (Scrb1) causes severe neural
tube defects (termed craniorachischisis) in
the circletail mouse. In this disorder, almost
the entire brain and spinal cord are affected,
owing to a failure to initiate neural tube clo-
sure. It was found, that the Scrb1 gene mu-
tated in circletail (Crc) contains a single base
insertion that creates a frame shift and leads
to a premature termination of the Scrb1 pro-
tein. Scrb1 may control the subcellular local-
ization of the Vangl2 protein alternatively
Scrb1 and Vangl2 may form a part of a pro-
tein complex, perhaps through a direct inter-
action of the C-terminal PDZ-binding motif of
Vangl2 with the PDZ domains of Scrb1
(Murdoch et al., 2003).
Syntenin was originally discovered as a pro-

tein containing a tandem of PDZ domains and
interacting with transmembrane proteo-
glycans called syndecans (Grootjans et al.,
1997). Syntenin was subsequently shown to
bind class B ephrins, proTGF-�, neurofascin,
schwannomin (also known as merlin), IL5 re-
ceptor � (ILR5�) and various glutamate re-
ceptor subtypes. Very recently, it was discov-
ered that syntenin is overexpressed and pro-
motes cell migration in metastatic human
breast and gastric cancer cell lines (Koo et al.,
2002). Expression analysis shows that level of
syntenin correlated well with invasive and
metastatic potential in these cell lines. Fur-
thermore, syntenin-trasfected cells migrated
more actively, and showed numerous cell sur-
face extensions, suggesting that syntenin is
active upstream of pathways affecting actin
cytoskeleton (Koo et al., 2002). There is some
experimental evidence that PDZ domains con-
stitute for good drug targets. Fas (APO-1/
CD95), a member of the tumor necrosis factor
receptor superfamily and a cell surface recep-
tor, which induces apoptosis, interacts with
the PDZ domain of the Fas-associated phos-
phatase-1 (FAP-1). Direct cytoplasmic micro-
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injection of a tripeptide (Ac-SLV) correspond-
ing to the C-terminal fragment of Fas, re-
sulted in apoptosis in a colon cancer cell line
that expresses both Fas and FAP-1 (Yana-
gisawa et al., 1997). It is therefore possible
that other PDZ-mediated pathways may be
equally sensitive to selective inhibitors.
PDZ domains are involved in tumorigenesis,

cell migration and metastasis. Among highly
expressed proteins in the human primary
prostate tumors is AIPC (activated in
prostate cancer), a protein containing six
PDZ domains (Chaib et al., 2001). It is possi-
ble, that disrupting the pathways mediated by
these domains might inhibit early promotion
of prostate tumorigenesis. In colon, breast,
liver, lung, pancreas, stomach, and prostate
tumors, a protein containing PDZ and LIM
domains, denoted PCD1, was significantly
overexpressed, in contrast to normal tissues
(Kang et al., 2000). It has been suggested that
it participates in cytoskeletal reorganization
in cancer, and that it could be a target for
drug design.

CONCLUDING REMARKS

PDZ domains are ubiquitous element of cy-
toplasmic proteins in organisms from bacte-
ria to mammals. Due to a common multiple
copy occurrence within a single protein they
mediate formation of extensive protein–pro-
tein networks. Diversity and size of such pro-
tein complexes is further enhanced by combi-
nation of PDZ domains with other protein in-
teraction modules (SH3, PTB, LIM, WW, and
ankiryn repeats). Among major cellular tar-
gets of PDZ domains are proteins associated
directly with the plasma membrane like ion
channels, receptors and cytoskeleton proteins
The structural basis of their specificity to
bind four to six C-terminal residues of these
proteins appears relatively simple and sug-
gests redundancy of recognized target se-
quences. However, since PDZ domains can

also bind other PDZ domains in a head-to-tail
fashion, recognize internal structural motifs
in their target proteins or bind
phosphatidylinositol derivatives, it is likely
that diversity of their cellular interactions is
much broader. Significant problems can be
expected in deciphering cellular function and
regulation of PDZ containing proteins since
currently the technology to study in vivo
transient multidomain protein complexes is
not developed.
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