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In this review the roles of specific proteins during the first step of mineralization
and nucleation are discussed. Mineralization is initiated inside the extracellular
organelles–matrix vesicles (MVs). MVs, containing relatively high concentrations of
Ca2+ and inorganic phosphate (Pi), create an optimal environment to induce the for-
mation of hydroxyapatite (HA). Special attention is given to two families of proteins
present in MVs, annexins (AnxAs) and tissue-nonspecific alkaline phosphatases
(TNAPs). Both families participate in the formation of HA crystals. AnxAs are Ca2+-
and lipid-binding proteins, which are involved in Ca2+ homeostasis in bone cells and
in extracellular MVs. AnxAs form calcium ion channels within the membrane of MVs.
Although the mechanisms of ion channel formation by AnxAs are not well under-
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stood, evidence is provided that acidic pH or GTP contribute to this process. Further-
more, low molecular mass ligands, as vitamin A derivatives, can modulate the activ-
ity of MVs by interacting with AnxAs and affecting their expression. AnxAs and other
anionic proteins are also involved in the crystal nucleation. The second family of pro-
teins, TNAPs, is associated with Pi homeostasis, and can hydrolyse a variety of phos-
phate compounds. ATP is released in the extracellular matrix, where it can be hydro-
lyzed by TNAPs, ATP hydrolases and nucleoside triphosphate (NTP) pyrophos-
phohydrolases. However, TNAP is probably not responsible for ATP-dependent
Ca2+/phosphate complex formation. It can hydrolyse pyrophosphate (PPi), a known
inhibitor of HA formation and a byproduct of NTP pyrophosphohydrolases. In this
respect, antagonistic activities of TNAPs and NTP pyrophosphohydrolases can regu-
late the mineralization process.

SKELETAL TISSUES

The two major skeletal tissues, cartilage and
bones, are structurally and functionally dif-
ferent (Heinegard & Oldberg, 1989). Carti-
lage is highly hydrated and, except at the
growth plates of long bones, rarely mineral-
izes, resulting in a permeable matrix of
gel-like consistency. On the other hand, bone
matrix routinely mineralizes to form a rigid
impermeable matrix (Marks & Popoff, 1988).
Proteoglycan and type II collagen are major
matrix components in cartilage, while type I
collagen is the major part of bone matrix
(Marks & Popoff, 1988). In both cartilage and
bone, cellular activities include matrix forma-
tion, mineralization and resorption.
In each tissue, different cell types (Fig. 1)

perform distinct tasks, which sometimes
overlap each other. Bone matrix is formed
and mineralized by osteoblasts and resorbed
by osteoclasts (Fig. 1A). Osteocytes partici-
pate in extracellular exchanges between dif-
ferent components of osseous tissue.
Osteocytes are also involved in the
mechanotransduction (Marks & Popoff,
1988). In cartilage, matrix formation results
from the activity of chondrocytes (Marks &
Popoff, 1988). Chondrocytes express hyper-
trophic and non-hypertrophic phenotypes
(Fig. 1B). Hypertrophic chondrocytes are
characteristic for developing bones and for
so-called growth plate. Non-hypertrophic
chondrocytes are also found in the growth
plate and may participate in the formation of
articular cartilage (Fig. 1C) (Poole, 2001).

Growth plate chondrocytes undergo several
series of differentiation events, including pro-
liferation and hypertrophy. All these events
are required for bone formation during
endochondral ossification. Chondrocyte hy-
pertrophy occurs at the expense of adjacent
matrix and it requires matrix resorption.
Bone formation takes place in the organism

not only during embryonic development
(growth plate cartilage in the process of
endochondral bone formation) and growth
but throughout the life in the process of physi-
ological bone remodeling (Lian & Stein,
1996).

CELL BIOLOGY

Chondrocytes and osteoblasts are of
mesenchymal origin. Mesenchymal stem cells
are able to generate progenitors with restrict-
ed developmental potential. From progenitor
cells, various cell types can be differentiated
into fibroblasts, adipocytes, chondrocytes
and osteoblasts (Fig. 2). The two latter cell
types under the influence of growth factors
give rise to cells able to form calcified tissues.
Hypertrophic chondrocytes and osteoblasts
initiate the calcification process by releasing
matrix vesicles (MVs) (Anderson, 2003). MVs
of growth plate cartilage differ in lipid and
protein composition from MVs produced by
osteoblasts (Boyan et al., 1988). It has been
suggested that MV biogenesis, from growth
plate hypertrophic chondrocytes, could be the
result of programmed cell death. This would
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appear not to be the case for MVs released
from viable osteoblasts (Anderson, 2003).
MVs initiate mineral formation starting from
embryonic ossification to bone formation in
adults (Hoshi & Ozawa, 2000).

MATRIX VESICLES

Several stages of mineralization were identi-
fied. The mineralization of bone and cartilage

requires the presence of extracellular MVs
(Anderson, 1995; 2003), since the first step of
mineralization is initiated inside these
organelles. MVs (in size between one hundred
to several hundred nanometers in diameter)
serve as a site for Ca2+ and Pi accumulation.
MVs create a specific environment where de-
position of initial amorphous mineral com-
plexes (nucleation) occurs and where
hydroxyapatite (HA) e.g. Ca10(PO4)(OH)2, is
produced and forms needle-like crystals on
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Figure 1. Regional organization and relationships among bone, growth plate and articular cartilage.

Panel A. Topographic relationship among bone cells. Osteoblasts are located on the lining layer of bone surface, ac-
tively producing matrix, which is not yet calcified (osteoid tissue). Osteocytes are the most mature or terminally
differentiated cells of the osteoblast lineage. Osteocytes are embedded in the bone matrix. Panel B. primary mam-
malian growth plate showing progressive development of chondroblasts from the proliferative zone to the lower hy-
pertrophic zone, where matrix synthesis stops and the extracellular matrix is calcified. Panel C. Regional organiza-
tion of articular cartilage. The superficial zone contains thin collagen fibrils arranged parallel with the articular
surface. The partly calcified cartilage of the calcified zone is indicated. Adapted from Marks & Popoff (1988) and
Poole (2001).



the inner surface of the MV membrane. The
extracellular matrix contains sufficiently high
levels of Ca2+ and Pi concentrations to sus-
tain the nucleation process and to propagate

the mineralization (Anderson, 2003). Ion
channels and transporters present in MV
membrane are responsible for Ca2+ and Pi up-
take into these organelles. After reaching a
certain length, the needle-like HA crystals are
released from MVs into the extracellular ma-
trix. The mechanisms by which the HA crys-
tals can break the membrane of MVs are not
very well understood. One possible explana-
tion is that the activity of phospholipases
could be triggered, once HA crystals are
formed, and may affect the MV membrane
fluidity (Swain et al., 1992; Schwartz &
Boyan, 1988).
The second step of mineralization starts with

a release of HA crystals. These crystals serve as
a template for the formation of crystalline ar-
rays, leading to a tissue calcification (Anderson,

2003). Although details of the mechanism are
still unknown, assembly of mineral complexes
depends probably on electrostatic, structural
and stereochemical properties at the inor-

ganic–organic interface. Subtle interactions be-
tween negatively charged domains of proteins,
anionic phospholipids and mineral complexes
are crucial in the propagation of arrays of crys-
tals. All processes taking place in MVs require a
dynamic but tightly regulated system to main-
tain Ca2+ homeostasis and Pi delivery. Many ac-
tors have been identified to date, among them
vertebrate annexin (AnxAs), Ca2+- and mem-
brane-binding proteins, as well as alkaline
phosphatase.

ANNEXINS IN MINERALIZING
TISSUES

From twelve members of the annexin family
of proteins present in mammalian organisms,
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Pluripotent stem cells develop from multipotential mesenchymal stem cells. The pluripotent stem cells are progeni-
tors of all indigenous cells of connective tissues: fibroblasts, adipocytes, osteoblasts and chondrocytes. The influ-
ences of several physiological factors like transforming growth factor � (TGF�), bone morphogenetic protein 2
(BMP-2), all-trans retinoic acid (ATRA), 1�,25-dihydroxyvitamin D3 (1,25-(OH)2-D3), and 3,5,3’-triiodo-L-thyronine
(T3) on the lineage of osteoblasts and chondrocytes are indicated in the figure. Osteoblasts exist in two forms as os-
teoblasts monolayer on the surface of growing bone tissue which synthesize and secrete organic components of ma-
trix and produce mineralization competent matrix vesicles and osteocytes enclosed within bone matrix.
Chondrocytes are characterized by two phenotypes: non-hypertrophic characteristic for articular cartilage, and hy-
pertrophic in growth plate. Adapted from Lian & Stein (1996).



three were identified in MVs: annexin A2
(AnxA2), AnxA5 and AnxA6 (Cao et al., 1993;
Kirsch et al., 1997a; 1997b; Kirsch & Claass-
en, 2000). Due to the high Ca2+ concentration
both inside and outside MVs, and the high
content of anionic phospholipids, mainly
phosphatidylserine (PS), and cholesterol in
MV membrane (Harder et al., 1997; Wuthier,
1975; Ayala-Sanmartin, 2001; Ayala-Sanmar-
tin et al., 2001; De Diego et al., 2002; ), AnxAs
can be associated with both outer and inner
leaflets of MV membrane. AnxAs affect mem-
brane stability in a Ca2+-dependent manner
(Goossens et al., 1995). In addition, AnxAs
could be involved in the Ca2+ transport, as ion
channels inserted within the MV membrane.
During the first phase of MV-mediated calcifi-

cation, mineral complexes appear on the inner
surface of MV membrane. The high affinity for
Ca2+ of PS is quite strong in the inner leaflet of
the MV membrane enriched with anionic
lipids (Majeska et al., 1979; Taylor et al., 1998).
Accordingly, AnxA5 exhibiting Ca2+-depend-
ent PS-binding property was isolated with
PS–Ca2+–Pi complexes from nucleation core
of chicken growth plate MVs (Wu et al., 1993;
1996; 1997a). Smaller amounts of AnxA2 and
AnxA6, as well as other proteins, were co-puri-
fied with AnxA5 (Wu et al., 1997a; 2002a).
AnxAs associated with the outer surface of

MV and bone-derived cell membranes may in-
teract with extracellular matrix molecules.
AnxA2 and AnxA6 bind chondroitin sulfate in
a Ca2+-dependent manner (Ishitsuka et al.,
1998; Ishitsuka, 2000; Takagi et al., 2002).
AnxA5 binds types II and X collagens and
C-propeptide of type II collagen (Kirsch &
Pfäffle, 1992; von der Mark & Mollenhauer,
1997; Kirsch et al., 2000a). The above de-
scribed interactions may influence MV shape,
thereby affecting crystal growth. Indeed,
chondrosarcoma cells, expressing low quanti-
ties of AnxA5, are not able to bind type II col-
lagen. This suggests that AnxA5 is a key mole-
cule to promote extracellular matrix binding,
which is essential for cartilage function (King
et al., 1997). In chicken growth plate, types II

and X collagens enhance Ca2+ influx into
MVs, promoting activity of ion channels
formed by AnxAs (Kirsch & Wuthier, 1994;
Kirsch et al., 1994; 2000a). However, the pres-
ence of collagen is not essential for mineral-
ization, as shown with knockout animals
(Jacenko et al., 1993), with reconstituted sys-
tems (Kirsch et al., 1997a) and with purified
MVs (Hsu & Anderson, 1978; Kirsch et al.,
2000a; Wang & Kirsch, 2002). Nevertheless,
collagens could influence initialization and
progression of mineral formation in MVs. In
addition, ANXA5–/– mice were normal in re-
spect of development of their skeletons
(Brachvogel et al., 2003), probably because
other AnxAs could replace AnxA5 function in
knockout animals.
AnxAs are specific markers of chondrocyte

hypertrophy. Articular cartilage cells, in con-
trast to growth plate chondrocytes, maintain
a stable phenotype. The upper zone of the ar-
ticular cartilage (Fig. 1C) contains thin colla-
gen fibrils and proteoglycan called aggrecan.
In this zone, tensile forces connected with
daily life are maximally concentrated. In
lower zones, as in the middle and deep zones,
the cell density decreases, collagen fibers are
thicker and aggrecan content is higher. Calci-
fied zones, where chondrocytes develop an
hypertrophic phenotype, provide a link be-
tween subchondral bone and joint cartilage
(Poole, 2001). Articular cartilage, unlike
growth plate, usually does not undergo ma-
trix calcification. However, mineralization
frequently occurs during osteoarthritis and
aging. In osteoarthritis, progressive damage
and loss of articular cartilage matrix (espe-
cially in superficial zone) are observed. These
events are accompanied by cell death and
pathological matrix mineralization, leading to
bone remodelling and to subchondral bone
mass increase. In addition, an inflammatory
process occurs, giving rise to pain and move-
ment disabilities. The amount of AnxAs is
scarce in normal articular cartilage, while it
significantly increases during progression of
osteoarthritis (Mollenhauer et al., 1999;
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Kirsch et al., 2000b; Pfander et al., 2001).
Therefore, AnxAs could be specific markers
of differentiation during osteoarthritis. For
example, AnxA8, a protein not previously de-
scribed in the growth plate, is expressed dur-
ing inappropriate cell differentiation in
osteoarthritis (White et al., 2002). Relatively
high annexin expression in articular cartilage
chondrocytes is characteristic for hypertro-
phic cells and cells undergoing apoptosis
(Kirsch et al., 2000b; Kouri et al., 2000) with
the appearance of MVs or apoptotic bodies,
respectively (Derfus et al., 1998; Hashimoto et
al., 1998; Mollenhauer et al., 1999; Kirsch et
al., 2000b). These events lead to mineraliza-
tion of joint matrix (Gelse et al., 2003) and ex-
pression of hypertrophy protein markers, as
type X collagen and alkaline phosphatase
(Hoyland et al., 1991; Pullig et al., 2000;
Kirsch et al., 2000b). MVs are present in artic-
ular cartilage from healthy subjects (Einhorn
et al., 1985; Derfus et al., 1996). In osteo-
arthritis, MVs coexist in extracellular matrix
with apoptotic bodies which are the products
of chondrocytes at the terminal differentia-
tion stage. There are no phagocytic cells in
joint cartilage, therefore, apoptotic bodies re-
main in the cartilage unless the extracellular
matrix becomes  degraded.

FACTORS AFFECTING ANNEXIN ION
CHANNEL FORMATION

The existence of a Ca2+ transport system in
MVs is not well established. Possible candi-
dates are AnxAs, since ion channels formed
by these proteins in vitro have been described
in literature (Berendes et al., 1993; Arispe et
al., 1996; Kourie & Wood, 2000; Kirilenko et
al., 2002). To understand how AnxAs can me-
diate Ca2+ influx into MVs, factors affecting
annexin activity in the mineralization process
should be identified, as for example lipid com-
position of MV membrane.
MV membrane is distinct from plasma mem-

brane (Wuthier, 1975). It is enriched in PS,

diphosphatidylglycerol and lysophospholipids
due to the difference in the rate of phos-
pholipid degradation (Wuthier et al., 1977;
1978). The anionic phospholipid content in
calcified cartilage and bone is significantly
higher than in non-calcifying cartilage zones
(Wuthier, 1968; Wu et al., 2002a). This may
indicate that anionic phospholipids are in-
volved in mineral formation. It is in agree-
ment with the results of many experiments in-
dicating that Ca2+-dependent binding of
AnxAs to model membranes is enhanced by
the content of anionic phospholipids. Maxi-
mal Ca2+ influx mediated by AnxAs into lipo-
somes occurs when they are prepared from
PS and phosphatidylethanolamine (PE) mix-
ture at 9:1 mole/mole (Kirsch et al., 1997a).
In addition, PS clustering may be induced by
the high cholesterol content in MV membrane
(Wuthier, 1975). AnxA5 interacts in a
Ca2+-dependent manner with cardiolipin in
isolated mitochondria (Megli et al., 1995;
2000). Since cardiolipin is present also in MV
membrane (Wuthier, 1975), these interac-
tions may occur in MVs.
AnxA2, AnxA5 and AnxA6 are abundant in

acidified organic extracts of MVs (25–40% of
extraction of AnxAs from crude preparations,
as reported by Genge et al., 1991), suggesting
their presence in the hydrophobic core of lipid
bilayer. This was also evidenced by using selec-
tive labeling of AnxA5 with photoactivable hy-
drophobic reagent, revealing that this protein
inserts into the membrane hydrophobic core
at mildly acidic pH (Isas et al., 2000). At low
pH, aspartate and glutamate residues of
AnxAs are protonated. The protein surface be-
comes more hydrophobic, facilitating its inser-
tion into lipid bilayer (Kohler et al., 1997;
Beermann ofm cap et al., 1998; Isas et al.,
2000; 2003; Golczak et al., 2001a; b).
Whether, the low pH-induced annexin ion

channels in MVs may form during mineral-
ization, remains to be elucidated. In fact, it
is not clear which population of AnxAs may
participate in ion channel formation:
AnxAs associated with the external or the
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internal leaflet of the MV membrane. It is
possible that annexin channels are formed
in plasma membrane before MV budding.
The pH measurements made in tissue sec-
tions indicate that intracellular pH in
chicken growth plate is dependent on the
zone from which chondrocytes are derived.
The lowest pH was observed in the periph-
ery of late hypertrophic and calcifying cells
(Wu et al., 1997b). Moreover, protons are
byproducts of HA formation in MVs. Low
pH can prevent HA formation by increasing
solubility of formed mineral for which the
optimal pH for crystal formation is in the
range of 7.4–7.8 (Valhmu et al., 1990). How-
ever, extensive acidification during crystal
formation is prevented by type II carbonic
anhydrase (Stechschulte et al., 1992; Sauer
et al., 1994).
Chondrocytes in the growth plate release

NTPs that may regulate cell maturation and
matrix mineralization (Hatori et al., 1995;
Hung et al., 1997; ). NTPs are also released by
non-stimulated (Hatori et al., 1995) and by
stimulated osteoblasts in response to mechan-
ical activation (Romanello et al., 2001).
AnxAs can bind nucleotides under in vitro
conditions (Kirilenko et al., 2001; 2002;
Bandorowicz-Pikula et al., 2001; 2003) but
probably, with the exception of AnxA7
(Caohuy et al., 1996), do not hydrolyze nucleo-
tides. GTP in a millimolar concentration
range induced AnxA6 channel formation in
planar lipid bilayers (Kirilenko et al., 2002). It
was also shown that the AnxA5 ion channel
activity in MV could be regulated by NTPs
(Arispe et al., 1996). However, the mecha-
nism by which these channels are formed in
MVs is not yet elucidated.

INTERACTIONS OF ANNEXINS WITH
OTHER PROTEINS DURING
MINERALIZATION

Changes in extracellular fluid composition,
reductions in extracellular pH, increase in ma-

trix synthesis, as well as morphological
changes associated with local compaction of
matrix around the cells, may affect chon-
drocyte proliferation and maturation
(Buschmann et al., 1995; Quinn et al., 1998;
Wu & Chen, 2000). For example, hyperosmotic
stimuli was reported to affect protein synthe-
sis in cartilage, as well as Ca2+ and H+ homeo-
stasis (Dascalu et al., 1996; Erickson et al.,
2001).
Additional factors that may affect annexin

ion channel activity during mineralization are
associated with their interaction with other
proteins. Mobasheri et al. (2002) attributed
perception of mechanical signals in cartilage
to cell surface membrane mechanoreceptors.
These receptors are composed of integrins
and stretch activated ion channels. Multiple
mechanosensitive ion channels were charac-
terized in osteoblasts and chondrocytes. None
of these channels revealed similarities with
AnxAs (Davidson et al., 1990; 1996; Duncan &
Hruska, 1994; Guilak et al., 1999; Koprowski
& Kubalski, 2001; Biggin & Sansom, 2003;
Shakibaei & Mobasheri, 2003). In osteoblasts,
increase in [Ca2+]in by oscillating fluid flow,
was attenuated by the addition of anti-AnxA5
antibodies. This suggests that AnxA5 may be
involved in mechanotransduction in bone
(Yellowley et al., 2002). Recently, it was ob-
served that AnxA5 binds to the cytoplasmic
part of �5 subunit of bovine integrin �v�5
(Andersen et al., 2002).
Homodimeric S100A and S100B proteins

interact with AnxA5 and AnxA6 at 1 mole
S100 dimer per 2 mole annexin stoichio-
metry (Donato, 2003). It was previously
demonstrated by co-immunoprecipitation
(Arcuri et al., 2002) and inhibition of
annexin- mediated Ca2+ fluxes (Garbuglia et
al., 1998; 2000). However, annexin–S100
interactions have not been investigated in
cell systems able to perform mineralization.
It was reported that calbindin D9k, an un-
usual monomeric member of S100 proteins,
is present in MVs (Balmain, 1991; 1992;
Balmain et al., 1989; 1991; 1995). Calbindin
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D9k is a vitamin D3-dependent protein and
its expression affects dietary Ca2+ accumu-
lation in bones (Li et al., 2001). The pres-
ence of this protein is important for inter-
stitial Ca2+ absorption. In rat epiphyseal
chondrocytes, calbindin D9k is highly ex-
pressed only in mature and hypertrophic
chondrocytes (Balmain et al., 1995). It is
postulated that calbindin D9k takes part in
mineral nucleation (Balmain, 1991). Be-
sides, calbindin D9k reveals 47% and 37%
identity and 64% and 55% homology in pri-
mary structure with S100A and S100B pro-
teins, respectively. Such high similarity be-
tween proteins supports the hypothesis that
calbindin D9k can interact with AnsAs dur-
ing mineralization.

EFFECT OF RETINOIC ACID ON
THE MATURATION OF
CHONDROCYTES AND ON THE
MINERALIZATION PROCESS

Recent findings reveal that growth plate
chondrocytes proliferate and mature faster
upon treatment with all-trans retinoic acid
(ATRA) (De Luca et al., 2000). It is accompa-
nied by terminal differentiation of
chondrocytes and production of mineraliza-
tion competent MVs, rich in AnxAs and alka-
line phosphatase (Wang & Kirsch, 2002;
Wang et al., 2003). ATRA, an agonist of recep-
tors of retinoic acid and other retinoids
(RAR/RXR), stimulates events leading to
mineralization and matrix remodeling. In ad-
dition, it stimulates cell differentiation and
apoptosis, as well expression of metallopro-
teinases (Nie et al., 1998), type I collagen (ex-
pression of proteoglycans and type II and X
collagens is inhibited), alkaline phosphatase
and AnxAs (Wu et al., 1997c; Wang et al.,
2003). Moreover, events characteristic for
apoptosis, such as down-regulation of Bcl-2,
activation of capsase-3 and DNA fragmenta-
tion occur after treatment with ATRA. These
events are reversed by simultaneous treat-

ment of cells with ATRA and BAPTA-AM
(intracellular Ca2+ chelator) or K-201, a
1,4-benzothiazepine derivative that can in-
hibit ion channel activity of AnxAs (Kaneko et
al., 1997a; 1997b; Hofmann et al., 1998;
Wang et al., 2003). This may indicate that
annexin-mediated Ca2+ fluxes are responsible
for events related to cell maturation, cell
apoptosis and tissue mineralization. Re-
cently, we observed that precursor of ATRA,
all-trans retinol (vitamin A), binds to AnxA6
in vitro (Fig. 3), especially at acidic pH, pro-
viding a possible regulatory link with an
annexin-mediated mineralization process. Ad-
dition of retinoids could promote the mineral-
ization process not only by enhancing
annexin expression but by direct interaction
with AnxAs or by changing the membrane flu-
idity (Wang et al., 2003). It has been also
shown that 1�,25-dihydroxyvitamin D3 binds
to AnxA2 of rat osteoblast-like ROS 24/1
cells, inducing increases in intracellular Ca2+

concentration (Baran et al., 2000).

ROLES OF ANNEXINS AND OTHER
ANIONIC PROTEINS IN THE
NUCLEATION PROCESS

Most non-collagenous proteins involved in
initiation and regulation of biological mineral
formation are anionic (Boskey, 1996). Among
proteins synthesized by osteoblasts are osteo-
nectin, osteopontin, osteocalcin and bone
sialoprotein. Cartilage extracellular proteins
are similar to bone, while both tissues differ
in types of collagens. All these proteins share
a high content of aspartic and glutamic acid
residues (30–40%) and multiple phosphoryl
and sialyl groups. They differ in their abilities
to affect the formation of HA in vitro (Hunter
et al., 1996). Additionally, the phosphopro-
teins of bone are processed by limited proteol-
ysis, then they are converted into more phos-
phorylated species that could facilitate miner-
alization (Suzuki et al., 1996). AnxAs have
several putative phosphorylation sites and
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some of them are phosphorylated in vitro
(Grima et al., 1994). In the case of AnxA6,
phosphorylation mimicking mutation re-
sulted in higher Ca2+-binding affinity and
conformational changes leading to increased

protein flexibility in comparison with wild
AnxA6 (Freye-Minks et al., 2003).
It is not known how AnxAs can influence the

nucleation sites at the membrane interface
and which charged domains are responsible
for electrostatic interactions taking place dur-
ing nucleation. Crystal structures of AnxAs
suggest the importance of flexibility for
AnxA6 (Avila-Sakar et al., 2000) and AnxA5
(Oling et al., 2000; 2001) in the annexin–phos-
pholipid interactions. Given these findings, it
is tempting to suggest that AnxAs may influ-
ence molecular organization during nucle-
ation formation, through changes in molecu-
lar flexibility or through protein–protein in-
teractions. Such interactions with other MV
proteins may favor accumulation of inorganic
material.

ALKALINE PHOSPHATASE AND
RELATED PROTEINS IN THE
MATRIX VESICLES

Alkaline phosphatase is one of the most fre-
quently used biochemical markers of osteo-
blast activity (Risteli & Risteli, 1993; Garnero
& Delmas, 1996; Nawawi et al., 1996;
Magnusson et al., 1999). Four genes encoding
human alkaline phosphatase have been
cloned (Kam et al., 1985; Millán, 1986;
Henthorn et al., 1987; Millán & Manes, 1988)
corresponding to three specific alkaline phos-
phatase genes located in chromosome 2
(germ-cell, placenta and intestinal) and one
TNAP gene located in chromosome 1 (Moss,
1992). Alkaline phosphatases from all sources
are homodimeric metalloenzymes which cata-
lyze the hydrolysis of almost any phospho-
monoester with release of Pi and alcohol
(Fernley, 1971).
TNAP exists in three forms derived from

bone, liver and kidney and differing in carbo-
hydrate groups. Osseous TNAP localized in
plasma membrane and in MVs, is a glycosyl-
phosphatidylinositol (GPI)-anchored protein
(Noda et al., 1987; Pizauro et al., 1994). Given

Vol. 50 Annexins and alkaline phosphatase in mineralization 1027

Figure 4. Binding of vitamin A (all-trans retinol)
to AnxA6.

To determine binding of vitamin A to AnxA6, quench-
ing of intrinsic fluorescence of the annexin was mea-
sured, using the same method as for the retinol carrier
protein (Raghu et al., 2003). Panel A. Human recombi-
nant AnxA6 (1 �M) was incubated in 150 mM NaCl, 10
mM Tris/HCl, pH 7.4, without (bold line) or with
(dashed line) 3 �M vitamin A added from concentrated
stock solution in ethanol (final concentration of etha-
nol did not exceed 0.5%). Asolectin liposomes were
also added in the presence of AnxA6 (protein/lipid ra-
tio of 1:1000, by mole) and vitamin A (dotted line).
Panel B. AnxA6 (1 �M) was incubated in 150 mM
NaCl, 10 mM citric buffer, pH 6.0, without (bold line)
or with (dashed line) 3 �M vitamin A. Asolectin
liposomes were also added in the presence of AnxA6
(protein/lipid ratio of 1:1000, by mole) and vitamin A
(dotted line). Samples were excited at 295 nm and fluo-
rescence emission spectra were recorded at the wave-
length range from 320 to 380 nm. All measurements
were performed on a Fluorolog 3 spectrophotometer
(Jobin Yvon Spex Edison, NJ) with 2-nm slits for both
excitation and emission, at 25°C. Quenching of the
AnxA6 intrinsic fluorescence by vitamin A is higher at
pH 6.0 than at pH 7.4. After liposome addition, the
protein fluorescence returns to the basic level only at
pH 7.4, probably due to higher affinity of vitamin A for
lipids than for AnxA6 (dissociation of protein–vitamin
A complex). At pH 6.0, upon addition of liposomes,
AnxA6 inserts within the hydrophobic core of the
membrane lipid bilayer where it is still able to interact
with hydrophobic vitamin A. The result of this experi-
ment suggests that AnxA6 binds vitamin A in vitro.



the different solubilization of TNAP from
osteoblast plasma membrane, obtained from
human primary bone cell culture, it was sug-
gested that changes in TNAP activity result
from age-related modifications. These
changes could be associated with the post-
translational modification of TNAP or with
the membrane constituents (Radisson et al.,
1996; Bourrat et al., 2000). The role of TNAP
in mineral formation was evidenced in the
case of hypophosphatasia, an inheritable dis-
order leading to a defective bone formation
and characterized by a deficiency in TNAP
(Whyte, 1994). Mice deficient in the gene en-
coding TNAP mimic a severe form of
hypophosphatasia, indicating the importance
of TNAP in hydrolyzing phosphate sub-
strates, including PPi, during mineral forma-
tion (Narisawa et al., 1997). In addition, sev-
eral mutations in TNAP occur around a cal-
cium- binding site of the enzyme, not directly
associated with the metal-binding site func-
tion for hydrolysis. It is suggested that these
mutations result in TNAP misfolding (Mornet
et al., 2001).
TNAP appears to be a multifunctional en-

zyme and several of its properties may be im-
portant for the mineralization process (Bel-
lows et al., 1991; Hsu, 1992a; 1992b; Rattner
et al., 2000). Although TNAP is a well-known
biochemical marker of mineralization, the na-
ture of the substrate hydrolyzed by TNAP is
not clearly established. It was proposed a long
time ago that TNAP may supply Pi by hydro-
lyzing phosphate substrates (Robison, 1924).
This proposal was further substantiated by
the observation that supplementation of cul-
ture media with �-glycerophosphate, an exog-
enous TNAP substrate, induced osteogenesis
and HA deposition (Tenenbaum, 1981; Ecaot-
Chevrier et al., 1983). Addition of levamisole,
a specific inhibitor of TNAP activity, pre-
vented �-glycerophosphate-induced mineral-
ization in vitro (Tenenbaum, 1987).
TNAP purified from femur of chicken em-

bryos induces the formation of HA in mineral-
ization medium without Pi but containing

Ca2+ and phosphate substrates (AMP, crea-
tine phosphate, glucose phosphate and �-gly-
cerophosphate). Under these conditions, ad-
dition of ATP does not promote the formation
of HA (Hamade et al., 2003). This finding is
consistent with the fact that a specific
ATPase, rather than TNAP, is responsible for
ATP-dependent mineral formation within
MVs isolated from bone and/or cartilage
(Hsu & Anderson, 1995; 1996; Hsu et al.,
1999). The nature of ATPase involved in the
ATP-dependent mineral formation is not
known and it was proposed that a
Ca2+-ATPase could fulfil this role (Hsu & An-
derson, 1996). Therefore, not only TNAP but
also other enzymes are involved in the Pi ho-
meostasis (Fig. 4). The local concentration of

Pi can be increased by the activities of ade-
nine monophosphodiesterases, ATP hydrolas-
es (ATPases) and NTP pyrophosphohydro-
lases (Bartling & Chong 1999; Anderson,
2003).
Chondrocytes in the growth plate release

ATP (Hung et al., 1997). ATP is also released
by non-stimulated bone cells (Hatori et al.,
1995) or in response to mechanical stimula-
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Figure 4. Production of pyrophosphate and inor-
ganic phosphate and their antagonistic effects on
the mineralization process.

PPi, inhibitors of HA formation, are produced at least
partly by plasma cell membrane glycoprotein-1 (NTP
pyrophosphatase phosphodiesterase isoenzyme, PC-1)
from the hydrolysis of NTPs. The activity of TNAP may
boost the formation of HA, by hydrolyzing PPi and
eliminating its inhibitory effect on HA formation. Pi
arises from distinct sources, including the hydrolytic
activity of TNAP. Accumulation of Pi and Ca2+ can in-
duce the formation of HA. Adapted from Hessle et al.
(2002).



tion (Romanello et al., 2001). PPi, which could
result from the activity of several types of
NTP pyrophosphohydrolases (Ho et al., 2000;
Huang et al., 1994; Terkeltaub et al., 1994;
Johnson et al., 1999a; 1999b) (Fig. 5), and
biphosphonates are known inhibitors of HA
formation (Tenenbaum, 1987; Skrtic &
Eanes, 1994). Thus, it was suggested that
TNAP may hydrolyse pyrophosphate groups
(Rezende et al., 1994; Camolezi et al., 2002).
Heritable deficiencies of the gene encoding
NTP pyrophosphohydrolase could play an im-
portant role in the etiology of human ossifica-
tion of the posterior longitudinal ligament of
the spine and pathologic soft-tissue ossifica-
tion, by decreasing the production of PPi
(Okawa et al., 1998; Johnson et al., 1999a;
Nakamura et al., 1999). The antagonistic reg-
ulation of PPi concentration by the activities
of TNAP and NTP pyrophosphohydrolase was
confirmed by the experiments performed on
knockout mice null for both TNAP and
plasma cell membrane glycoprotein-1 (PC-1,
e.g. NTP pyrophosphatase phosphodiesterase
isoenzyme) genes (Hessle et al., 2002). The
double knockout mice were essentially nor-
mal (Hessle, 2002), while TNAP knockout
mice mimicked the metabolic disease —
hypophosphatasia (Whyte, 2001). These find-
ings suggest that TNAP, together with other
hydrolytic enzymes, participate in the Pi ho-
meostasis. Deficiency in PC-1 may result in
cartilage calcification, while lack of TNAP ex-
pression may result in hypophosphatasia.
Both enzymes could be putative therapeutic
targets for the treatment of bone mineraliza-
tion diseases. It was proposed that inhibitors
of PC-1 activity could be used for the treat-
ment of hypophosphatasia (Hessle et al.,
2002).
Pi arising from extracellular matrix and

from the hydrolytic activities of enzymes lo-
cated either in MVs or in the plasma mem-
brane of chondrocytes or osteoblast cells, is
transported into the MVs to initiate the first
stage of the mineralization process. Indeed,
sodium-dependent Pi transporter responsible

for the Pi uptake inside MVs has been identi-
fied (Montesuit et al., 1991; Anderson, 2003).
Recent findings indicate that other Pi trans-
porters, not strictly sodium-dependent, are in-
volved in the Pi uptake inside the MV from
chondrocytes (Wu et al., 2002b). The regula-
tory factors on the function of these trans-
porters have not yet been identified.

CONCLUDING REMARKS

The prerequisite for the initial crystalline
HA generation and its deposition, requires
the continuous supply of Ca2+ and Pi inside
the MVs. This is accomplished by the activi-
ties of several proteins that are involved in
Ca2+ and Pi homeostasis, among them AnxAs
and TNAPs. Although the functions of AnxAs
are not well established, an emerging picture
suggests that these proteins form calcium ion
channels in MV membrane. At our present
stage of knowledge, further investigations are
needed to substantiate the mechanism of
Ca2+ fluxes through annexin channels. In ad-
dition, AnxAs bind NTPs, probably regulating
NTP supply outside of MVs, and providing a
possible link to NTP hydrolysing enzymes in-
cluding alkaline phosphatases. A further link
between calcium homeostasis maintained by
AnxAs and Pi supply is provided by the cal-
cium-binding property of alkaline phospha-
tase, recently reported by Mornet and
co-workers (Mornet et al., 2001). One may
suggest that AnxAs by affecting calcium ho-
meostasis within MVs, directly or indirectly,
finely tune up the structure and function of al-
kaline phosphatase. This is in accordance
with the general idea that most MV proteins
are miltifunctional by nature (Boskey, 1996).
Complex interplays between these proteins
are necessary to fulfill the highly ordered and
tightly controlled mineralization process. An
additional regulation can occur at the protein
expression level or at the post-translational
modification stage in response to stress or ag-
ing.
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Summarizing, it becomes more obvious now
that the interactions between AnxAs, TNAP
and their ligands, as well as their respective
localization within MVs, are important fac-
tors that may influence the calcification of os-
seous tissues.
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