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We have demonstrated for the first time that the steroid metabolite, 2-methoxy-

estradiol (2-ME) is a powerful growth inhibitor of human osteosarcoma 143 B cell line

by pleiotropic mechanisms involving cell cycle arrest at two different points and

apoptosis.

The ability of 2-ME to inhibit cell cycle at the respective points has been found con-

centration dependent. 1 �M 2-ME inhibited cell cycle at G1 phase while 10 �M 2-ME

caused G2/M cell cycle arrest. As a natural estrogen metabolite 2-ME is expected to

perturb the stability of microtubules (MT) in vivo analogously to Taxol — the MT bind-

ing anticancer agent. Contrary to 2-ME, Taxol induced accumulation of osteosarcoma

cells in G2/M phase of cell cycle only. The presented data strongly suggest two differ-

ent mechanisms of cytotoxic action of 2-ME at the level of a single cell.

Methoxyestradiol (2-ME) is a natural estro-

genic metabolite formed by hydroxylation of

estradiol followed by its O-methylation in the

liver [1]. Previous studies showed that this es-

trogen has a cytotoxic effect on various prolif-

erating cells in vitro [2–9] and suppresses cer-

tain murine tumors in vivo [10–12]. 2-ME is

also well known as an inhibitor of microtubule

dynamics causing mitotic arrest [13, 14] fol-

lowed by apoptosis [15]. The exact mechanism

by which 2-ME inhibits target cell prolifera-

tion is still practically unknown. One of the

postulated mechanisms for cytotoxic effect of

2-ME is its interference with the stability of
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microtubules and the subsequent cell growth

arrest in G2/M phase of the cell cycle [13, 14].

By contrast, quite dissimilar effects of 2-ME

on cell-cycle distribution of breast cancer cells

and prostate cancer cells have been observed.

Treatment of breast cancer cells with 2-ME re-

sults in accumulation of cells in the G1 phase

[15] whereas prostate cancer cells show a

marked accumulation of cells in the G2/M

phase [12, 16].

In this report we provide evidence for 2-ME

concentration dependent mechanisms of per-

turbation of the cell cycle machinery at two dif-

ferent points of the osteosarcoma 143B cells.

MATERIALS AND METHODS

Reagents. Methoxyestradiol (2-ME),

dimethyl sulfoxide (Me2SO) and Taxol were

purchased from Sigma (St. Louis, MO,

U.S.A.). Propidium iodide (PI) was from Mo-

lecular Probes (Eugene, OR, U.S.A.). DMEM

(Dulbecco modified Eagle’s medium) was

from Nissui (Tokyo, Japan) and anti-acetyl-

ated tubulin antibodies (clone No. 6-11 B-1)

were from Sigma (St. Louis, MO, U.S.A.).

Cell culture. 143B (TK[-]) human osteo-

sarcoma cells (�+) (ATCC CRL-8303) were cul-

tured at 37�C in a humidified atmosphere with

5% CO2 in Dulbecco’s modified Eagle’s me-

dium containing 1 mM pyruvate, supple-

mented with 10% fetal bovine serum and

50 �g/ml kanamycin.

Cell cycle analysis. This was performed by

flow cytometry, using nuclei labeled essen-

tially according to Watabe et al. [17]. Cells

were cultured on a 5 cm dish, harvested and

washed with phosphate-buffered saline (PBS).

Then DNA was stained with 500 �l of a PI so-

lution containing 50 �g/ml of propidium io-

dide, 0.1% sodium citrate, 0.2% Nonidet P-40,

supplemented with RNase (0.25 mg/ml) for

30 min at 4�C in the dark and then for 15 min

at 37�C followed by flow cytometric analysis

using a Coulter Epics XL flow cytometer

(Coulter Corp., Miami, FL, U.S.A.). Cell-cycle

distribution as measured by DNA content was

analyzed for 10000 cells for each culture. The

relative proportion of cells in the G1, S and

G2/M cell cycle phases were estimated by

compartment analysis of DNA fluorescence

using cell-cycle analysis software. Low-mole-

cular mass DNA fluorescence was indicative

of apoptotic cells. Two independent experi-

ments were done in triplicate.

Caspase 3 (Apopain) activity assay. Cells

were grown in 10 cm culture dishes. Caspase 3

activity was determined by Fluor Ace Apopain

Assay Kit (Bio-Rad Laboratories, U.S.A.). Ac-

tivity was monitored using the fluorogenic

peptide substrate carbobenzoxy-Asp-Glu-Val-

7-amino-4-trifluoromethyl coumarin (2-DEVD-

AFC) [18]. Caspase 3 enzymatically cleaves

the AFC from the peptide and releases free

AFC, which then produces a blue-green fluo-

rescence detectable at 500–550 nm with

Bio-Rad VersaFluor Fluorometer. All proce-

dures were performed following the manufac-

turer’s instructions. Caspase 3 units were cal-

culated as follows: �F/min � (calibration

curve slope)–1 � 1000. Cells were exposed to

1 �M 2-ME for 12 h and then cytosolic activity

of caspase 3 was detected fluorometrically for

the period of 3 h.

Visualization of acetylated microtubules

by confocal microscopy. Cells were perme-

abilized with 0.1% Triton X-100 in PBS for 10

min at room temperature, then blocked with

1% BSA in PBS, and incubated with mono-

clonal antibodies specific against acetylated

tubulin (clone No. 6-11 B-1, Sigma) diluted

250-fold with blocking buffer, at room temper-

ature for 1 h. In the next step the cells were in-

cubated with the secondary antibodies (100 �

diluted) FITC-labelled goat anti-mouse IgG

(Molecular Probes) at room temperature for

45 min. Coverslips were placed on glass slides

in a Perma Fluor mounting solution (Im-

munon, Pittsburgh, PA, U.S.A.) and analyzed

by a BioRad Lasersharp MRC 1024 scanning

confocal microscope [19].
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RESULTS

Cells were treated for 24 h with 1 or 10 �M

2-ME and then stained with anti-acetylated

tubulin antibodies for confocal microscopic

analysis. The results presented on Fig. 1

(A–C) revealed a decrease of acetylated

tubulin in the treated cells. Increases of mono-

meric tubulin background, together with a dis-

tinct decrease of the acetylated tubulin, can be

easily detected (Fig. 1B, C). Cells underwent

mitotic arrest after exposition to 2-ME, be-

coming significantly enlarged and multi-

nucleated (Fig. 1B, C).

The above results confirmed the colchi-

cine-like destabilizing effect of 2-ME on

microtubules. 2-ME at 1 �M final concentra-

tion induced a significant arrest at G1 phase
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Figure 1. Changes of acetylated tubulin in osteosarcoma 143B cells after treatment with 2-methoxy-

estradiol for 24 h.

A, Control; B, 1 �M and C, 10 �M 2-methoxyestradiol; scale bar = 10 �m; D, flow cytometric analysis of DNA fluores-

cence of PI-stained osteosarcoma 143B nuclei after 24 h of incubation with Taxol and 2-methoxyestradiol (2-ME).



(about 33% of cells) in human osteosarcoma

143B cells (Fig. 1D). At 10 �M concentration

2-ME caused a marked shift from G1 to G2/M

phase indicative of the late cell cycle arrest

(Fig. 1D). Taxol displayed the very same effect

on the cell cycle as 10 �M 2-ME (Fig. 1D).

Analysis of apoptosis revealed marked apo-

ptotic (sub G1) peak after 24 h of treatment

with 10 �M 2-ME (Fig. 1D). Cells treated with

1 �M 2-ME displayed a different pattern of

cell cycle phase distribution, 33% of G1/G0 be-

ing clearly visible (Fig. 2). The sub-G1 popula-

tion (treated as an apoptosis marker) reached

as much as 33% of the total cell population of

osteosarcoma cells. At 10 �M concentration,

accumulation of 58% of cells in G2/M phase

was observed. Simultaneously, the S phase

was depressed as compared with its level after

treatment with 1 �M 2-ME (Fig. 2). As on

treatment with 2-ME the proportion of

apoptotic cells was unexpectedly high, we de-

cided to determine also caspase 3 activity. Af-

ter treatment of cells for 12 h with 1 �M 2-ME

the enzyme activity became significantly

(over 5-fold) elevated (not shown).

DISCUSSION

The mechanism of 2-ME cytotoxic activity

has been attributed to its ability to bind to the

colchicine-binding site of tubulin resulting in

altered stability of microtubules [20].

We demonstrated here that perturbation of

microtubular stability by 10 �M 2-ME ar-

rested asynchronously growing osteosarcoma

cells at G2/M phase of the cell cycle. This ar-

rest together with induction of apoptosis is a

distinct mechanism of 2-ME action at its 10

�M concentration. Similar accumulation of

prostate cancer and hepatoma cells in G2/M

phase upon exposition to 5 �M or 10 �M

2-ME, respectively, has been also observed

[12, 21]. Breast cancer cells, on the other

hand, displayed a dissimilar cell cycle distri-

bution pattern under the influence of 2-ME.

When treated with submicromolar 2-ME the

cells accumulated solely in G1 phase [15]. The

breast cancer cell line, being more sensitive to

2-ME than the prostate cancer and hepatoma

cells, was treated with lower concentration of

this drug [15]. Therefore we decided to study
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Figure 2. The effect of 2-ME and Taxol on cell cycle events in osteosarcoma 143B cell line.

Cellular subpopulations are presented as percentage of total cells number of culture. “Apopt”, apoptosis, deter-

mined as sub-G1 population.



the effect of 2-ME on osteosarcoma cells ex-

posed to the final concentration of the drug as

low as 1 �M.

At this 2-ME concentration we noticed a sig-

nificant G1 phase cell cycle arrest. Our study

revealed a marked alteration of the level of

acetylation of tubulin with a distinct decrease

of the number of microtubules, which con-

firmed the colchicine-like destabilizing effect

of 2-ME. Colchicine and vincristine act by in-

hibiting microtubule polymerization whereas

Taxol causes formation of polymer with al-

tered stability properties. The mechanism of

2-ME action appears to be more complex. This

compound binds to both unpolymerized

tubulin at the colchicine site and to the

tubulin polymers at a less well-defined site

[22–24].

In conclusion, our results demonstrate that

2-ME shows a pleiotropic effect on 143B

osteosarcoma cell line in a concentration de-

pendent manner.

Multiple discrete mechanisms are involved

in the cytotoxic action of 2-ME, including G1

and G2/M cell cycle phase arrest, induction of

caspase 3 activity and apoptosis. So far, the

exact molecular mechanism of this process

cannot be precisely described. 2-ME applied at

1 �M concentration to K562 cells activated

proapoptotic SAPK kinase [25].

The effect of 2-ME on cyclin B and cdc kinase

activity may be considered a possible mecha-

nism of cell cycle perturbation in osteo-

sarcoma 143B cell line. Additional studies are

required to elucidate the problem.
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