

Vol. 47 No. 4/2000

951-962

QUARTERLY

Generation of 'OH initiated by interaction of Fe^{2+} and Cu^+ with dioxygen; comparison with the Fenton chemistry^{*©}

Norbert K. Urbański and Andrzej Beręsewicz[⊠]

Department of Clinical Physiology, Medical Centre of Postgraduate Education, Warszawa, Poland

Received: 18 April, 2000; revised: 8 August, 2000; accepted: 26 August, 2000

Key words: free radical, hydroxyl radical, iron ions, copper ions, Fenton reaction, autoxidation, desferrioxamine, catalase, superoxide dismutase

Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (OH) from H_2O_2 in the Fenton reaction. The aim of this study was to verify that $Fe^{2^+}-O_2$ and Cu^+-O_2 chemistry is capable of generating OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the $Fe^{2^+}-O_2$ system and of the Fenton system ($Fe^{2^+} + H_2O_2$) to produce OH. The addition of Fe^{2^+} and Cu^+ (0–20 μ M) to KH resulted in a concentration-dependent increase in OH formation, as measured by the salicylate method. While Fe^{3^+} and Cu^{2^+} (0–20 μ M) did not result in 'OH formation, these ions mediated significant 'OH production in the presence of a number of reducing agents. The 'OH yield from the reaction mediated by Fe^{2^+} was increased by exogenous Fe^{3^+} and Cu^{2^+} to a range of H_2O_2 concentrations (the Fenton system) resulted in a H_2O_2 -concentration-dependent rise in 'OH formation. For each Fe^{2^+} concentration tested, the 'OH yield doubled when the ratio $[H_2O_2]:[Fe^{2^+}]$ was raised from zero to one. In conclusion: (i) $Fe^{2^+}-O_2$ and Cu^+-O_2 chemistry is capable of promoting 'OH generation in the environment of oxygenated

^{*}Preliminary results of this study were presented at the 17th Annual Meeting of the European Section of the International Society for Heart Research, June 18–21, 1996, Bologna, Italy, J. Mol. Cell. Cardiol. 28, A 31, 1996.

^cThese studies were supported by the State Committee for Scientific Research grant 6 P2 07 045 04 and by the Medical Centre of Postgraduate Education grant 501-2-1-05-07/98.

^{EX}Address for correspondence: Prof. Andrzej Beręsewicz, Department of Clinical Physiology, Medical Centre of Postgraduate Education, Marymoncka 99, 01-813 Warsaw, Poland; phone (48 22) 834 0367; fax: (48 22) 864 0834; e-mail: aberesew@cmkp.edu.pl

Abbreviations: DFX, desferrioxamine; DHBAs, 2,5- and 2,3-dihydroxybenzoic acids; DTPA, diethylenetriaminepentaacetic acid; HPLC, high performance liquid chromatography; KH, Krebs-Henseleit buffer; SOD, superoxide dismutase.

KH, in the absence of pre-existing superoxide and/or H_2O_2 , and possibly through a mechanism initiated by the metal autoxidation; (ii) The process is enhanced by contaminating Fe³⁺ and Cu²⁺; (iii) In the presence of reducing agents also Fe³⁺ and Cu²⁺ promote the 'OH formation; (iv) Depending on the actual $[H_2O_2]$:[Fe²⁺] ratio, the efficiency of the Fe²⁺-O₂ chemistry to generate 'OH is greater than or, at best, equal to that of the Fe²⁺-driven Fenton reaction.

Oxygen derived oxidants, such as superoxide radical ($O_{\frac{1}{2}}$), hydrogen peroxide (H₂O₂), and hydroxyl radical (OH), have been implicated as causative agents in various disease states and tissue injuries [1]. A long standing proposal is that $O_{\frac{1}{2}}$ is first generated in a variety of enzymatic reactions. Then it furnishes H₂O₂ (Eqn. 1) and also interacts with a transition metal, such as iron or copper, to regenerate its reduced form (Eqn. 2). Thereby $O_{\frac{1}{2}}$ provides substrates for the Fenton reaction which generates a powerful oxidant, OH (Eqn. 3).

$$O_{\overline{2}}^{\cdot} + O_{\overline{2}}^{\cdot} + 2H^{+} \rightarrow H_{2}O_{2}$$

$$\tag{1}$$

$$O_{\overline{2}}^{\cdot} + Fe^{3^{+}} \rightarrow O_{2} + Fe^{2^{+}}$$
 (2)

$$H_2O_2 + Fe^{2+} \rightarrow OH + OH^- + Fe^{3+}$$
 (3)

However, an alternative mechanism would be that biological free radical oxidations are a consequence of a direct interaction between a metal ion and dioxygen (O₂). Arguments in favor of this concept are that: (i) in biological systems, the concentration of O₂ is usually much greater than that of H₂O₂; (ii) the rate constants for the Fe²⁺-O₂ and Fe²⁺-H₂O₂ reactions are similar ($10^3 \text{ M}^{-1} \text{ s}^{-1}$), and (iii) an unbound catalytic metal may be present mostly in its reduced form [2, 3], thereby favoring its direct interaction with O₂ rather than with H₂O₂ (see ref. [3] for an extensive review). In this context, it has been proposed that it is iron-oxygen complexes, like perferryl and ferryl ions, which are responsible for iron-induced oxidation of various biochemical targets [3–5]. On the other hand, it has been demonstrated that a direct reduction of O_2 by Fe²⁺ (Eqn. 4), the process referred to as the metal autoxidation reaction, may mediate 'OH generation [6–9] (Eqn. 4).

$$\operatorname{Fe}^{2^{+}} + \operatorname{O}_{2} \to \operatorname{Fe}^{3^{+}} + \operatorname{O}_{2}^{-}$$

$$\tag{4}$$

The dismutation of O_2^{\cdot} to H_2O_2 and the reaction of the latter with the remaining Fe²⁺ would eventually promote the liberation of 'OH in a fashion similar to that summarised in reactions (1) and (3). Nevertheless, the biological significance, if any, of Fe²⁺-O₂ and/or Cu⁺-O₂ chemistry-mediated 'OH generation is not known, particularly that the process has been studied mostly in the presence of a nonphysiological metal chelator (e.g., EGTA) [3, 6–9].

The aim of the present study was to verify that $Fe^{2+}O_2$ and Cu^+O_2 chemistry is capable of generating 'OH in Krebs-Henseleit buffer (KH), a medium routinely used in physiological studies, and to compare the ability of the $Fe^{2+}O_2$ system and the Fenton system (Fe^{2+} + H_2O_2) to produce OH. To verify that the metal ion- O_2 chemistry results in the autoxidative 'OH formation, the involvement of O_2 , $O_{\overline{2}}$ and H_2O_2 in the reaction was studied. It was also verified that, in the presence of a reductant, ferric and cupric ions are capable of mediating 'OH production in the absence of pre-existing $O_{\overline{2}}^{\cdot}$ and/or $H_2O_2.$ The study demonstrates that, at least in the environment of highly oxygenated KH, the efficiency of the $Fe^{2+}O_2$ system to generate OH is greater than or, at best, equal to that of the Fe^{2+} -driven Fenton reaction.

MATERIALS AND METHODS

Reagents and solutions. Ascorbic acid, catalase (bovine liver), desferrioxamine mesylate (DFX), diethylenetriaminepentaacetic acid (DTPA), 2,3-dihydroxybenzoic acid (2,3-DHBA), 2,5-dihydroxybenzoic acid (2,5-DHBA), FeSO₄ · 7H₂O, glutathione (reduced form), D,L-homocysteine, sodium salicylate, NaCl, NaHCO₃, KCl and CaCl₂ · 2H₂O were purchased from Sigma (St. Louis, MO, U.S.A.). FeCl₃ · 6H₂O, CuCl, CuCl₂ · 2H₂O, L-cysteine, KH₂PO₄ and MgSO₄ were from Merck (Darmstadt, Germany), superoxide dismutase (bovine erythrocytes, SOD) from Boehringer Mannheim and H₂O₂ from Chempur (Gliwice, Poland).

All reagents were of the highest available purity and were used without further purification. All iron and copper ion solutions were prepared fresh as concentrated stock solutions in deionised (Milli-Q, Millipore-Waters, U.S.A.) and deaerated H₂O purged with nitrogen and were used immediately. Under these circumstances, precipitation of Fe^{3+} as Fe(OH)₃ was not a problem. Cuprous ion solutions were prepared by dissolving CuCl directly in acidified KH (see later). The glassware containing Fe^{2+} and Cu^+ was protected from light. H₂O₂ stock solutions were prepared from 30% parent solution and regularly titrated against KMnO₄. When needed, catalase and SOD were inactivated by heating their concentrated solution at 45°C and 90°C, respectively, for 20 min.

All experiments were performed at room temperature, and if not otherwise stated, in KH containing (in mM): NaCl 118; NaHCO₃ 23.8; KCl 4.7; KH₂PO₄ 1.2; CaCl₂ 2.5; MgSO₄ 1.2. The buffer was supplemented with 1 mM sodium salicylate, which served as a specific trap for 'OH [10]. The buffer was equilibrated with a 95% O₂ + 5% CO₂ gas mixture giving pH 7.4 and pO₂ 590–630 mmHg ([O₂] about 1000 μ M). In some experiments pH of the buffer was reduced to 6.6 by decreasing NaHCO₃ to 3 mM. To deoxygenate the buffer, it was equilibrated with a 95% N₂ + 5% CO₂ gas mixture giving pH 7.4 and pO₂ 5–9 mmHg ([O₂] about 10 μ M).

Iron ion-mediated '*OH generation*. The following reagents were mixed in the order stated:

• 0.8 ml KH buffer (1.25 times concentrated)

- •0.1 ml distilled water
- 0.1 ml FeSO₄ or FeCl₃ (0–20 μ M)

When the effect of SOD, catalase, DFX, DTPA, Fe³⁺ and Cu²⁺ on the Fe²⁺-mediated [•]OH production was examined, 0.1 ml of the studied agent was added instead of 0.1 ml distilled water and the reaction was initiated by adding 0.1 ml of 100 μ M Fe²⁺ solution (final concentration 10 μ M). In the majority of the experiments the reaction mixture was incubated for 60 s. Then a 20 μ l aliquot was injected into HPLC to detect 2,5- and 2,3-dihydroxybenzoic acids (DHBAs) formed. Preliminary experiments revealed no change in the 'OH yield with the incubation times varying from 30 s up to 30 min (Fig. 1).

Salicylate is known to chelate iron [6] and therefore some of the chemistry studied here may be due to radical formation by this complex rather than by a complex with, for instance, phosphate contained in KH. To check for this, the Fe^{2+} -mediated 'OH generation was studied also in KH devoid of phosphate (phosphate-free KH).

Copper ion-mediated 'OH production. Because of the poor water solubility of CuCl, its solutions were prepared by dissolving CuCl $(0-20 \,\mu\text{M})$ directly in acidified KH (NaHCO₃ reduced to 3.0 mM to give pH 6.6) containing salicylate and in some experiments 10 μ M DFX. For comparison, also the Fe²⁺ autoxidation reaction was studied in acidified KH. The reaction mixtures containing copper ions were incubated for 30 min before the HPLC measurements were performed.

Iron ion- and copper ion-mediated OHformation in the presence of reducing agents. FeSO₄, FeCl₃ or CuCl₂ was added to the solution of ascorbic acid, reduced glutathione, cysteine or homocysteine in KH. Usually the reaction mixture was incubated for 5 min. In the ascorbate experiments, the DHBAs generation was followed for 90 min. The final concentration of the metal was 10 μ M and that of the reductor 200 μ M.

[•]OH generation in the Fe²⁺-driven Fenton reaction. FeSO₄ (1 μ M, 5 μ M or 10 μ M) was added to oxygenated KH containing increasing concentrations of H₂O₂ (0-35 μ M). The reaction mixtures were incubated for 60 s.

Analytical procedures. Hydroxyl radical generation was determined by measuring the formation of dihydroxybenzoic acid isomers (DHBA) from salicylate. 2,5-DHBA and 2,3-DHBA were separated by HPLC and quantified by an electrochemical detector as described by Floyd et al. [10]. HPLC measurements were performed on a Shimadzu System (Kyoto, Japan) consisting of a LC-6A Solvent Delivery Pump, a L-ECD-6A Electrochemical Detector, a SCL-6B Controller, a Chromatopac C-R4A data processor and an on-line ERC-3312 Degasser (Erma, Tokyo, Japan). A Macherey-Nagel Nucleosil C_{18} 250 × 4.6 mm reverse phase column was used for the separation (Duren, Germany). The eluent was 96% (v/v) 45 mM citrate/61 mM sodium acetate/47 mM acetic acid buffer (pH 3.6)/4% methanol. It was filtered through a 0.22 μ m membrane filter (Millipore, Ireland) and pumped at a flow rate of 1.5 ml/min.

The reaction mixture pO_2 was measured with a Ciba-Corning 248 pH/Gas Analyser (Essex, England).

Statistics. All data are expressed as mean \pm S.E.M. Significant differences (P < 0.05) among groups were calculated by one-way analysis of variance followed by the Dunnet's procedure. Non-paired Student's *t*-test was also used when appropriate.

RESULTS

Fe^{2^+} and Cu^+ -mediated production of OH

Some 2,5- and 2,3-DHBA was present already in the oxygenated, salicylate containing phosphate-free KH as well as standard KH (Table 1). The addition of Fe^{2+} to these solutions caused a further rise in DHBAs forma-

Table 1. Dihydroxybenzoic acids yield from the reaction mediated by Fe^{2^+} and Cu^+ , as affected by superoxide dismutase, catalase, DTPA and desferrioxamine

Reaction mixture	n	Dihydroxybenzoic acids (pmol/ml)		
		2,5-DHBA	2,3-DHBA	Total
Phosphate-free KH	5	$0.4{\pm}0.1^{*}$	$0.4{\pm}0.1^{*}$	$0.8 \pm 0.1^{*}$
+ ${\rm Fe}^{2+}$, 10 $\mu{ m M}$	5	$3.0 \pm 0.2^{*}$	$1.8 {\pm} 0.2^{*}$	$4.9{\pm}0.3^{*}$
KH buffer	10	$0.4 \pm 0.1^{*}$	$0.5 \pm 0.1^{*}$	$1.0\pm0.1^{*}$
+ Fe ²⁺ , 10 μ M	37	11.5 ± 0.4	$10.0 {\pm} 0.4$	21.6 ± 0.5
+ Fe ²⁺ + Superoxide dismutase, 500 U/ml	6	$8.8 \pm 0.8^*$	$5.9 {\pm} 0.5^{*}$	$14.6 \pm 1.2^*$
+ Fe ²⁺ + Superoxide dismutase, boiled	5	14.0 ± 1.6	10.4 ± 1.0	24.3 ± 2.9
+ Fe_{1}^{2+} + Catalase, 1000 U/ml	6	$8.7 \pm 0.7^*$	$7.3 \pm 0.4^*$	$16.0 \pm 0.9^*$
+ Fe ²⁺ + Catalase, boiled	6	$18.7 \pm 1.2^*$	$13.2 \pm 0.4^*$	$31.9 \pm 1.5^*$
+ Fe ²⁺ + DTPA, 10 μ M	6	$1.4{\pm}0.3^{*}$	$1.3 \pm 0.4^{*}$	$2.7{\pm}0.6{*}$
+ Fe ²⁺ + Desferrioxamine, 10 μ M	11	$2.1 \pm 0.4^{*\#}$	$2.4{\pm}0.4^{*\#}$	$4.5 \pm 0.6^{*\#}$
+ Fe ²⁺ + Desferrioxamine, 50 µM	5	$2.9 \pm 0.6^{*\#}$	$1.4\pm0.3^{*}$	$4.3 \pm 0.3^{*\#}$
+ Cu^+ , 10 $\mu\mathrm{M}$	5	14.3 ± 1.0	$12.0 {\pm} 0.6$	26.3 ± 1.7
+ Cu^+ + Desferrioxamine, 10 μ M	5	$3.7{\pm}0.6^*$	$3.1 \pm 0.4^*$	$6.8 \pm 0.7^*$

The values represent the mean \pm S.E.M. of n determinations. The reaction mixtures containing Fe²⁺ were incubated for 60 s at room temperature in oxygenated phosphate-free or phosphate-containing Krebs-Henseleit buffer at pH 7.4, each containing 1 mM sodium salicylate. The reaction mixtures containing Cu⁺ were incubated at pH 6.6 for 30 min. An aliquot was then injected into HPLC to detect 2,5- and 2,3-dihydroxybenzoic acids (DHBAs) formed. DTPA, diethylenetriaminepentaacetic acid; **P* < 0.05 *vs* KH buffer + Fe²⁺ alone or *vs* KH buffer + Cu⁺ alone, respectively [#]*P* < 0.05, DTPA *vs* desferrioxamine.

tion, which was, however, 4.5-fold greater in the presence of phosphate (Table 1).

The maximum level of DHBAs was reached already after 30 s of Fe^{2^+} incubation in KH. Deoxygenation of the reaction mixture prior to the addition of Fe^{2^+} prevented DHBAs formation (Fig. 1).

Figure 1. Time-course of Fe²⁺-induced formation of 2,5- plus 2,3-dihydroxybenzoic acids (DHBAs).

At time 0, $10 \,\mu$ M Fe²⁺ was added to the Krebs-Henseleit buffer containing 1 mM salicylate and the reaction was followed for 30 min. The buffer was pre-equilibrated either with 95% O₂ + 5% CO₂ (oxygenated, pO₂ 614±15 mmHg) or with 95% N₂ + 5% CO₂ gas mixture (deoxygenated, pO₂ 6.8 ± 1.5 mmHg). The values represent the mean ± S.E.M. of 4–5 determinations.

The 'OH formation increased with the concentration of Fe^{2+} or Cu^+ (0–20 μ M) in the medium (Fig. 2). Approximately three times more 'OH was formed by Cu^+ than by an equimolar concentration of Fe^{2+} , at least as evidenced by the measurements performed at pH 6.6. In addition, the reaction showed a pH dependency, as evidenced by the fact that Fe^{2+} -mediated 'OH production was approximately doubled when the pH of the reaction mixture was increased from 6.6 to 7.4. The addition of a range of Fe^{3+} or Cu^{2+} concentrations to KH did not result in 'OH formation (Fig. 2).

The 'OH formation mediated by $10 \,\mu\text{M} \text{ Fe}^{2+}$ was reduced by 32% and 26% by SOD (500 U/ml) and catalase (1000 U/ml), respectively, and it was not affected and augmented by

Figure 2. The concentration-dependency of copper ion- and iron ion-mediated formation of 2,5plus 2,3-dihydroxybenzoic acids (DHBAs).

The reaction mixture containing the indicated concentration of iron and copper ions was incubated for 1 min and 30 min, respectively, in oxygenated Krebs-Henseleit buffer. The values represent the mean \pm S.E.M. of 5-37 determinations.

heat-inactivated SOD and catalase, respectively (Table 1).

The role of Fe^{3+} and Cu^{2+} in the Fe^{2+} and Cu^+ -mediated `OH formation

The nonspecific $\mathrm{Fe}^{2+}/\mathrm{Fe}^{3+}$ chelator DTPA (10 μ M) and the specific Fe³⁺ chelator DFX (10 μ M) reduced 'OH yield in the reaction mediated by $10 \,\mu\text{M}\,\text{Fe}^{2+}$ by 88% and 79%, respectively ($P \le 0.05$, Table 1). OH generation was not attenuated further even when $50 \,\mu\text{M}$ DFX was used (Table 1). These results imply that the chelation of Fe³⁺ was mainly responsible for the effect of DTPA and DFX, and that Fe²⁺-mediated reaction was strongly dependent on the contaminating Fe³⁺. To examine this, the reaction mediated by $10 \,\mu \text{M Fe}^{2+}$ was studied in the presence of extra Fe^{3+} added to the reaction mixture. As demonstrated in Fig. 3, the Fe^{3+} concentration-dependent rise in the OH production was observed. The process saturated at the Fe^{3+} : Fe^{2+} concentration ratio of about 10, resulting in a 60%, at the maximum, rise in the 'OH generation. However, in our experiments, only media containing DFX may be regarded as devoid of the contaminating Fe^{3+} . If this is taken into account, it appears that 'OH yield from the Fe^{2+} -mediated reaction increases as much as ten-fold when the contaminating Fe^{3+} concentration increases from zero (DFX added to the medium) to that resulting in saturation (Fig. 3).

Figure 3. Effect of Fe^{3+} (Δ) and Cu^{2+} (£) on Fe^{2+} -mediated formation of 2,5- plus 2,3-dihy-droxybenzoic acids (DHBAs).

Oxygenated KH contained 0, 5, 10, 50, 100 or 200 μ M Fe³⁺ (at pH 7.4) or 0, 50, 100 or 200 μ M Cu²⁺ (at pH 6.6) and the reaction was started by the addition of 10 μ M Fe²⁺. The arrow points to the DHBAs production in the reaction mixture containing 10 μ M desferrioxamine and 10 μ M Fe²⁺ (data repeated from Table 1). The values represent the mean ± S.E.M. of 5–7 determinations. * $P \le 0.05$ vs zero Fe³⁺ or zero Cu²⁺.

The Fe²⁺-mediated $^{\circ}$ OH yield was enhanced not only by Fe³⁺ but also by Cu²⁺ (Fig. 3). Likewise, DFX reduced the $^{\circ}$ OH yield from the Cu⁺-mediated reaction (Table 1).

Iron- and copper-mediated 'OH formation is enhanced by reducing agents. Ascorbate at 200 μ M, added to KH alone or to the reaction mixture containing 10 μ M Fe³⁺ or Fe²⁺, resulted in a steady 'OH formation during the whole 90 min observation period (Fig. 4). However, the rate of 'OH formation was greatly increased in the medium containing Fe³⁺ or Fe²⁺, compared with that in KH alone. DFX not only lowered the 'OH yield, but also completely prevented its time-dependent rise in the medium containing Fe^{2+} and ascorbate (Fig. 4).

Figure 4. Formation of 2,5- plus 2,3-dihydroxybenzoic acids (DHBAs) in the media containing ascorbate.

Formation of DHBAs upon addition of ascorbate to Krebs-Henseleit buffer (KH) alone (~) or containing: 10 μ M Fe³⁺ (£), 10 μ M Fe²⁺ (Δ), and 10 μ M Fe²⁺ + 50 μ M desferrioxamine (s) was measured. The values represent the mean ± S.E.M. of 5 determinations.

Ascorbate initiated 'OH production not only in the media containing Fe^{3+} but also in those containing Cu^{2+} (Fig. 5). This ability was shared also by reduced glutathione, cysteine and homocysteine.

The efficiency of $Fe^{2+}O_2$ chemistry vs Fe^{2+} -driven Fenton reaction to generate OH. Addition of H_2O_2 (0-35 μ M) to KH resulted in a small increase in DHBAs production (from 0.96 pmol/ml at zero H_2O_2 to 1.9 pmol/ml at 35 μ M H_2O_2). Addition of 1 μ M, 5 μ M or 10 μ M Fe²⁺ to a range of H_2O_2 concentrations resulted in an H_2O_2 -concentration dependent rise in OH formation (Fig. 6). The curves for 1 μ M, 5 μ M and 10 μ M Fe²⁺ saturated at about 1 μ M, 5 μ M and 10 μ M H₂O₂, respectively, suggesting that the H_2O_2 : Fe²⁺ concentration ratio of approximately one was optimal for the reaction between Fe²⁺ and

Figure 5. Comparison of the enhancing effects of ascorbate, reduced glutathione, cysteine and homocysteine on 2,5- plus 2,3-dihydroxybenzoic acids (DHBAs) formation in the reaction mixture containing either $10 \,\mu \mathrm{M \ Fe}^{3+}$ (left) or $10 \,\mu \mathrm{M \ Cu}^{2+}$ (right).

The experiments with Fe³⁺ were carried out at pH 7.4 and the incubation time was 5 min. In the experiments with Cu²⁺, pH was 6.6 and the incubation time was 30 min. Ascorbate, reduced glutathione (GSH), cysteine, and homocysteine were 200 μ M. The values represent the mean ± S.E.M. of 5 determinations. *P < 0.05 vs Fe³⁺ or Cu²⁺ alone, respectively.

Figure 6. Efficiency of the autoxidation reaction in comparison with the Fenton reaction.

 ${\rm Fe}^{2+}$ -mediated formation of 2,5- plus 2,3-dihydroxybenzoic acids (DHBAs) in media containing ${\rm H_2O_2}$ was measured. The indicated concentration of ${\rm Fe}^{2+}$ was incubated for 1 min in oxygenated Krebs-Henseleit buffer containing the indicated concentrations of ${\rm H_2O_2}.$ The measurements obtained at zero ${\rm H_2O_2}$ represent DHBAs production mediated solely in the autoxidation reaction of the indicated ${\rm Fe}^{2+}$ concentration. The values represent the mean \pm S.E.M. of 5 determinations.

Figure 7. Hypothetical reaction pathway initiated by the addition of Fe^{2^+} or Cu^+ to the oxygenated medium contaminated with traces of Fe^{3^+} and Cu^{2^+} .

The reaction starts with the autoxidation of the metal (-). Some part of the originating O_2^- dismutates to H_2O_2 and some interacts with Fe³⁺ and Cu²⁺ (contaminating and/or newly formed), to recover their reduced forms (---). The probability that O_2^- meets Fe³⁺ and/or Cu²⁺ and the metals undergo the redox cycling, increases (up to a certain optimum) with the Fe³⁺ and Cu²⁺ concentration. Finally, the metal-driven Fenton reaction follows, resulting in 'OH liberation (···). The scheme ignores the mechanism of the exceptional role of the metal redox cycling in the 'OH generation process. See text for more explanation and the discussion.

 H_2O_2 (the Fenton reaction) to produce 'OH. Of note, for each Fe²⁺ concentration used the 'OH yield at each optimal H_2O_2 concentration was a sum of the 'OH deriving from the Fe²⁺-O₂ reaction and that from the maximally activated Fenton reaction. It is evident from Fig. 6 that for each Fe²⁺ concentration, the 'OH yield approximately doubled when the H_2O_2 concentration was raised from zero to the optimal level. Thus, at the optimal H_2O_2 : Fe²⁺ ratio, only 50% of the total 'OH yield is attributable to the Fenton reaction.

DISCUSSION

Experimental conditions of the study

[•]OH generation was studied here in KH because it is routinely used in physiological studies, and because phosphate serves as a part of the buffering capacity, both of KH and of the cell. Metal autoxidation is a slow process unless the metal is liganded to an appropriate chelator (e.g., EDTA). Because phosphate buffer has been shown to catalyse Fe^{2+} autoxidation [6, 8], it was important to see if the reaction is possible also in the presence of the low phosphate concentration present in KH and without the need of a nonphysiological chelator. Indeed, we report that Fe²⁺-mediated DHBAs yield was 4.5-fold greater in KH compared with that in phosphate-free KH. Thus, although salicylate can chelate iron [6], and bicarbonate can promote OH generation from Fe^{2+} and O_2 [8], the chemistry of our system seems to be mediated predominantly by the low, physiological concentration of phosphate. Of note, it has been demonstrated that in vivo infusion of Fe^{2+} through a dialysis probe into rat myocardium results in an increased 'OH generation in the myocardial extracellular fluid [11], suggesting that OH generation mediated by the $Fe^{2+}O_2$ chemistry is possible also in biological systems. To avoid confounding the assessment of 'OH by radicals originating from glucose oxidation [12], the sugar was omitted from KH. Given all these conditions, the detection of salicylate hydroxylation, employed in this study, provided a specific method for quantitative analysis of only the metal-mediated and predominantly phosphate promoted 'OH generation [13].

Furthermore, micromolar concentrations of iron and copper ions were used. These concentrations seem to be physiologically relevant, for instance, in the context of myocardial ischaemia/reperfusion. Ischaemia has been demonstrated to redistribute sequestrated intracellular iron into the low molecular weight pool [14, 15] and in KH perfused isolated rat heart this pool was estimated to increase from 2 μ M up to 54 μ M [15]. In addition, submicromolar and micromolar concentrations of copper and iron, respectively, have been shown to be released from the perfused rat heart upon reperfusion [16,17]. Of note, in our previous measurements, using the same salicylate method as employed here, the post-ischemic DHBAs outflow in KH perfused isolated guinea pig hearts amounted to 4–7 pmol/ml [18]. As evident from Fig. 2, this amount is comparable to the DHBAs production mediated *in vitro* by about 5 μ M Fe²⁺, a concentration encountered in the isolated ischaemic/reperfused rat heart [16, 17].

The mechanism of Fe²⁺- and Cu⁺-mediated [•]OH generation

The exact mechanism of the 'OH generation is not apparent from this study, although some of its elements may be delineated. We demonstrate that the process in which iron and copper ions promote 'OH formation is critically dependent on the availability of O_2 (Fig. 1), is attenuated by SOD and catalase (Table 1), and is dependent on the redox state of the metal. The latter is evidenced by the fact that Fe^{3+} and Cu^{2+} ions were able to promote 'OH formation only in the presence of various reducing agents (Figs. 2 and 5), indicating that Fe^{2+} and Cu^+ rather than Fe^{3+} and Cu²⁺ initiate OH production. Although only 'OH was measured here, these results implicate O_2 as the oxidant, with the formation of $O_{\overline{2}}^{\cdot}$ and H_2O_2 being critical for $\cdot OH$ formation in the media containing the reduced forms of the transition metals. This, in turn, is consistent with the idea that the metal autoxidation (Eqn. 4) [6–9] is a part of the 'OH generation mechanism (see later, discussion on the SOD effect).

Furthermore, three lines of evidence illustrate the fact that, in analogy to the Fenton chemistry [19, 20], also the Fe^{2+} -O₂ and Cu^+ -O₂ chemistry is critically dependent on the Fe³⁺: Fe²⁺, Cu²⁺: Fe²⁺ and Fe³⁺: Cu⁺ concentration ratios, suggesting that metal redox cycling is a part of the 'OH generation mechanism. First, the Fe²⁺- and Cu⁺-mediated 'OH generation was inhibited by the specific Fe³⁺ chelator DFX, indicating that the Fe²⁺- and Cu⁺-mediated reaction was dependent on the contaminating Fe^{3+} . Of note, 10 μ M and 50 μ M DFX appeared similarly potent in inhibiting the Fe²⁺-mediated 'OH generation, indicating that maximally effective DFX concentrations were studied. In addition, the nonspecific ${\rm Fe}^{3+}/{\rm Fe}^{2+}$ chelator DTPA appeared to be significantly more effective than DFX in inhibiting the Fe²⁺-mediated OH vield (Table 1). From these we conclude that, indeed, the effect of DFX was specifically related to the chelation of Fe^{3+} , but not of Fe^{2+} , and was not related to oxygen free radical scavanging properties of DFX [21]. Second, the addition of Fe^{3+} or Cu^{2+} to the reaction mixture was found to augment the Fe²⁺-mediated [.]OH generation (Fig. 3). Third, when studied in the standard KH, the Fe²⁺-mediated reaction appeared to die out within 30 s (Fig. 1). However, in the presence of an excess of the reductant (ascorbate), the reaction continued for at least 90 min, an effect abolished by DFX (Fig. 4). These results suggest that while the reductant maintains the reaction by enabling continuous redox cycling of iron ($Fe^{2+} \rightarrow Fe^{3+}$ \rightarrow Fe²⁺), Fe³⁺ chelation prevents iron ions from entering into the redox cycles necessary for 'OH formation.

To combine the discussed observations into one mechanism we propose a simplified scheme in which at least four individual reactions (Eqns. 4, 1, 3 plus the metal redox cycling reaction), interacting with one another, as speculated in Fig. 7, are involved in the Fe²⁺- and Cu⁺-promoted 'OH generation. Of note, the scheme also predicts that, in agreement with our results, in media contaminated with Fe^{3+} and Cu^{2+} , the reaction mediated by Fe²⁺ would initiate simultaneous redox cycling of copper ions, and vice versa. Consequently, the amount of measured 'OH would be always the sum of 'OH generated processes driven by iron and copper ions (Fig. 7). The limitation of the scheme is, however, that it ignores the exact (additional?) mechanism in which 'OH production is dependent on the Fe^{3+} : Fe^{2+} , Cu^{2+} : Fe^{2+} and Fe^{3+} : Cu^+ concen-

tration ratio, the mechanism which is not known at the moment [1, 19]. Actually, several aspects of the Fenton chemistry are currently ill-understood and the main unanswered question concerns the role of intermediate oxidants like ferryl and perferryl species and metal-dioxygen complexes [3, 4, 22]. In this context, our results imply that the mechanism of the Fe²⁺-mediated ^{OH} production consists of at least two components. The majority of the 'OH seems to be produced in the mechanism secondary to the Fe^{3+}/Fe^{2+} redox cycling, as evidenced by the approximately 80% inhibition of the 'OH production by DFX (Table 1). The other component would be specifically Fe²⁺-dependent (possibly Fe²⁺ autoxidation-dependent), the conclusion supported by the fact that 'OH yield from the Fe²⁺-mediated reaction was significantly more inhibited by DTPA than by DFX (used in the concentration producing maximum Fe³⁺-chelation) (Table 1). Our observation that SOD attenuated 'OH yield from Fe²⁺-mediated reaction would be in line with the dominating role of $Fe^{3+}:Fe^{2+}$ and/or the metal redox cycling in the 'OH generation mechanism. SOD, by promoting $O_{\overline{2}}^{\cdot}$ dismutation, is expected to increase $H_2 \bar{O}_2$ production at the expense of the decreasing $O_{\frac{1}{2}}^{\cdot}$ concentration. This would have two opposing consequences for 'OH generation. The rise in H_2O_2 would promote the liberation of [•]OH. However, the fall in $O_{\overline{2}}^{\cdot}$ would prevent the metal redox cycling $(O_{2}^{\cdot}, induced)$ reduction of the metal is decreased) and the resulting 'OH generation. We speculate that this second consequence of SOD treatment prevailed in our experimental conditions.

The efficiency of Fe²⁺-O₂ vs Fe²⁺-driven Fenton reaction in generating [•]OH

As proposed in Fig. 7, Fe^{2+} and Cu^+ , added to the medium like KH, may play a dual role: they generate $O_{\overline{2}}^{\cdot}$, presumably in the autoxidation reaction, and liberate OH from H₂O₂ in the Fenton-type reaction. Our data indicate that in the systems containing an additional source of $O_{\overline{2}}$ and/or H_2O_2 , as it may be the case in biological systems, the efficiency of the Fe²⁺-O₂ chemistry to generate 'OH may be greater than, or at best, equal to that of the Fe²⁺-driven Fenton reaction, depending on the actual H_2O_2 : Fe²⁺ concentration ratio (Fig. 6).

The biological relevance of the results

Extrapolated to biological systems, these data suggest that tissues exposed to an increased concentration of iron and/or copper (e.g., liberated from internal stores) may be prone to oxidative damage related to the metal ion- O_2 -mediated free radical production. This might be indeed so, because transition metals, when liberated from intracellular stores, are probably present in reduced forms [2, 3].

If it is taken for granted that increased pool of low molecular mass iron and copper is present in ischemic tissues [14, 15, 23], it becomes apparent that reperfusion, which induces tissue injury in a mechanism involving OH [24], creates particularly favourable conditions for the metal ion-O₂ reaction to occur. This is because: (i) this reaction is fast enough to account for the reperfusion-induced production of free radicals (Fig. 1); (ii) O₂, catalytic metals, and their reductants (including enzymatically produced $O_{\overline{2}}$) are abundant, and (iii) intracellular pH rapidly changes in the alkaline direction [25] in the reperfused tissue, the condition reported here (Fig. 3) and by others [26] to facilitate metal ion- O_2 chemistry.

In view of the production of 'OH caused by homocysteine (Fig. 5), there is evidence to link high plasma levels of homocysteine to atherothrombosis in humans [27]. There is also evidence that the pro-oxidative properties of ascorbate [28, 29] (Figs. 4 and 5] are of a biological relevance [29, 30].

It must be realized, however, that the metal ion- O_2 chemistry was studied here in a medium devoid of proteins and containing a relatively high O_2 concentration (p O_2 about 600 mmHg vs. 100 mmHg in the arterial blood), which may limit the biological relevance of our results, e.g., to organs perfused with buffered saline solutions only.

Altogether, our results provide further evidence that: (i) $Fe^{2^+}-O_2$ and Cu^+-O_2 chemistry mediates OH production, also in KH, and possibly in a mechanism initiated by the metal ion autoxidation; (ii) the reactions mediated by Fe^{2^+} and Cu^+ interact with each other; (iii) the efficiency of the $Fe^{2^+}-O_2$ system to generate OH in KH is greater than or equal to that of the Fe^{2^+} -driven Fenton reaction. We speculate that, at least in some biological systems, iron and copper ions may constitute an efficient source of the reactive oxygen species, without the requirement for pre-existing enzymatically generated $O_{\frac{1}{2}}$ and H_2O_2 .

REFERENCES

- Halliwell, B. & Gutteridge, J.M.C. (1990) Role of free radicals and catalytic metal ions in human disease: An overview. *Methods Enzymol.* 186, 1–85.
- Keyer, K. & Imlay, J.A. (1996) Superoxide accelerates DNA damage by elevating free-iron levels. *Proc. Natl. Acad. Sci. U.S.A.* 93, 13635-13640.
- Yue Qian, S. & Buettner, G.R. (1999) Iron and dioxygen chemistry is an important route to initiation of biologic free radical oxidations: An electron paramagnetic resonance spin trapping study. *Free Radical Biol. Med.* 26, 1447-1456.
- Rush, J.D. & Koppenol, W.H. (1986) Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. J. Biol. Chem. 261, 6730-6733.
- 5. Wink, D.A., Nims, R.W., Saavedra, J.E., Utermahlen, W.E., Jr. & Ford, P.C. (1994) The Fenton oxidation mechanism: Reactivities of biologically relevant substrates with two oxidizing intermediates differ from those pre-

dicted for the hydroxyl radical. *Proc. Natl.* Acad. Sci. U.S.A. **91**, 6604–6608.

- Miller, D.M., Buettner, G.R. & Aust, S.D. (1990) Transition metals as catalysts of "autoxidation" reactions. *Free Radical Biol. Med.* 8, 95-108.
- Kosaka, H. & Shiga, T. (1993) Spin trapping study of superoxide production in ferrous ion oxidation. *Free Radical Res. Commun.* 19, S63-S69.
- Biaglow, J.E. & Kachur, A.V. (1997) The generation of hydroxyl radicals in the reaction of molecular oxygen with polyphosphate complexes of ferrous ions. *Radiat. Res.* 148, 181-187.
- 9. Kachur, A.V., Tuttle, S.W. & Biaglow, J.E. (1998) Autoxidation of ferrous ion complexes: A method for the generation of hydroxyl radicals. *Radiat. Res.* 150, 475–482.
- 10. Floyd, R.A., Watson, J.J. & Wong, P.K. (1984) Sensitive assay of hydroxyl radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. J. Biochem. Biophys. Methods 10, 221–235.
- 11. Obata, T. & Yamanaka, Y. (1996) Effect of iron (II) on the generation of hydroxyl free radicals in rat myocardium. *Biochem. Pharmacol.* 51, 1411-1413.
- 12. Hunt, J.V., Dean, R.T. & Wolff, S.P. (1988) Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. *Biochem. J.* 256, 205-212.
- 13. Kaur, H., Whiteman, M. & Halliwell, B. (1997) Peroxynitrite-dependent aromatic hydroxylation and nitration of salicylate and phenylalanine. Is hydroxyl radical involved? *Free Radical Res.* 26, 71–82.
- 14. Gower, J., Healing, G. & Green, C. (1989) Measurement by HPLC of desfer-

rioxamine-available iron in rabbit kidneys to assess the effect of ischemia on the distribution of iron within the total pool. *Free Radical Res. Commun.* **5**, 291–299.

- Voogd, A., Sluiter, W., Vaneijk, H.G. & Koster, J.F. (1992) Low molecular weight iron and the oxygen paradox in isolated rat hearts. J. Clin. Invest. 90, 2050–2055.
- Chevion, M., Jiang, Y.D., Harel, R., Berenshtein, E., Uretzky, G. & Kitrossky, N. (1993) Copper and iron are mobilized following myocardial ischemia – possible predictive criteria for tissue injury. *Proc. Natl. Acad. Sci. U.S.A.* 90, 1102–1106.
- 17. Coudray, C., Pucheu, S., Boucher, F., Arnaud, J., Deleiris, J. & Favier, A. (1994) Effect of ischemia/reperfusion sequence on cytosolic iron status and its release in the coronary effluent in isolated rat heart. *Biol. Trace Element Res.* 41, 69-75.
- 18. Mączewski, M. & Beręsewicz, A. (2000) The role of endothelin, protein kinase C, and free radicals in the mechanism of the post-ischemic endothelial dysfunction in guinea-pig hearts. J. Mol. Cell. Cardiol. 32, 297-310.
- 19. Minotti, G. & Aust, S.D. (1992) Redox cycling of iron and lipid peroxidation. *Lipids* 27, 219–225.
- 20. Maestre, P., Lambs, L., Thouvenot, J.P. & Berthon, G. (1994) Copper-ligand interactions and physiological free radical processes. 2. Influence of Cu²⁺ ions on Cu⁺-driven 'OH generation and comparison with their effects on Fe²⁺-driven 'OH production. *Free Radical Res.* 20, 205-218.
- 21. Halliwell, B. (1985) Use of desferrioxamine as a 'probe' for iron-dependent formation of hydroxyl radicals. Evidence for a direct reaction between desferal and the superoxide radical. *Biochem. Pharmacol.* 34, 229–233.
- **22.** Sutton, H.C. & Winterbourn, C.C. (1989) On the participation of higher oxidation states of

iron and copper in Fenton reactions. *Free Radical Biol. Med.* **6**, 53-60.

- 23. Nayni, N.R., White, B.C., Aust, S.D., Huang, R.R., Indrieri, R.J., Evans, A.T., Bialek, H., Jacobs, W.A. & Komara, J. (1985) Post resuscitation iron delocalization and malondialdehyde production in the brain following prolonged cardiac arrest. *Free Radical Biol. Med.* 1, 111-116.
- 24. Bolli, R. (1991) Oxygen-derived free radicals and myocardial reperfusion injury. *Cardio*vasc. Drugs Ther. 5, 249–268.
- 25. Bauza, G., Lemoyec, L. & Eugene, M. (1995) pH regulation during ischaemia-reperfusion of isolated rat hearts, and metabolic effects of 2,3-butanedione monoxime. J. Mol. Cell. Cardiol. 27, 1703–1713.
- 26. Harris, D.C. & Aisen, P. (1973) Facilitation of Fe(II) autoxidation by Fe(III) complexing agents. *Biochim. Biophys. Acta* 329, 156–158.

- 27. Welch, G.N. & Loscalzo, J. (1998) Homocysteine and atherothrombosis. N. Engl. J. Med. 338, 1042-1050.
- 28. Nappi, A.J. & Vass, E. (1997) Comparative studies of enhanced iron-mediated production of hydroxyl radical by glutathione, cysteine, ascorbic acid, and selected catechols. *Biochim. Biophys. Acta* 1336, 295–302.
- 29. Rehman, A., Collis, C.S., Yang, M., Kelly, M., Diplock, A.T., Halliwell, B. & Riceevans, C. (1998) The effects of iron and vitamin C co-supplementation on oxidative damage to DNA in healthy volunteers. *Biochem. Biophys. Res. Commun.* 246, 293-298.
- 30. Podmore, I.D., Griffiths, H.R., Herbert, K.E., Mistry, N., Mistry, P. & Lunec, J. (1998) Vitamin C exhibits pro-oxidant properties. *Nature* 392, 559.