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There is a significant number of data confirming that the maintenance of calcium ho-
meostasis in a living cell is a complex, multiregulated process. Calcium efflux from ex-
citable cells (i.e., neurons) occurs through two main systems — an electrochemically
driven Na'/ Ca2+ exchanger with a low Ca2+ affinity (Ky5 = 10-15 uM), and a
plasmalemmal, specific Ca2 -ATPase, with a high Ca2 affinity (K¢ 5 < 0.5-1 uM),
whereas in nonexcitable cells (i.e., erythrocytes) the calcium pump is the sole system
responsible for the extrusion of calcium ions. The plasma membrane Caz+-ATPase
(PMCA) is a ubiquitously expressed protein, and more than 26 transcripts of four
PMCA genes are distributed in a tissue specific manner. Differences in the structure
and localization of PMCA variants are thought to correlate with specific regulatory
properties and may have consequences for proper cellular Ca2+ signaling. The regula-
tory mechanisms of calcium pump activity have been studied extensively, resulting in
a new view of the functioning of this important molecule in the membranes.

Calcium ions serve as the main second mes-  Ca®" concentration is maintained at a very
sengers in all cell types, and in the cytosol free low level (50-150 nM). Fluctuations in
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intracellular CaZ" level are essential elements
for normal cellular activities which are closely
connected with the development of cells, mi-
totic activity, immune response, muscle con-
traction, endo- and exocytosis, or modulation
of neuronal cells processes [1, 2]. The precise
regulation of the Ca" homeostasis in cells is a
result of the concerted functioning of trans-
porters located in the plasma membrane, sys-
tems operating in cell organelles, i.e., endo/
sarcoplasmic reticulum, mitochondrium, nu-
cleus, and calcium binding proteins. Calcium
efflux from excitable cells occurs through two
main systems, an electrochemically driven
Na*/Ca®" exchanger with a low CaZ* affinity,
and a plasmalemmal Ca2+-ATPase, with a
high Ca®" affinity [3]. The capacity of the
Na*/Ca®" exchanger to pump out calcium ions
1s more than 10 times greater when compared
to plasma membrane Ca?*-ATPase. In non-
excitable cells the calcium pump is the sole
system responsible for the extrusion of cal-
cium ions outside the cells. Thus, plasma
membrane Ca?"-ATPase is considered a fine
tuner of cytosolic calcium ion concentration,
and the important role of this enzyme is also
reflected in its isoform-specific ubiquitous ex-
pression among different cell types.
Typically, the plasma membrane Ca
ATPase (PMCA) pump represents a minor
fraction (about 0.1%) of the erythrocyte pro-
teins, but in synaptosomes CaZ"ATPase is
present at a higher level than in erythrocyte
ghosts [4]. Calcium pump belongs to the
P-type ATPase family the members of which
are able to utilize the energy of ATP to trans-
port ions against their electrochemical gradi-
ents across membranes. The Ca®"-ATPase re-
action cycle involves the sequential formation
and degradation of phosphorylated intermedi-
ates (aspartylphosphate). The enzyme that
can exist in two different states (E; and Eo)
with different affinities for CaZ* undergoes a
conformational change during the transport
of a CaZ" ion. Experimental data have shown
that the pump operates as an electrogenic

2+

CaZ'/H" exchanger with a 1:1 stoichiometry
[5].

Several modes of Ca?"-ATPase activation
have been reported, including stimulation by
a naturally existing activator — calmodulin,
acidic phospholipids, long chain polyunsatu-
rated fatty acids, proteolytic treatment by
calpain, protein G fy subunits, oligomeri-
zation, and more recently proved, phospho-
rylation by protein kinases (for review see [6,
7]1). The studies reviewed in this paper de-
scribe some modulatory mechanisms that
could be of physiological and pathological im-
portance.

PLASMA MEMBRANE Ca2'-ATPase
ISOFORMS IN EXCITABLE AND
NONEXCITABLE CELLS

In a number of cell types Ca?"-ATPase has
been shown to be associated with membrane
structures named caveolae that are thought to
be involved in multiple signal transduction
events at the cell surface [8]. These caveolae
represent a dynamic cell surface-membrane
system. Moreover, some cellular elements of
calcium-dependent machinery i.e., IP3 recep-
tors, calmodulin and nitric oxide synthase are
concentrated in caveolae. Thus, the specific
PMCA localization appears to be primarily re-
lated to the involvement of CaZ" signaling in
the regulation of transduction and adaptation
mechanisms.

As found with other ion pumps,
Ca®"-ATPases form a multigene family.
Plasma membrane calcium pump isoforms
are encoded by 4 different genes named pmca
1, pmea 2, pmcea 3 and pmea 4, and due to alter-
native mRNA splicing more than 26 variants
can exist (Table 1) [8-10]. Based on func-
tional studies it has been shown that these
isoforms and variants differ in their regula-
tory properties. In human chromosomal local-
ization of the pmca genes has been described
(Table 2) [11]. Among the best characterized
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members of the P-type ATPase family is the
calcium pump of erythrocyte membrane. This
family represents a mixture of isoforms

region may utilize a unique combination of
. . N . +

isoforms to maintain intracellular CaZ* con-
trol. Moreover, the expression of particular

Table 1. Plasma membrane Ca2+-ATPase isoforms [8-10]

Gen Number of variants Number of amino acids M,

pmeca 1 5 1176-1258 129200-138800
pmea 2 8 1154-1243 127500-136 800
pmeca 3 9 1117-1230 123500-136 000
pmea 4 6 1170-1205 129400-133900

PMCA 1 and PMCA 4 which are expressed in
practically all tissues, while PMCA 2 and 3
have been shown to occur in highly specialized
tissues, especially in the brain and heart [3, 7,
12]. It is noteworthy that the brain contains
up to 10 times more PMCA than nonexcitable
cells [10].

During the last years, using molecular biol-
ogy techniques, in situ hybridization and iso-
form specific monoclonal antibodies it has
been demonstrated that mRNAs and PMCA
proteins were nonuniformly distributed in dif-

Table 2. Chromosomal localization of human
PMCA genes [11]

Gen Chromosome Locus
pmea 1 12 q21-q 23
pmca 2 3 p 26-p 25
pmca 3 X q 28
pmca 4 1 q 25-q 32

ferent regions of human, mouse, rat, pig and
gerbil brains [13-19]. The amounts of PMCA
2 and PMCA 3 were similar to those of PMCA
1 and PMCA 4, however, there were some sub-
tle differences among brain areas. Recently, it
has been reported that PMCA pump is present
in mammalian glial cells [20]. The amounts of
PMCA 1 and PMCA 4 isoforms in astrocytes
were comparable to those found in neurons,
whereas the amount of PMCA 2 was lower.
These data strongly indicate that each brain

PMCA isoform is regulated during develop-
ment [19, 21, 22]. There is a direct evidence
for the involvement of calcineurin in the con-
trol of neuronal transcription of the PMCA 4
isoform [23]. The existence of multiple iso-
forms has also been described for all excitable
and nonexcitable cells examined so far. In ad-
dition, in several types of cultured cells PMCA
mRNA was induced by various agonists via
multiple second messenger pathways [24].

PHOSPHORYLATION PROCESSES IN
THE REGULATION OF CALCIUM
PUMP ACTIVITY

Now it is well-established that nearly all
events of cell functioning are regulated by re-
versible protein phosphorylation. The geno-
mes of higher eukaryotes encode approxi-
mately 2000 and 1000 protein kinases and
phosphatases genes, respectively, correspond-
ing to 3% of the genome [25]. Serine and
threonine are the major amino-acid residues
phosphorylated in cells. In contrast, the level
of tyrosine phosphorylation is below 0.1% of
serine/threonine phosphorylation [26]. Re-
versible phosphorylation of serine and threo-
nine has been demonstrated to regulate the
activity of a number of membrane enzymes.

Calcium pump has also been identified as a
target for protein kinases actions. The C-ter-
minal part of Ca?"-ATPase is a multifun-
ctional regulatory region, and contains an
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autoinhibitory domain with a high affinity
calmodulin binding site, acidic phospho-
lipids-binding site, and sequences that are po-
tent targets for phosphorylation by protein
kinases [4]. In PMCA variants the sequences
phosphorylated by protein kinases are not
conserved and phosphorylation may differ-
ently regulate the calcium pump activity [6].
Although many details remain unclear, the
importance of this mechanism seems to be un-
questionable.

The first report dealing with this subject de-
scribed the activation of erythrocyte calcium
pump by protein kinase A [27]. Later it has
been found that PKA phosphorylated the
serine residues located in the calmodulin-
binding domain of the PMCA 1 isoform [28].
Although this isoform, as well as its spliced
variants, are thought to be a house-keeping
form of the enzyme in many cells, the tran-
scripts encoding a potentially PKA-insensitive
PMCA 1 isoform have also been detected, par-
ticularly in the brain [29]. PKC-mediated
phosphorylation has been demonstrated in
purified red blood cell CaZ+-ATPase, in human
neutrophils, intact human platelets, cultured
aortic endothelial cells, vascular smooth mus-
cle cells, and murine lymphocytes [30-35].
PKC phosphorylated a threonine residue, and
recent studies have demonstrated that at least
one serine residue located carboxy-terminally
to the CaM-binding domain was also the sub-
strate for this kinase. A study performed with
isoform PMCA 2 and PMCA 3 variants
overexpressed in COS cells revealed that PKC
regulated their activity in different ways [36].
Little or no phosphorylation by PKC was de-
tected in PMCA 2b and PMCA 3b, whereas
PMCA 2a and 3a variants were phospho-
rylated without increasing their Ca?" trans-
port activity. It is mnoteworthy that
phosphorylation prevented stimulation of
Ca2*-ATPase by calmodulin (CaM). Phos-
phorylation of PMCA 4a was blocked when
CaM was bound to the enzyme, but

phosphorylation in the absence of CaM did
not eliminate either binding or further activa-
tion of the calcium pump by CaM [37]. In con-
clusion, in COS cell membranes, PMCA vari-
ants: 2a, 3a, 4a and 4b are phosphorylated by
PKC, but only PMCA 4b is activated by this
process [6, 38].

Up to now, only partial data have been pub-
lished on possible regulation of the calcium
pump by phosphorylation in the nervous tis-
sue [39]. Recently, it has been reported that
the PKC inhibitor, sphingosine, is a weak in-
hibitor of the synaptosomal but an effective
inhibitor of the leukocyte membrane
Ca’"-ATPase activity, and according to
Grosman these differences could depend on
the origin of the membranes [40]. Our previ-
ous study revealed that in vitro Ca?"-ATPase
activity in rat cortical and cerebellar
synaptosomal membranes increased in the
presence of PKA and PKC activators, i.e.,
cAMP and phorbol derivatives, respectively
[41]. Okadaic acid, a specific inhibitor of pro-
tein phosphatases PP1 and PP2A, brought
about further enhancement in the calcium
pump activity. It is noteworthy that the inten-
sity of this regulation differed in a brain re-
gion-dependent manner. We showed that cal-
cium pump purified from rat cortical, cerebel-
lar and hippocampal synaptosomal mem-
branes contained P-Ser and P-Thr, thus the
phosphorylation of Ca?"-ATPase appears to
be a physiological phenomenon, however, the
nature of protein kinases that were responsi-
ble for this process in vivo remains unknown
[42]. Moreover, purified Ca?"-ATPase was a
substrate for phosphorylation in vitro by pro-
tein kinases A and C. It should be kept in mind
that the individual isoforms and variants are
expressed at different abundances in living
cells, and that the state of phosphorylation of
Ca2*-ATPase results from the concerted ac-
tion of cellular protein kinases and
phosphatases, modulated by several second
messenger systems.
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DEPHOSPHORYLATION PROCESSES
IN THE REGULATION OF CALCIUM
PUMP ACTIVITY

In contrast to phosphorylation, limited data
are available on specific Ca®"-ATPase
dephosphorylation. The protein Ser/Thr
phosphatases PP1, PP2A and PP2B account
for the majority of the phosphatase activity in
vivo, and are involved in multiple cellular
functions [25]. The effect of PP2A-mediated
dephosphorylation on calcium pump activity
has only been observed in the mem-
brane-inserted and purified erythrocyte en-
zyme [43]. The nervous tissue is particularly
enriched both in protein kinases and protein
phosphatases, with differing substrate
specificities [26]. Protein phosphatases partic-
ipate in a variety of signaling pathways, in-
cluding the most potent Ca?*-induced phe-
nomena that modulate the neuronal cell activ-
ity. PP1 is present in membrane fractions and
synaptic junction, and is also associated with
neurofilaments [25]. The heterotrimeric
PP2A is expressed in a cell- and tissue-specific
fashion, and a neural function has been in-
ferred from the targeting of PP2A to specific
intracellular location [25, 26].

We have demonstrated that, under an in vi-
tro assay, PP1 and PP2A decreased the activ-
ity of purified cortical and cerebellar calcium
pump [44]. This provides further support for
in vivo phosphorylation of CaZ"ATPase in
neuronal cells. Moreover, the native enzyme
appeared to be a substrate for PP1 and PP2A
in vitro. The decreased activity of dephos-
phorylated Ca?"-ATPase was associated with
its enhanced potency for stimulation by
calmodulin, and it could suggest that both
activatory mechanismes, i.e., phosphorylation
and CaM-stimulation, are competitive under
the in vitro assays. The regulation of calcium
pump activity appears to be a more complex
phenomenon, because recently it has been re-
ported that protein phosphatases PP1 and
PP2A reversibly inhibit PKCa activity [45].
Thus, these phosphatases could directly

and/or indirectly (via PKC) regulate the cal-
cium pump activity in cells.

Taken together, the complex effects of the re-
versible phosphorylation result from cross-ac-
tivation of calcium pump by different regula-
tory mechanisms which are strongly depend-
ent on the cell type and PMCA isoforms pres-
ence.

MULTISTEP ACTION OF NEURO-
ACTIVE STEROIDS ON PLASMA
MEMBRANE Ca2'-ATPase

During the last years there has been an in-
creasing number of data confirming that
brain is a site of extensive synthesis and me-
tabolism of steroid hormones’, and that the
accumulation of steroids appears to be, at
least in part, independent of adrenal and go-
nadal sources [46]. Beside their actions at the
transcriptional level, steroids may act on
nerve cells via plasma membrane receptors.
Biochemical and electrophysiological experi-
ments have demonstrated that neuroactive
steroids are potent allosteric modulators of
GABA, nicotinic, muscarinic, NMDA recep-
tors, and some receptors coupled to
G-proteins [47-50].

One of the recent insights concerning the
regulatory mechanism of brain Ca?*-ATPase
function is the direct and indirect influence of
neuroactive hormones. In synaptosomal
membranes of dog brain, testosterone has
been observed to increase the activity of
Ca"-stimulated ATPase, whereas progester-
one had an opposite effect [51]. In rat brain
neuronal membrane preparations an increase
of the activity of Ca?"-ATPase was demon-
strated after a short-time incubation with
physiologically relevant concentrations of
pregnenolone sulfate and 178-estradiol [52].
Later experiments performed on purified rat
cortical Ca*-ATPase showed that at biologi-
cally relevant concentrations (pM to nM) the
neuroactive steroids: 17-5-estradiol, testoster-
one, pregnenolone sulfate and dehydro-
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epiandrosterone sulfate, were responsible for
the direct stimulation of Ca’’-ATPase
hydrolytic activity [63]. All neuroactive ste-
roids examined decreased also calmodulin
stimulation of Ca®’-ATPase. More impor-
tantly, they were more effective than CaM in
the activation of purified Ca?"-ATPase. Al
though the precise mechanism of these regula-
tions remains unknown, the CaM-binding do-
main of Ca?"-ATPase is assumed to be a pri-
mary site of steroids action. These observa-
tions may have physiological consequences,
because local steroid synthesis could allow
permanent, Ca2+—independent regulation of
CaZ"-ATPase activity in neuronal plasma
membranes, whereas the calmodulin binding
is a Ca2+-dependent process. However, a
better understanding of the molecular mecha-
nisms of the non-genomic Ca?*-ATPase regu-
lation by steroid hormones needs further
study.

MEMBRANE EFFECTS OF REACTIVE
OXYGEN SPECIES ON CELL IONS
HOMEOSTASIS

Under normoxic conditions a number of bio-
chemical reactions generate reactive oxygen
species (ROS) which are neutralized by the an-
tioxidant defense systems. The excessive pro-
duction of ROS results in enhanced oxidation
of cellular biomolecules, including lipids,
DNA, proteins and amino acids [54]. Recent
studies have indicated that the ROS-de-
pendent oxidative modification of biological
membranes is particularly more pronounced
during hypoxia-ischemia cell injury [55].
Using different models it has been docu-
mented that increased reactive oxygen spe-
cies production could propagate an oxidative
cascade in cells. For example, a hypoxic tissue
underwent lipid peroxidation 5 times faster
than a normoxic tissue, and the level of
thiobarbituric acid reactive substances
(TBARS) was three times higher in the
hypoxic tissue [56]. Peroxidation of mem-

brane lipids results in changes in fluidity and
permeability, which can also affect function-
ing of membrane proteins. Structural rear-
rangement of membrane proteins is fre-
quently correlated with increased amounts of
disulfide bonds, carbonyl groups, and nitro- or
aminotyrosine formation [57, 58].

Several essential proteins are known to be
particularly sensitive to oxidative modifica-
tions, including ion channels, Na', K'-
ATPase, and glucose and glutamate transport-
ers (for a review see [59]). It has been shown
that oxidized proteins are often functionally
inactive, and are more susceptible to
proteolytic cleavage. Several lines of evidence
suggest that plasma membrane Ca?"-ATPase
is among the proteins which are a target for
reactive oxygen species. Ca?"-ATPase shows a
diminished activity following ascorbate/iron
induced oxidation, and a similar effect has
been observed after Fe?'/ Hy09 incubation
[60, 61]. Oxidative stress can increase intra-
cellular Ca?*concentration and trigger the se-
ries of events due to the generation of reactive
oxygen species. One of the most profound con-
sequences is the activation of nitric oxide
synthase, resulting in the production of NO
[69]. A direct reaction of NO and O, produces
peroxynitrite that can exert pathological con-
sequences in the cell. ONOO™ is a powerful ox-
idant, which can react with unsaturated fatty
acids or amino-acid residues [62]. Recently, it
has been demonstrated that ONOO™ crosses
cell membranes at a rate significantly higher
than that of its decomposition pathways [63].
Erythrocyte membranes exposed to peroxy-
nitrite have shown aggregation and nitration
of proteins, changes in protein organization,
and inactivation of the Ca?"-ATPase activity
[57].

We have recently shown that purified eryth-
rocyte plasma membrane Ca®"-ATPase is di-
rectly degraded by peroxynitrite, and a simi-
lar degradation pattern has been detected in
erythrocyte membranes of asphyxiated new-
borns [64]. The Mg2+-dependent Ca®"-ATPase
activity in erythrocyte ghosts of asphyxiated
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newborns was diminished by 50% when com-
pared with healthy newborn infants. More-
over, the activity of Ca2*-ATPase in asphyxi-
ated membranes was stimulated by CaM to a
lesser degree than in normal membranes. The
decreased activity of the enzyme was corre-
lated with aggregation and degradation of the
calcium pump molecules.

Under physiological conditions due to reac-
tive oxygen species action protein and amino-
acid peroxides may also be formed. They are
relatively stable species and could decrease
the membrane -SH group content. Amino-acid
peroxides have been shown to inhibit
Na'/K'-ATPase and CaZ"-ATPase of erythro-
cyte membrane, as well as being responsible
for the oxidation of hemoglobin to methe-
moglobin [65].

Disturbances in calcium homeostasis play a
particularly important role in brain damage,
and in a number of processes that have been
implicated in the CaZ" related pathogenesis
including brain aging, ischemia/anoxia, oxi-
dative stress, and Alzheimer’s or Parkinson’s
diseases (for a review see [54]). In synaptic
plasma membranes of rat brain after expo-
sure to peroxyl radicals, HyO9 and ONOO™,
significant crosslinking of PMCA molecules
has been detected, as well as diminished cal-
cium pump activity [66]. In another study the
Ca2+-dependent ATPase activity in synapto-
somal plasma membranes was significantly
depressed following peroxidation of mem-
brane lipids [61]. Thus, the decreased activity
of calcium pump after ROS exposure could re-
sult from both the alteration of the lipid envi-
ronment and direct modification of the poly-
peptide chain.

CONCLUSION

In addition to a number of well-documented
regulatory mechanisms of plasma membrane
Ca2+—ATPase, the action of protein kinases
and phosphatases, modulatory effect of some

neuroactive steroids, and modification of cal-
cium pump function by reactive oxygen spe-
cies appear to be important from the physio-
logical and pathological points of view. These
regulatory mechanisms could be specifically
coupled to distinct signaling pathways in ex-
citable and nonexcitable cells. Moreover, in-
terdependence between different regulatory
modes of plasma membrane calcium pump
may be essential for the complex CaZ* signal-
ing.
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