

591 - 599

QUARTERLY

Participation of phospholipase A_2 isoforms in the control of calcium influx into electrically non-excitable cells^{*}

Krzysztof Zabłocki, Magdalena Waśniewska and Jerzy Duszyński[⊠]

Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, L. Pasteura 3, 02-093 Warszawa, Poland

Received: 18 July, 2000; accepted: 31 July, 2000

Key words: store-operated channels, calcium influx, phospholipase A2, Jurkat cells, MDCK cells

The participation of phospholipase A_2 isoforms in capacitative store-operated Ca^{2+} influx into Jurkat leukemic T and MDCK cells was investigated. Preincubation of Jurkat cells with either bromophenacyl bromide (an inhibitor of secreted phospholipase A_2 , sPLA₂) or Helss (an inhibitor of calcium independent phospholipase A_2 - iPLA₂) resulted in a significant inhibition of the calcium influx. The extent of this inhibition depended on the pH of the extracellular millieu; it increased with alkalisation. The rate of Ca^{2+} influx into MDCK cells was reduced by bromophenacyl bromide. Preincubation of these cells with Helss resulted in the stimulation of the influx. These observations suggest the participation of different PLA₂ isoforms in the regulation of Ca^{2+} influx. They also show that the extent that PLA₂ isoforms control the influx depends on the pH of the medium. Finally, these data indicate that various phospholipase A_2 isoforms may play a role in the control of Ca^{2+} influx in different cell lines.

Calcium cations play a pivotal role in the intracellular signal cascade triggered by many extracellular stimuli, such as hormones and growth factors. An increase in the cytosolic calcium concentration ($[Ca^{2+}]_c$) which occurs after the stimulation of cells, is a result of both

the release of Ca^{2+} from intracellular stores localised in the endoplasmic reticulum (ER) and the transport of Ca^{2+} from the extracellular medium into the cell. In electrically non-excitable cells, calcium release from the ER is activated by inositoltrisphosphate (IP₃).

^{*75}th Anniversary of Membrane Lipid Bilayer Concept.

[™]To whom correspondence should be addressed; phone: (48 22) 668 6073; e-mail: jdus@nencki.gov.pl **Abbreviations:** AA, arachidonic acid; BPB, bromophenacyl bromide; [Ca²⁺]_c, cytosolic calcium concentration; CIF, calcium influx factor; CHO, chinese hamster ovary cells; cPLA₂, cytosolic phospholipase A₂; ER, endoplasmic reticulum; Helss, *E*-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one; iPLA₂, Ca²⁺-independent phospholipase A₂; MDCK, Madin-Darby canine kidney cells; Me₂SO, dimethylsulfoxide; SOC, store-operated channel; sPLA₂, secretory phospholipase A₂.

The intracellular concentration of this signal molecule increases due to the stimulation of phospholipase C related to its interaction with protein G or growth factor receptors. IP₃ specifically binds to receptors in the membrane of the ER. These receptors carry the function of Ca²⁺ channels. IP₃ activates these channels and consequently promotes the release of Ca^{2+} from the ER (Berridge, 1993; Pozzan *et* al., 1993). Calcium release from the ER may also be achieved, at least in some types of cells, by a Ca^{2+} -dependent activation of ryanodine receptors (Wayman et al., 1998; Bennett et al., 1998). The depletion of intracellular calcium stores activates calcium entry from the extracellular fluid into the cytosol via so-called stored-operated calcium channels (SOCs) (Putney, 1986; Putney, 1990). The activation of SOCs may also be achieved by treatment of cells with thapsigargin, a selective inhibitor of Ca²⁺-ATPase in the ER (Thastrup et al., 1994; Parekh & Penner, 1997). The role of SOCs in many physiological processes is well documented. However, the biochemical nature of the coupling between calcium content of the ER and the activity of SOCs is still unclear.

Three main hypotheses have been proposed to explain signaling between the ER and the plasma membrane. These hypotheses assume: 1) a direct conformational interaction between the ER membranes and SOCs, triggered by the activation of IP₃-sensitive receptors in the ER (Irvine, 1990; Berridge, 1995), 2) the participation of secretory vesicles (Somasundaram et al., 1995), 3) the existence of a soluble messenger known as calcium influx factor, CIF. CIF was supposed to be synthesised or released into the cytosol after release of calcium from the ER. It has been postulated that CIF is a small molecule (about 500 kDa) that undergoes phosphorylation/dephosphorylation (Randriamampita & Tsien, 1993). Among other "CIF-related" concepts, it has also been suggested that SOC activation is related to cytochrome P450s (Alvarez et al.,

1992), protein G (Petersen & Berridge, 1994), tyrosine kinases (Lee *et al.*, 1993) and small GTP-binding proteins (Fasolato *et al.*, 1993).

Recent years have brought a growing number of evidence indicating that arachidonic acid (AA) and/or its derivatives are involved in the activation of SOCs. The relevant observations are the following:

- AA as well as 5,8,11,14-eicosatetraynoic acid, its non-metabolizable analogue, produces activation of SOCs in CHO cells (Gailly, 1998).
- Ca²⁺ release from the ER leads to an enhancement of the cellular AA concentration due to the liberation of this fatty acid from membrane glycerophospholipids (Rzigalinski *et al.*, 1996; Nofer *et al.*, 2000).
- Calcium depletion of the ER results in the stimulation of phospholipase A₂ activities (Törnquist *et al.*, 1994).
- ◆ Addition of exogenous phosholipase A₂ into the extracellular medium results in the activation of SOCs (Nofer *et al.*, 2000).

It is noteworthy that AA and/or its derivatives are also supposed to activate Ca^{2+} influx that is not coupled to the release of calcium from the ER (so called non-capacitative calcium influx); this was observed after stimulation of the cells with growth factors (Munaron *et al.*, 1997). Therefore, in experiments concerning the effect of AA on SOCs activity, this must also be taken into account (Shuttleworth & Thompson, 1999). Finally, at least in some cell types, it has been observed that fatty acids inhibit SOCs (Gamberucci *et al.*, 1997).

The phospholipase A_2 family consists of a growing number of enzymes that catalyse the hydrolysis of the ester bound at the sn-2 position of glycerophospholipids. The products of this reaction (free fatty acids and lysophospholipids) are important for cell signalling and the biosynthesis of several biologically active lipids (including eicosanoids and platelet-activating factors). Numerous intracellular and secreted PLA₂s have been described to date. The PLA_2 family is divided into at least three main classes according to their structures and enzymatic properties.

Class 1. Secretory PLA_2s (sPLA₂s) are small enzymes (about 14 kDa), requiring millimolar $[Ca^{2+}]$ for full activity. They seem to exhibit only little selectivity towards fatty acids (Tischfield, 1997). Until now, five sPLA₂s have been described in mammalian tissues (Murakami et al., 1998). They differ in tissue localization and participation in various physiological processes. Some of them are known to be involved in the signalling pathway of renal messangial cells activated by proinflammatory cytokines (Huwiler et al., 1997). Apart from their enzymatic activities, sPLA₂s are supposed to interact with some soluble and membrane-bound receptors. The exact role of these receptors has not yet been identified but to date two main types of them, M-type (muscle-type, detected originally in muscle) and N-type (neuronal-type, detected originally in brain), have been described (Lambeau & Lazdunski, 1999).

Class 2. Cytosolic PLA₂s. This class is divided into two sub-classes: the first one containing cPLA₂s, commonly known as a "cytosolic" PLA₂₈, and the second one, $iPLA_2$ s or Ca²⁺-independent PLA₂. cPLA₂ (an 85-kDa enzyme) is usually found in many mammalian tissues. It plays a role in signal transduction after receptor-mediated excitation of cells (Leslie, 1997). cPLA₂ requires $1 \,\mu\text{M}$ [Ca²⁺] for maximal activity and exhibits a strong preference for AA containing glycerophospholipids (Clark et al., 1991; Sharp et al., 1991). Upon stimulation of the cell, $cPLA_2$ is translocated in a Ca²⁺-dependent manner from the cytosol to the ER or perinuclear membranes (Glover et al., 1995; Schievella et al., 1995). This enzyme has a few phosphorylation sites, among which Ser^{505} seems to be the most important amino-acid residue phosphorylated by mitogen-activated protein kinase (MAPK) (Lin et al., 1993). cPLA₂ is believed to release arachidonic acid that is subsequently converted into prostanoids and leukotrienes.

Class 3. iPLA₂s are an extraordinary group of PLA₂s; they do not need Ca^{2+} for enzymatic activity. iPLA₂s are subdivided into three types (Ackermann & Dennis, 1995) for a review): (1) lysosomal iPLA₂; (2) intracellular iPLA₂ types I and II and platelet-activating factor acetylhydrolases; their substrate specificities are limited toward platelet-activating factor and oxidised phospholipids; (3) 85-kDa iPLA₂-VI – forms oligomers of about 300 kDa. This latter enzyme does not exhibit any selectivity toward fatty acid and is postulated to be mostly involved in the remodelling of phospholipids (Balboa et al., 1997; Balsinde & Dennis, 1997). Moreover, some experimental data indicate the role of iPLA₂-VI in the stimulus-dependent liberation of arachidonate. iPLA₂-VI was found to be activated in myocardial cells after depletion of intracellular calcium stores. The activity of this enzyme was lowered at high calcium concentration and increased in the presence of calmodulin inhibitors (Wolf & Gross, 1996). These findings suggest that iPLA₂ is inhibited by Ca^{2+} -calmodulin complex and the decrease in the calcium level in the ER results in the activation of iPLA₂ and formation of signalling molecules (Wolf et al., 1997; Gross, 1998).

The purpose of this study was to test the hypothesis that different PLA_2s participate in the regulation of store-operated calcium entry into electrically non-excitable cells. We studied how two inhibitors of PLA_2s , one specific towards $sPLA_2s$ and the other towards $iPLA_2$, influence store-operated calcium entry. In these experiments, we used two different electrically non-excitable cell lines, Jurkat lymphoidal T-cells and kidney epithelial cells (MDCK). We found that PLA_2s play a role in the control of SOCs and, that in various cell lines, different types of PLA_2 can modulate SOCs activity.

MATERIAL AND METHODS

Materials. E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one (Helss) and thapsigargin were from Calbiochem (La Jolla, CA, U.S.A.). Fura-2 AM and *p*-bromophenacyl bromide (BPB) were purchased from Molecular Probes (Eugene, OR, U.S.A.). Ionomycin was from Sigma Chemicals, Co (St. Louis, MO, U.S.A.). Other chemicals were of analytical grade. The standard assay medium contained 130 mM NaCl, 5 mM KCl, 1 mM MgCl₂, 0.5 mM Na₂HPO₄, 25 mM Hepes, 1 mM pyruvate and 5 mM glucose; pH, as indicated.

Cell cultures. Jurkat lymphoidal T-cells were cultured in RPMI-1640 medium (Wrocław, Poland) supplemented with 10% foetal bovine serum (GIBCO BRL), 2 mM glutamine (GIBCO BRL), penicillin (100 units/ml) and streptomycin (50 μ g/ml) in a humidified atmosphere containing 5% CO₂ and 95% air at 37°C, as described previously (Makowska *et al.*, 2000). Madin-Darby canine kidney cells, MDCK (passage 63–70) were grown on glass coverslips under the same conditions with the exception that the RPMI medium was replaced by a DMEM medium (GIBCO BRL).

Intracellular calcium measurements. Cytosolic free Ca^{2+} concentration was measured flurometrically using the fluorescent dye Fura-2 (Grynkiewicz et al., 1985). Jurkat cells (10^6 cells/ml) suspended in the culture medium were loaded with $1 \,\mu\text{M}$ Fura-2 for 15 min at 37°C. Then, the cells were washed by centrifugation with the standard assay medium supplemented with 0.1 mM CaCl₂ and suspended in a nominally calcium-free assay medium (containing 1 mM EGTA) at the appropriate pH. MDCK cells growing on glass coverslip were loaded with Fura-2 by the same procedure, then rinsed with the standard assay medium containing 0.1 mM CaCl_2 . The coverslips with cell monolayers were inserted into flurometric cuvettes containing the nominally calcium-free assay medium, pH 7.4. Fluorescence was measured at 30°C in a Shimadzu RF5000 spectrofluorometer set in the ratio mode using 340/380 nm wavelengths for excitation and 510 nm as the emission wavelength. The time resolution of the measurements was 1 s. In order to calculate $[Ca^{2+}]_c$, the system was calibrated in each run in the presence of 3 mM externally added $CaCl_2$ and 3 μ M ionomycin plus 0.002% digitonin.

RESULTS AND DISCUSSION

We tested the action of two compounds on PLA₂s: BPB which inhibits sPLA₂s (Hernandez et al., 1998) and Helss which specifically inhibits iPLA₂ (Hazen et al., 1991). SOCs activities and corresponding rates of calcium influx were evaluated from the rate of changes in $[Ca^{2+}]_c$ triggered by the addition of 3 mM CaCl₂ to cells initially suspended in the nominally calcium-free standard medium and pretreated with thapsigargin. As expected, 10 μ M Helss decreased the rate of calcium influx into Jurkat cells (Zabłocki & Duszyński, 1999). A similar action was also found in the case of $10 \,\mu\text{M}$ BPB (Fig. 1). The degree of BPB inhibition was time- and concentration-dependent. However, at higher concentration (> $20 \,\mu\text{M}$) BCB additionally induced the calcium depletion of the ER.

These results suggest the participation of both iPLA₂ and sPLA₂s in the activation of the SOCs in Jurkat cells. Moreover, we established that these inhibitory effects were dependent on the acidity of the extracellular medium. As shown in Fig. 1, the rate of Ca²⁺ influx in control samples (without inhibitors) was lowest when the cells were incubated in the medium of pH 7.2 and it gradually increased in media of higher pH. Such a dependency of the rate of SOCs activity on the extracellular pH was described earlier for primary cultures of rat hepatocytes (Zhang *et al.*, 1991). On the other hand, inhibitory effects of both inhibitors were most expressed in cells incubated in the medium of pH 7.8. It suggests that the PLA_2 s-dependent step in the SOCs activating mechanism has a greater control power at pH 7.8 than at pH 7.2. At lower pH, the participation of PLA₂s in the activa-

extracellular medium and its activity could be directly modulated by extracellular pH. However, this hypothesis needs further confirmation. The inhibitory effect of Helss on the calcium influx into Jurkat cells is in accordance

Figure 1. Effects of BPB and Helss on the rate of calcium influx into Jurkat cells incubated at various pH.

Fura-2 loaded Jurkat cells suspended in nominally calcium-free standard media supplemented with 1 mM EGTA, pH as indicated, were preincubated for 5 min with 1 μ M thapsigargin. Then, the PLA₂ inhibitors (10 μ M BPB or 10 μ M Helss or Me₂SO in the control sample) were added. After 2 min preincubations with the inhibitors, the medium was supplemented with CaCl₂ (final concentration 3 mM). The rate of calcium influx was calculated from the changes in the Fura-2 fluorescence. The data are shown as means ±S.D. from 3–5 experiments.

tion of SOCs seems to be less crucial. We also cannot exclude the possibility that the relatively stronger effects of PLA₂ inhibitors at pH 7.8 results from the significantly enhanced activities of these enzymes under these conditions. Thus, the higher SOCs activity observed at pH 7.8 may be, at least partially, due to "hyperactivation" of PLA₂s. So, the inhibition of these enzymes has a greater impact on SOCs activity. This seems to be especially true in the case of sPLA₂-IIA. The activity of this enzyme is markedly elevated at alkaline pH (Kudo *et al.*, 1993). As the addition of $sPLA_2$ into the cell suspension stimulates the activity of SOCs (Nofer et al., 2000) and, moreover, the activation of cells by the tumor necrosis factor (TNF) results in secretion of $sPLA_2$ (Kudo et al., 1993), it may be suggested that, after cell stimulation and the release of calcium from the ER, endogenous sPLA₂ is secreted and acts as a paracrinic or autocrinic ligand affecting SOCs activity. In such a scenario, sPLA₂ would be transported to the

with data showing that $iPLA_2$ participates in AA release triggered by the depletion of intracellular calcium stores (Gross, 1998).

As shown in Fig. 2, the activation of store-operated calcium influx into MDCK cells is also impaired by $50 \,\mu\text{M}$ BPB. This suggests the involvement of sPLA₂s in SOCs activation in this cell line. MDCK cells grow as a monolayer and hydrophobic agents may have restricted access to these cells. It is our experience that they are effective at higher concentration than in freely floating Jurkat cells. Thus, $50 \,\mu\text{M}$ BPB does not cause the ER depletion of calcium in the case of MDCK cells. This side effect is observed with BPB concentrations higher than 100 μ M.

Suprisingly, the preincubation of MDCK cells with Helss resulted in a significant stimulation of the capacitative calcium influx. We cannot provide a satisfactory explanation for this phenomenon. MDCK are epithelial cells with a highly heterogenous topography of plasma membrane proteins. It has been postulated that SOCs are localised mostly in the basolateral membranes that are not freely exposed to the extracellular medium (Gordjani *et al.*, 1997). Because iPLA₂ is involved in membrane remodeling, it seems possible that the inhibition of this enzyme by Helss results in an impaired rearrangement of membrane

Figure 2. The effect of Helss and BPB on the rate of calcium influx into MDCK cells.

MDCK cell monolayers grown on glass coverslips were preincubated for 15 min at 37°C in growth medium containing 1 μ M Fura-2 dye and the concentration of BPB as indicated or Helss or Me₂SO in the control sample. Subsequently, the monolayers were rinsed with the standard medium supplemented with 0.1 mM CaCl₂, pH 7.4, and transferred into the fluorometric cuvette containing nominally calcium-free standard medium. Then, the cells were preincubated for 7 min with 1 μ M thapsigargin. After this period the medium was supplemented with CaCl₂ (final concentration 3 mM). The rate of calcium influx was calculated from changes in the Fura-2 fluorescence. The data are shown as means ± S.D. from 3 experiments.

phospholipids. In turn, this might lead to changes in the shape of cells and increased availability of calcium channels for Ca^{2+} added into the medium. However, this speculative explanation needs further investigation.

Recently, it has been shown that BPB and Helss inhibit Na⁺ influx into thapsigargin treated human lymphocytes. It has also been found that this effect of thapsigargin on Na⁺ entry could be mimicked either by exoge-

nously added PLA2 or AA. These data indicate a similarity between the regulation of Ca^{2+} and Na^+ influxes activated by the release of calcium from the ER. It was also shown (Nofer et al., 2000) that Na⁺ entry was associated with a tyrosine kinase-dependent activation of PLA₂; the inhibition of the kinase by genistein resulted in a decrease in both thapsigargintriggered effects: release of AA and Na⁺ influx into the cells. These observations are relevant to our findings since it is known that iPLA₂ activity is regulated by the tyrosine kinase pathway and inhibited by genistein (Olivero & Ganey, 2000). The participation of tyrosine kinase in the regulation of SOCs entry was suggested by Lee et al. (1993). So, it may not be precluded that this hypothesis will be employed again to explain the mechanism involving iPLA₂ in the regulation of SOCs activity. The results presented in this paper clearly show that $sPLA_2s$, as well as $iPLA_2$, are involved in the regulation of calcium influx into electrically non-excitable cells. According to other authors, in some cell lines this function is ascribed to cPLA₂ isoenzymes (Gailly, 1998; Leslie, 1997; Shuttleworth & Thompson, 1999). Summarizing, one can conclude that PLA₂ isoforms which belong to three distinguished classes - sPLA₂, cPLA₂ and iPLA₂, may play a role in the regulation of calcium homeostasis. However, the data presented, as well as the results obtained for different cell lines in other laboratories, indicate a strong variability in the mechanism of regulation of SOCs activity in various cell types.

REFERENCES

- Ackermann, E.J. & Dennis, E.A. (1995) Mammalian calcium-independent phospholipase A₂.
 Biochim. Biophys. Acta 1259, 125-136.
- Alonso-Torre, S.R. & Garcia-Sancho, J. (1997) Arachidonic acid inhibits capacitative calcium entry in rat thymocytes and human neutrophils. *Biochim. Biophys. Acta* 1328, 207–213.

- Alvarez, J., Montero, M. & Garcia-Sancho, J. (1992) Cytochrome P450 may regulate plasma membrane Ca²⁺ permeability according to the filling state of the intracellular Ca²⁺ stores. *FASEB J.* 6, 786–792.
- Balboa, M.A., Balsinde, J., Jones, S.S. & Dennis,
 E.A. (1997) Identity between the Ca²⁺-independent phospholipase A₂ enzymes from P388
 1 macrophages and Chinese hamster ovary cells. J. Biol. Chem. 272, 8576-8580.
- Balsinde, J. & Dennis, E.A. (1997) Function and inhibition of intracellular calcium-independent phospholipase A₂. J. Biol. Chem. 272, 16069-16072.
- Bennett, D.L., Bootman, M.D., Berridge, M.J. & Cheek, T.R. (1998) Ca²⁺ entry into PC12 cells initiated by ryanodine receptors or inositol 1,4,5-triphosphate receptors. *Biochem. J.* **329**, 349-357.
- Berridge, M.J. (1993) Inositoltrisphosphate and calcium signalling. *Nature* **361**, 315-325.
- Berridge, M.J. (1995) Capacitative calcium entry. Biochem. J. **312**, 1-11.
- Clark, J.D., Lin, L.-L., Kriz, R.W., Ramesha, C.S., Sultzman, L.A., Lin, A.Y., Milona, N. & Knopf, J.L. (1991) A novel arachidonic acid – selective cytosolic PLA₂ contains a Ca²⁺-dependent translocation domain with homology to PKC and GAP. Cell 65, 1043-1051.
- Fasolato, C., Hoth, M. & Penner, R. (1993) A GTP-dependent step in the activation of capacitative calcium influx. J. Biol. Chem. 268, 20737-20740.
- Gailly, P. (1998) Ca²⁺ entry in CHO cells, after Ca²⁺ stores depletion, is mediated by arachidonic acid. *Cell Calcium* **24**, 293-304.
- Gamberucci, A., Fulceri, R. & Benedetti, A. (1997)
 Inhibition of store-dependent capacitative
 Ca²⁺ influx by unsaturated fatty acids. *Cell Calcium* 21, 375-385.
- Glover, S., Bayburt, T., Jonas, M., Chi, E. & Gelb, M.H. (1995) Translocation of the 85-kDa phospholipase A₂ from cytosol to the nuclear envelope in rat basophilic leukemia cells stimulated with calcium ionophore or IEg/antigen J. Biol. Chem. 270, 15359-15367.

- Gordjani, N., Nitschke, R., Greger, R. & Leipziger, J. (1997) Capacitative Ca²⁺ entry (CCE) induced by luminal and basolateral ATP in polarised MDCK-C7 cells is restricted to the basolateral membrane. *Cell Calcium* **22**, 121–128.
- Gross, R.W. (1998) Activation of calcium-independent phospholipase A_2 by depletion of internal calcium stores. *Biochem. Soc. Trans.* **26**, 345–349.
- Grynkiewicz, G., Poenie, M. & Tsien, R.Y. (1985) A new generation of Ca²⁺ indicators with greatly improved fluorescence properties. J. Biol. Chem. **260**, 3440-3450.
- Hazen, S.L., Zupan, L., Weiss, R.H., Getman, D.P.
 & Gross, R.W. (1991) Suicide inhibition of canine myocardial cytosolic calcium-independent phospholipase A₂. Mechanism-based discrimination between calcium-dependent and -independent phospholipases A₂. J. Biol. Chem. 266, 7227-7232.
- Hernandez, M., Burillo, S.L., Crespo, M.S. & Nieto, M.L. (1998) Secretory phospholipase A₂ activates the cascade of mitogen-activated protein kinases and cytosolic phospholipase A₂ in the human astrocytoma cell line 1321N1. J. Biol. Chem. 273, 606–612.
- Huwiler, A., Staudt, G., Kramer, R.M. & Pfeilschifter, J. (1997) Cross-talk between secretory phospholipase A₂ and cytosolic phospholipase A₂ in rat renal mesangial cells. *Biochim. Biophys. Acta* 1348, 257–272.
- Irvine, R.F. (1990) Quantal Ca²⁺ release and the control of Ca²⁺ entry by inositol phosphates a possible mechanisms. *FEBS Lett.* **263**, 5–9.
- Kudo, I., Murakami, M., Hara, S. & Inoue, K. (1993) Mammalian non-pancreatic phospholipases A₂. Biochim. Biophys. Acta 1170, 217-231.
- Lambeau, G. & Lazdunski, M. (1999) Receptors for a growing family of secreted phospholipases A₂. Trends Physiol. Sci. 20, 162–170.
- Lee, K.M., Toscas, K. & Villereal, M.L. (1993) Inhibition of bradykinin- and thapsigargin-induced Ca²⁺ entry by tyrosine kinase inhibitors. J. Biol. Chem. **268**, 9945–9948.

- Leslie, C.C. (1997) Properties and regulation of cytosolic phospholipase A₂. J. Biol. Chem. 272, 16709-16712.
- Lin, L.-L., Wartmann, M., Lin, A.Y., Knopf, J.L., Seth, A. & Davis, R.J. (1993) cPLA₂ is phosphorylated and activated by MAP kinase. *Cell* 72, 269–278.
- Makowska, A., Zabłocki, K. & Duszyński, J. (2000) The role of mitochondria in the regulation of calcium influx into Jurkat cells. *Eur. J. Biochem.* 267, 877-884.
- Munaron, L., Antoniotti, S., Distasi, C. & Lovisolo, D. (1997) Arachidonic acid mediates calcium influx induced by basic fibroblasts growth factor in Balb-c 3T3 fibroblasts. *Cell Calcium* 22, 179-188.
- Murakami, M., Shimbara, S., Kambe, T., Kuwata, H., Winstead, M.V., Tischfield, J.A. & Kudo, I. (1998) The functions of five distinct mammalian phospholipases A₂ in regulating arachidonic acid release. J. Biol. Chem. 273, 14411-14423.
- Nofer, J.-R., Junker, R., Walter, M., Seedorf, U., Assmann, G., Zidek, W. & Tepel, M. (2000) Phospholipase A₂ is involved in thapsigargin-induced sodium influx in human lymphocytes. Arch. Biochem. Biophys. **374**, 213–221.
- Olivero, J. & Ganey, P.E. (2000) Role of protein phosphorylation in activation of phospholipase A₂ by the polychlorinated biphenyl mixture Aroclor 1242. *Toxicol. Appl. Pharm.* 163, 9-16.
- Parekh, A.B. & Penner, R. (1997) Store depletion and calcium influx. *Physiol. Rev.* **77**, 901–929.
- Petersen, C.C.H. & Berridge, M.J. (1994) G-protein regulation of capacitative calcium entry may be mediated by protein kinases A and C in *Xenopus* oocytes. *Biochem. J.* **307**, 663–668.
- Pozzan, T., Rizzuto, R., Volpe, P. & Meldolesi, J. (1993) Molecular and cellular physiology of intracellular calcium stores. *Physiol. Rev.* 74, 595-636.
- Putney, J.W. (1986) A model for receptor-regulated calcium entry. *Cell Calcium* 7, 1-12.
- Putney, J.W. (1990) Capacitative calcium entry revisited. *Cell Calcium* **11**, 611–624.

- Randriamampita, C. & Tsien, R.Y. (1993) Emptying of intracellular Ca²⁺ stores releases a novel small messenger that stimulates Ca²⁺ influx. *Nature* **364**, 809-814.
- Rzigalinski, B.A., Blackmore, P.F. & Rosenthal M.D. (1996) Arachidonate mobilization is coupled to depletion of intracellular calcium stores and influx of extracellular calcium in differentiated U937 cells. *Biochim. Biophys. Acta* **1299**, 342-352.
- Schievella, A.R., Regier, M.K., Smith, W.L. & Lin, L.-L. (1995) Calcium-mediated translocation of cytosolic phospholipase A₂ to the nuclear envelope and endoplasmic reticulum. J. Biol. Chem. 270, 30749-30754.
- Sharp, J.D., White, D.L., Chiou, X.G., Goodson, T., Gamboa, G.C., McClure, D., Burgett, S., Hoskins, J., Skatrud, P.L., Sportsman, J.R., Becker, G.W., Kang, L.H., Roberts, E.F. & Kramer, R.M. (1991) Molecular cloning and expression of human Ca²⁺-sensitive cytosolic phospholipase A₂. J. Biol. Chem. 266, 14850-14853.
- Shuttleworth, T.J. & Thompson, J.L. (1999) Discrimination between capacitative and arachidonate-activated Ca²⁺ entry pathways in HEK293 cells. J. Biol. Chem. 274, 31174-31178.
- Somasundaram, B., Norman, J.C. & Mahaut-Smith, M.P. (1995) Primaquine, an inhibitor of vesicular transport, blocks the calcium release activated current in rat megacaryocytes. *Biochem. J.* **309**, 725-729.
- Thastrup, O., Dawson, A.P., Scharff, O., Foder, B., Cullen, P.J., Drobak, B.K., Bjerrum, P.J., Christensen, S.B. & Hanley, M.R. (1994)
 Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Action 43, 187-193.
- Tischfield, J.A. (1997) A reassessment of the low molecular weight phospholipase A₂ gene family in mammals. J. Biol. Chem. 272, 17247-17250.
- Törnquist, K., Ekokoski, E. & Forss, L. (1994) Thapsigargin-induced calcium entry in FRTL-5 cells: Possible dependence on phospholipase A₂ activation. J. Cell. Physiol. 160, 40-46.

- Wayman, C.P., Gibson, A. & McFadzean, I. (1998)
 Depletion of either ryanodine or IP₃-sensitive calcium stores activates capacitative calcium entry in mouse anococcygeus smooth muscle cells. *Pflügers Arch.* 435, 231–239.
- Wolf, M.J. & Gross, R.W. (1996) The calcium-dependent association and functional coupling of calmodulin with myocardial phospholipase A₂ Implications for cardiac cycle-dependent alterations in phospholipolysis. J. Biol. Chem. 271, 20989-20992.
- Wolf, J.W., Wang, J., Turk, J. & Gross, R.W. (1997) Depletion of intracellular calcium

stores activates smooth muscle cell calciumindependent phospholipase A_2 . J. Cell. Biol. **272**, 1522–1526.

- Zabłocki, K. & Duszyński, J. (1999) Role of calcium-independent phospholipase A₂ in the regulation of calcium influx into Jurkat cells. *Pol. J. Pharmacol.* 51, 163–166.
- Zhang, Y., Duszyński, J., Hreniuk, S., Waybill, M. M. & LaNoue, K.F. (1991) Regulation of plasma membrane permeability to calcium in primary cultures of rat hepatocytes. *Cell Calcium* 12, 559-575.