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A novel scheme for modeling 3D QSAR has been developed. A method involving mul-

tiple self-organizing neural network adjusted to be analyzed by the PLS (partial least

squares) analysis was used to model 3D QSAR of the selected colchicinoids. The

model obtained allows the identification of some structural determinants of the bio-

logical activity of compounds.

Colchicine I is a well known alkaloid drawing

attention due to its numerous biological activi-

ties. Colchicinoids and related compounds

bind to tubulin preventing its polymerization,

which arrests proliferation. Therefore, the

compounds have been widely tested as poten-

tial anticancer drugs [1–3].

The structural features determining the abil-

ity of colchicinoids to bind tubulin are not

quite clear. It is usually believed that the

biaryl angle describing the orientation of the

A and C rings is the critical parameter deter-

mining the affinity of the molecule toward

tubulin. Recently a series of investigations ap-

peared, which aimed at clearing the role of

structural motifs of colchicine during interac-

tions with tubulin [4–8]. The process of recog-

nition of colchicine and related compounds by

tubulin is a complex phenomenon which can

involve more than one binding site [9–13].

In the present paper a new method based on

self-organizing neural networks has been de-

veloped to obtain a quantitative 3D QSAR

model describing a series of colchicinoids de-

scribed by Boye et al. [14].
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MATERIAL AND METHODS

Theoretical background

The classical Hansch QSAR [15–16] is based

on two-dimensional structure (2D), which is,

however, not a valid description of a real

chemical molecule defined by a three-dimen-

sional (3D) arrangement of atoms. Therefore,

in the recent decade 2D techniques have been

supplemented by 3D methods enabling an effi-

cient comparison of three-dimensional molec-

ular structures. In particular, it is the Com-

parative Molecular Field Analysis (CoMFA)

that both brought a new 3D strategy into mo-

lecular design and is still the most frequently

used method for determining 3D QSAR [17];

some new techniques have been developed re-

cently [18].

One of the most interesting approaches is

probably the self-organizing neural network

(SOM), used by Zupan & Gasteiger [19–20] to

obtain two dimensional maps of selected prop-

erties of molecular surfaces. SOM is a

unsupervisedly trained network designed to

reduce the dimensionality of the input objects

while preserving their topology. Such maps

were used for the visualization of the interac-

tions of individual compounds with biological

receptors [20–21]. This technique forms also

a basis for comparison between molecules. A

reference molecule can be selected to form a

template network that is trained with coordi-

nates from the van der Waals surface. The co-

ordinates of other molecule (molecules) can

be sent to such a network and surface vectors,

e.g., the electrostatic potential can be pro-

jected on this network [22–26]. The resulting

comparative feature map is a kind of superim-

position of the molecule and the template. The

patterns can be compared by means of a sim-

ple subtraction of the matrices [25, 26], classi-

fied by the use of a second neural layer [22] or

investigated by means of the PLS analysis

[27]. The method can be simplified by substi-

tuting the molecular surfaces and electro-

static potential for the atomic coordinates and

partial atomic charges. The results are compa-

rable with those yielded by larger maps

[28–30].

Procedures

Model building. All structures were mod-

eled by HYPERCHEM 4.0. The conforma-

tional search option of CHEMPLUS for

HYPERCHEM 4.0 was used to perform

conformational analysis and select those

structures related most closely to the natural

(–) colchicine (of the 7-S absolute configura-

tion in the B ring) for which the angle between

A and C rings is to about –50o. For the

analogs 9–12 this angle was arbitrarily set to

a similar value. A comparable conformer was

selected for the six-membered B ring analog

22.

The MM+ force field was used to optimize the

molecules, and partial atomic charges were

calculated with the AM1 method. The

stereochemistry of the conformers included

in the analysis is defined in Chart 2 by indicat-

ing the appropriate orientation of A and C

rings using the broad bond lines.

Neural procedures were programmed us-

ing the embedded protocols of the MATLAB

4.0 NN-Toolbox for Windows, as detailed in

previous publications [28–30].

PLS analysis [31] and all other calculations

were also programmed in the MATLAB envi-

ronment. All programmed m-files performing

the discussed procedures are available from

the author on request.
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RESULTS AND DISCUSSION

Multiple template scheme

An operation of a standard neural network is

usually realized in such a way that there is one

set of training objects (referred to as the tem-

plate) which determines a single network. Af-

ter training the template network is used for

the analysis of the test objects (referred to as

the counter-templates — CT) investigated. It

has been shown, however, that sometimes an-

other scheme can be advantageous, which

consists in training a set of n independent

neural networks (templates); each character-

izes the i-th object. These networks can be
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used in the next step to process the same data

coming from a single test object (CT). The

term multiple template approach (MTA) has

been coined to stress the difference between

the latter scheme and the standard one (single

template approach — STA) [25]. Thus Figs. 1

and 2 illustrate the implementation of these

schemes for the self-organizing maps of the

molecular surfaces. The first scheme (Fig. 1)

consists of the comparison of each molecule of

a series (a) by a single network (b) trained

with one reference molecule (c). As a result, a

series of pairs of maps (d) is obtained in which

the reference map will always be the same.

The second scheme (Fig. 2) involves the train-

ing of a separate Kohonen network for each

molecule of a series (a), i.e., one reference

molecule (c) is sent through each of these net-

works (b), which as previously results in a se-

ries of map pairs (d). The comparative pattern

of the reference molecule will now be different

depending upon the individual template net-

work.

Although the MTA scheme allows better

characterization of each of the objects ana-

lyzed it brings a problem of further compari-

son of the patterns obtained because the n in-

dividual networks are not interconnected.

Even if this problem can be solved by the use

of the descriptors estimating the relation be-

tween the structure of each pair of the tem-

plate and counter-template individually [25],

such a method seems not an optimal one be-

cause the descriptors lost a lot of information.

A comprehensive analysis of the Kohonen

networks formed during the MTA processes

allows, however, the designing of a new

scheme opening the possibility for their evalu-

ation. The atoms of each template are distrib-

uted during training within the SOM maps,

which means that each atom of the molecule

can be ascribed to a certain neuron. The same

SOM, if used for processing the data of the CT

molecule, attracts its atoms. If the atomic co-

ordinates (x, y, z) form a training set, the loca-

tion within 3D space will be the parameter de-
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Figure 1. A scheme for the comparison of a series

of molecules with a single template.

A series of molecules (a) is consecutively processed by a

single neural network (b) trained with a reference mole-

cule (c). This gives a series of pairs of maps in which the

first one is always the same map of the reference tem-

plate molecule (single template approach, STA); the

SOMs shown are topographical maps of the molecular

electrostatic potential (size 50 by 50 neurons; colors

code electrostatic potential values).

Figure 2. A scheme for the comparison of a series

of molecules with multiple networks.

Each of the molecules in the series (a) trains a separate

network (b). Each of these networks is used to perform

a comparison with a reference molecule (c). The result-

ing comparative maps of the reference will always differ

depending on the similarity of the molecule used to ob-

tain a given network and the reference molecule (multi-

ple template approach, MTA); the SOMs shown are top-

ographical maps of the molecular electrostatic potential

(size 50 by 50 neurons; colors code electrostatic poten-

tial values).



termining the location of the atoms within the

maps. Then, the atoms of each template and

the counter-template located in the same neu-

rons can be related to each other. The back

projections of the average property describing

the SOM neurons on each atom of the CT mol-

ecule give a matrix that will be referred to

here as the transformed property (TP) matrix.

Since the back projections can involve either

the signals coming from the template mole-

cule or from the counter-template, the matrix

contains two columns, TP1 and TP2. As a re-

sult of the operation, a series of n TP matrices

is obtained. The length of the TP matrix will al-

ways amount to the number of atoms within

the CT molecule, therefore, the set of the re-

sulting matrices can be analyzed further, e.g.

by means of the PLS analysis.

The optimization of the new scheme using

the steroids benchmark series [17, 32] leads to

an excellent 3D QSAR models,which has been

described elsewhere [33].

Colchicinoid series

From many different compounds which have

been tested as potential tubulin binding lig-

ands, the series characterized by various de-

gree of similarity to a parent colchicine struc-

ture [14], was selected for this analysis. The

inhibitory effect of these compounds on

tubulin polymerization is given in Table 1.

Many different hypothetical models explain

the interactions of tubulin with the

colchicinoid series analyzed. These models

usually ascribe to the A and C rings (or A ring

especially) a decisive influence for these inter-

actions, while the B ring is important for the

kinetics of binding. Some auxiliary binding

within this ring has also been suggested [1, 9].

As the structure of the complex between the

ligand and tubulin is very sensitive to the pat-

terns of interacting moieties, and the binding

process itself can include broad confor-

mational changes of both tubulin and ligand,

its modeling poses serious problems. In fact,

very few quantitative models of the tubulin

binding series can be found in the literature

[34]; often involving only small variation of

the parent structure [35]. Therefore, a ques-

tion arose if the QSAR approach could be used

in such cases.

Generally, QSAR can be interpreted as a

non-direct method aimed at investigating the

series of ligands interacting with a binding

site. It should be remembered that QSAR does

not provide a clear visualization of the recep-

tor-ligand interactions. The main goal is the

search for structural analogies between inter-

acting molecules, which implies analogy in

their biological interactions, including also

quantitative responses. The more congeneric

series the analysis involves the better a model

can be obtained.
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Table 1. The inhibitory effect of colchicinoid compounds on tubulin polymerization [14]

Compound
Inhibitory effect IC50

[�M]
Compound

Inhibitory effect IC50

[�M]

1 1.4 9 2.6

2 1.5 10 6.0

3 1.5 11 7.5

4 1.6 12 9.1

5 1.9 13 10.7

6 2.2 14 15.5

7 2.4

8 2.6



In order to analyze the importance of the re-

spective regions of molecules the series was

processed by the method discussed above. The

change of counter-template (CT) allows a dis-

play of different regions of the system.

Since the conformation of the inactive

atropoisomer of colchicine 14a is too far from

all the active ones (1–14) it was omitted from

all quantitative models. Three different CTs

used give the results shown in Table 2.

Although the predictive cross-validation sta-

tistics is rather low, it can be clearly observed

that the area covering the whole molecular

system — displayed with CT1 — provides the

best model which is shown in Fig. 3a. The

analysis involving rings A and C gives a model

of slightly lower statistical parameters. Fur-

thermore, the analysis involving the A ring ex-

clusively — CT3 — fails to provide a predictive

model Rcv
2 < 0. Such results seem to indicate

that the B ring also contributes to the interac-

tions of the molecule with tubulin.

External predictions, i.e., the use of the 3D

QSAR model for the potential design of new

compounds (that have not been presented

during the so-called training step) are always

the major tests for the model. On the other

hand, this is also the most difficult task for the

present day 3D QSAR technique [36].

Since the predictive power of all resulting

models is too low for performing such predic-

tions, the best model (with CT1) was used as

the basis for further optimization. An exten-

sive optimization of the neural architecture al-

lows the overcoming of the border value of

Rcv
2 = about 0.4 (cf. footnote a for Table 3),
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Table 2. Performance metrics for 3D QSAR modeled by the SOM method, leave-one-out

cross-validated statistics

Counter-template (CT) R
a

SDEP
b

Cross-validated Rcv
2

(opt)
c

Cross-validated s
d

CT1 (Molecule 1) 0.991 0.563 0.333(3) 4.089

CT2 (Molecule 14) 0.999 0.119 0.209(10) 8.131

CT3 (trimethoxybenzene) 0.733 2.879 –0.318(1) 5.247

a
fitted model;

b
SDEP (�(ypred–yobs)

2
/n)

1/2
;

c
cross-validated leave-one-out statistics: Rcv

2
= 1– �(ypred–yobs)

2
/�(ymean–yobs)

2
; opt,

optimal number of the PLS components;
d
cross-validated leave-one-out statistics: s = (�(ypred–yobs)

2
/(n–opt–1))

1/2
; n, the num-

ber of independent objects included in the PLS model.

Table 3. Predictions for the test molecules that have not been presented to the network during the

training stage
a

R
Inhibitory effect IC50 [�M]

b

Experimental Predicted
c

15 CH3CH2CH2 12.9 1.4

16 CH3CH2CO 2.7 0.1

17 CH3CH2CH2CO 6.9 2.2

18 CH3CH2CH2CO 11.0 8.7

19 CH3 4.1 2.5

20 CH3CH2 4.2 2.1

21 CH3S 2.4 5.1

22 – 3.6 6.0

a
performance metrics for the training set (leave-one-out cross-validation) Rcv

2
= 0.511; s = 3.689 (4 components);

b
data according

to the references: 15–21: [34], 22: [36];
c
performance metrics for the test set SDEP = 4.831; 2.774 (without 15)



therefore we tried to apply it for such pur-

poses. Since the molecules selected randomly

for this test have been previously described in

the literature, the estimated values of the pre-

dictions can be compared with the actual ones

and the respective data are given in Table 3

and Fig. 3b. Molecule 15 substituted with a

propyl group in the C ring is the most impor-

tant outlier. Since the model overestimates

the affinity of molecule 15, it can be specu-

lated that quite a large alkyl side chain at car-

bon atom C10 inhibits the effective binding. In

fact, a comparison of this molecule to the par-

ent allocolchicine 1 reveals that while the

shape of these molecules are comparable, 15

lacks an important polar moiety at carbon

atom C10 in the C ring. The second conclusion

is that predictions are relatively better for

colchicine analogs 18–22, including the

six-membered B ring analogue 22, then for

the allocolchicines 15–17.
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