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It is not always clear that some equations affected by complicated factors can, actu-

ally, be interpreted as a ratio of two polynomials of first degree and so that they can

be, in general, represented by rectangular hyperbolas. In this paper we present an

easy procedure to rearrange those equations into Michaelis–Menten–type equations

and so to make the aspects of these rectangular hyperbolas more clear, particularly

for researchers familiar with general biochemistry. As an example, the method is ap-

plied to transform the classical rate equation of the Cleland´s Ordered Uni Bi enzyme

mechanism.

There are many biological phenomena that

follow saturation kinetics, e.g. enzyme-cata-

lyzed reactions, mediated transport through

membranes, stimulation of cells by the bind-

ing of compounds to receptors, etc. Some

equations related to these processes can be in-
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terpreted as functions that correspond to hy-

perbolic graphs.

The Michaelis–Menten equation is a good

example of a frequently used hyperbolic func-

tion (v = �([S])):
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in which v is the initial velocity in an en-

zyme-catalyzed reaction; Vmax is the maximal

velocity, i.e. the velocity attained at very high

concentration of substrate [S]; Km is the Mi-

chaelis constant and corresponds to the con-

centration of substrate at which v = Vmax/2.

This equation follows a form that is called

here equation of type 1:

y
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The rectangular hyperbola (y versus x) de-

scribed by an equation of type 1, crosses the or-

igin of the axes and the equations for the hori-

zontal and the vertical asymptotes are y = a

and x = –b, respectively.

From the mathematical point of view it is

known that in functions of the form
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where n0, n1, d0 and d1 are constants, the plot

y versus x is also a rectangular hyperbola pro-

vided that d1 � 0 and n0d1 � n1d0. However,

when the constants are complicated factors, it

is not always clear that equations of type 2 ac-

tually represent hyperbolic functions.

In the course of an investigation on the ef-

fect of a modifier on the rate of an en-

zyme-catalyzed reaction (ref. [1]; accompany-

ing paper), we handled complex equations of

type 2 and arrived at a general approach mak-

ing possible to transform those equations into

another type (type 3; see below) that, because

they resemble the classical Michaelis–Menten

equation, more clearly show that they repre-

sent rectangular hyperbolas.

EQUATION OF TYPE 3

Equations of type 2 can be interpreted as a

ratio of two polynomials of first degree and

they can be converted into Michaelis–

Menten-type equations (type 3) by adding and

subtracting n0/d0:
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or, in general,

y
x

x
� �
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h

a

b (type 3)

By comparing eqns. (4) and type 3, the pa-

rameters (h, a, and b) of the type 3 equation

can be deduced:

h
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d
� 0

1

.

Equation of type 3 describes a rectangular

hyperbola where h is the value of the ordinate

260 R. Fontes and others 2000



of the point where the hyperbola intercepts

the vertical axis. The equation for the horizon-

tal asymptote is y = a+h (i.e. y = n1/d1) and

that for the vertical asymptote is x = –b. The

value of b can also be described as the value of

x at which y = h + a/2. The value of a is the dif-

ference between two values: the ordinate of

the point where the horizontal asymptote in-

tercepts the vertical axis and h (a = n1/d1–h ).

Assuming b as a positive value, as it occurs

in the biological phenomena referred to

above, one of the advantages of an equation of

type 3 is that the sign of the parameter a indi-

cates when the hyperbola is ascendant (a > 0)

or when it is descendant (a < 0); another ad-

vantage is that an equation of type 3 is more

easily turned into a linear form (see below).

The procedure shown in eqns. (2–4) is valid

when d0 � 0; i.e., when the vertical asymptote

of the hyperbola is not the vertical axis itself.

However, even in the case d0 = 0, the equation

for the vertical asymptote of the hyperbola

can be obtained by evaluating the mathemati-

cal limit in an equation of type 3: when d0

tends to zero, b tends to zero.

In the particular case in which n1 = 0 in an

equation of type 2, the horizontal asymptote of

the rectangular hyperbola is the horizontal

axis itself and the procedure shown in eqns.

(2–4) is valid; in this case, in the correspond-

ing equation of type 3, the parameters h and a

have the same absolute value but opposite

signs.

As stated in the introduction, the equation of

type 2 represents a hyperbola when d1 � 0 and

n0d1 � n1d0. Actually, if the previous condi-

tions do not apply, the equation corresponds

to a straight line. In the case d1 = 0, the value

of the ordinate at the origin is n0/d0 and the

value of the slope is n1/d0. In the case

n0d1 = n1d0, it is not so obvious that equation

of type 2 represents a straight line. However, if

its transformation into an equation of type 3 is

attempted, following the procedure described

above, it results in a = 0, and so this straight

line, that is parallel to the horizontal axis, may

be viewed as a limit case between an ascen-

dant rectangular hyperbola (a > 0) and a de-

scendant one (a < 0).

In the accompanying paper [1], the mathe-

matical procedure described in eqns. (2–4)

has been systematically used to rearrange

equations of type 2 into equations of type 3; ex-

amples are the rearrangements of eqns. (5),

(10), (11), and (15a) into eqns. (5a), (10a),

(11a), and (15), respectively (all of them num-

bered as in ref. [1]).

As an example, eqn. (5) is here rearranged

into eqn. (6) (numbered 5 and 5a, respectively,

in ref. [1])
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The above procedure, as such or with minor

variants, may be of general application. As an

example, it is here applied to classical enzyme

reaction rate equations deduced by Cleland

[2].

CLELAND EQUATIONS; THE

ORDERED UNI BI CASE

The following are examples of the formulas

deduced by Cleland for the steady state as-

sumption kinetics [2]:

Ordered Uni Bi mechanism:
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Ordered Bi Bi mechanism:

Ping Pong Bi Bi mechanism:

where kn are rate constants (whose signifi-

cance is irrelevant in the context of this pa-

per), A and B are concentrations of sub-

strates, P and Q are concentrations of prod-

ucts and Et is the concentration of enzyme; v

is the reaction rate for the conversion of A

(+B) into P + Q. When the reaction proceeds in

the opposite direction v has a negative value;

in this paper P and Q will be called products in-

dependently of the macroscopic direction of

the reaction.

The equations deduced by Cleland [2] can be

viewed from a new perspective if the mathe-

matical procedure described above is applied,

as exemplified here for the case of the Or-

dered Uni Bi mechanism.

Equations (7–9) can be arranged to show

more clearly that they fit the type 2 model, if

the concentration of one of the substrates or

one of the products replaces x. As examples,

the eqns. (10–12) were obtained by rearrang-

ing eqn. (7):

(i) variable A (A = x); P and Q are assumed constants

(ii) variable P (P = x); A and Q are assumed constants
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(iii) variable Q (Q = x); A and P are assumed constants

Equations (10–12), arranged as type 2 equations, can now be transformed into equations of type

3 by applying the procedure deduced above. The method could also be used to analyze Ordered Bi

Bi (eqn. 8) or Ping Pong Bi Bi (eqn. 9) mechanisms. However, only the Ordered Uni Bi mecha-

nism will be analyzed here (eqn. 10).

Equation (13) is deduced from eqn. (10):
v h

a A

b A
� �

� (13)

where

By analyzing eqns. (13–16) (see below), it is

easy to visualize the aspect of the plot v versus

A, and the way it depends on P and Q.

(1) P and Q are assumed constants; general as-

pects. Equation (13) shows that the plot v ver-

sus A is, in general, a rectangular hyperbola

(Fig. 1; plot 1):

(a) The hyperbola intercepts the vertical axis

below the origin of the axes (h < 0) when nei-

ther P nor Q are zero. When P or Q are zero,

h = 0 and the hyperbola crosses the origin of

the axes (Fig. 1; plot 2).

(b) The hyperbola is ascendant (a>0 and

b > 0).

(c) The equation for the horizontal asymp-

tote (y = n1/d1; see eqn. 17) shows that, in gen-

eral, the hyperbola tends to a positive value

when A tends to saturation (i.e. A��) and so

the hyperbola crosses the horizontal axis.

n
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3 5 4
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The point where the hyperbola crosses the

horizontal axis (v = 0) corresponds to chemical

equilibrium; the value of A at which chemical

equilibrium is obtained (Aeq) depends, obvi-

ously, on the values of P and Q. The points of

the hyperbola when v is positive correspond to

concentrations of A at which the reaction pro-

ceeds from A into P + Q, and the points when v

is negative, to concentrations of A at which

the reaction proceeds from P + Q into A.

As all the three parameters h, a, and b (eqn.

13) depend on both P and Q, the actual aspect

of the plot v versus A depends on the values of

P and Q. The effect produced by P or Q on this

plot can be deduced by analyzing how the pa-

rameters h, a, and b depend on their values

(eqns. 14–16). Interestingly, these equations

and the equation for the horizontal asymptote

(17) recall equations of type 2; when they are,

actually, equations of type 2, a reasoning simi-

lar to that followed above can be made and the

aspect of the corresponding plots visualized

intuitively.

(2) Influence of P on the hyperbola parameters.

If P is considered the variable in eqns. (14),

(16) and (17), it is easy to recognize them as

equations of type 2; obviously, n0 = 0 in eqn

(14) and n1 = 0 in eqn. (17). Equation (15) may

be interpreted as a sum of two “hyperbolic

equations” [n1/d1 + (–h)]; a versus P is not, in

general#, a hyperbola (see Fig. 2).

Equations (14–17) can be rearranged using

the procedure presented above:
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#
The addition of two equations that represent rectangular hyperbolas represents a rectangular hyperbola

in the particular case when the vertical asymptotes of the two hyperbolas coincide.
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If Q is assumed constant, and a nonzero and

finite quantity, from these equations it can be

intuitively recognized that the plots h versus

P, b versus P and n1/d1 versus P are rectangu-

lar hyperbolas (see Fig. 2). As P increases

from zero to saturation (i.e. P��) the value of

h decreases from zero to a finite negative

quantity, the value of b varies between two fi-

nite positive quantities, and the value of n1/d1

decreases from a finite positive quantity to

zero.

In absence of P, h = 0 and eqn. (13) turns into

an equation of type 1. In this case, the plot v
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Figure 2. Influence of the concentration of P or Q

on the reaction rate parameters in the Uni Bi en-

zyme mechanism.

At the left, plots h versus P, a versus P, b versus P, and

n1/d1 (= a + h) versus P assuming Q = 6 and constant; at

the right, similar plots considering Q the variable and

assuming P = 3 and constant. As in Fig. 1 these graphs

have been drawn using the program Microsoft Excel

4.0 for Macintosh. Values of the rate constants and Et

as in Fig. 1. As discussed in the text, h, a and b are pa-

rameters in an equation of type 3 that corresponds to a

rectangular hyperbolic plot; n1/d1 is the value of the or-

dinate of the point where the horizontal asymptote of

the rectangular hyperbola intercepts the vertical axis.

Figure 1. Influence of concentration of the sub-

strate A on the reaction rate (initial velocity) in the

Uni Bi enzyme mechanism.

Plot 1 represents the general case in which P and Q are

nonzero and finite quantities; plot 2 displays the situa-

tion when P or Q are zero; in plot 3, P is saturating and

Q � 0; in plot 4, Q is saturating and P � 0. The graph

has been drawn using the program Microsoft Excel 4.0

for Macintosh, assuming the following set of values for

the rate constants: k1 = 2*10
3
, k2 = 2*10

3
, k3 = 3*10

3
, k4

= 4*10
3
, k5 = 8*10

3
, and k6 = 6*10

3
; the dimensions of

k1, k4 and k6 are (concentration
–1

time
–1

) and those for

k2, k3 and k5 are (time
–1

); Et is always equal to 10
–3

.

P=3 and Q = 6 in plot 1; P = 0 and Q = 6 in plot 2; P=1000

and Q = 3 in plot 3; and P = 3 and Q = 5000 in plot 4. A,

P, Q and Et have the dimension of concentration and

the enzyme reaction rate (v) dimensions of (concentra-

tion time
–1

). Rate constants, A, P, Q and Et are defined

as in ref. [2]. In all cases units are irrelevant and arbi-

trary.

A



versus A is an ascendant rectangular hyper-

bola that crosses the origin of the axes (Fig. 1;

plot 2). Actually, this is just the Michae-

lis–Menten equation when the value of b (the

apparent Km) depends on Q (eqn. 20).

At saturating concentrations of P, the plot v

versus A is an ascendant rectangular hyper-

bola (a > 0) with a negative value of the ordi-

nate for A = 0 (h < 0), but the horizontal as-

ymptote is the horizontal axis itself (n1/d1 = 0;

see Fig. 1; plot 3). In these conditions, v is neg-

ative even at high A: P is a total inhibitor for

the conversion of A into P + Q and, as it does

not compete with A, saturating P can not be

overtaken by saturating A [2].

(3) Influence of Q on the hyperbola parame-

ters. If Q is considered the variable in eqns.

(14) and (15), it is easy to recognize them as

equations of type 2. Note that for eqn. (14)

n0 = 0 and that eqn. (15) is, actually obtained

by an addition of a constant value and an equa-

tion of type 2. These equations can be rear-

ranged into equations of type 3:

h

k k PEt
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k k
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If P is assumed constant, and a nonzero and

finite quantity, from eqns. (22) and (23) it can

be intuitively recognized that the plots h ver-

sus Q and a versus Q are hyperbolas (see

Fig. 2). As Q increases from zero to saturation

(Q��) the value of h decreases from zero to a

finite negative quantity, the value of a in-

creases by a value that is equal to the decrease

of h so that (a + h) remains constant; i.e. the

position of the horizontal asymptote for the

plot v versus A does not depend on Q (see eqn.

17 and Fig. 1). Equation (16) shows that the

plot b versus Q is a straight line (d1 = 0) the val-

ues of which for the ordinate at the origin and

for the slope are always positive and depend

on P (see Fig. 2).

In absence of Q, h = 0 and eqn. (13) turns

into an equation of type 1 and so the hyperbola

crosses the origin of the axes; the value of a is,

in general, positive and so the hyperbola is as-

cendant (Fig. 1; plot 2); again, it is just the Mi-

chaelis–Menten equation when the value of b

(the apparent Km; see eqn. 16) and the value

of a (the apparent Vmax; see eqn. 23) depend

on P. In the particular case, in which Q is ab-

sent and P is saturating, the value of the pa-

rameter a equals zero (see eqn. 23), and the

plot v versus A is no more a hyperbola but a

straight line coincident with the horizontal

axis.

When Q tends to infinity, b tends to infinity

(eqn. 16) and a to a finite positive value that

depends on P (see eqn. 23); this means that at

saturating Q, v does not depend on A unless A

is also saturating. Actually, Q is a competitive

total inhibitor for the reaction A � P + Q [2]: if

Q is supposed saturating, A can not bind to

the enzyme; if A is supposed saturating, Q can

not bind to the enzyme [1]. So, if Q is sup-

posed saturating for all concentrations of A,
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the plot v versus A is a straight line parallel to

and located below the horizontal axis; the

equation for this straight line is v = h (Fig. 1;

plot 4). If Q is supposed saturating only at low

concentrations of A (higher concentrations of

A dislocate Q from the enzyme) the plot v ver-

sus A is an ascendant rectangular hyperbola

intercepting the vertical axis below the origin

of the axes; unless P is saturating for all con-

centrations of A, the hyperbola crosses the

horizontal axis and tends to a positive value

(n1/d1) when A tends to saturation (see Fig. 1;

plot 1).

(4) Tridimensional representation. The classi-

cal Lineweaver–Burk (LB) plots can be made

tridimensional by adding a third axis, repre-

senting the concentration of an inhibitor, per-

pendicular to both the LB axes and crossing

them at point (0,0) [3]. Similarly, the plot v

versus A can be made tridimensional by add-

ing a third axis representing P or Q. The axes

A and P (or Q) define a horizontal plane and

the axes v and P (or Q) a vertical one. In this

type of graph, a family of hyperbolas repre-

senting v versus A is obtained for different

concentrations of the variable product. The

points where the hyperbolas cross the vertical

plane draw the plot h versus P (or Q); the

points where the hyperbolas cross the hori-

zontal plane draw the plot Aeq, versus P (or Q).

LINEAR TRANSFORMATIONS

Several methods are commonly used to fit

the experimentally obtained data to eqn. (1)

by first transforming it into the equation of a

straight line to which the data can be easily fit-

ted by linear regression. Once equations of

type 3 are obtained they can be easily turned

into a linear form, the first step being to sub-

tract h from both terms of the equation:

y
x

x
– h

a

b
�

� (24)

Using the Lineweaver–Burk, Hanes, and

Eadie–Hofstee methods [4–7], eqns. (25–27)

can be deduced, respectively:

	 
1 1 1
( – )y xh a

b

a
� �

(25)

x

y
x

( – )h

b

a a
� �

1

(26)

( – ) –
–

y
y

x
h a b

h
� �

�
�

�
�
�

(27)

So, although an equation of type 3 [y = f(x)]

represents a hyperbolic function, straight

lines are obtained when plotting 1/(y–h) ver-

sus 1/x, x/(y–h) versus x, or (y–h) versus

(y–h)/x. From these representations, as it is

well known, graphical estimations of the pa-

rameters a and b can be obtained [4–7].
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