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Peptide (polyamide) analogues of nucleic acids (PNAs) make very promising groups
of natural nucleic acid (NA) ligands and show many other interesting properties. Two
types of these analogues may be highlighted as particularly interesting: the first, con-
taining a polyamide with alternating peptide/pseudopeptide bonds as its backbone,
consisting of N{amincalkyllamino-acid units (type I), with nucleobases attached to
the backbone nitrogen with the carboxyalkyl linker; and the second, containing a
backbone consisting of amino-acid residues carrving the nucleobases in their side
chains (type II). So far, these two groups have been studied most intensively. The pa-
per describes main groups of peptide nucleic acids, as well as various other amino
acid-derived nucleocbase monomers or their oligomers, which were either studied in
order to determine their hybridisation to nucleic acids, or only discussed with respect
to their potential usefulness in the oligomerisation and nuecleic acids binding.

Amino-acid-derivatives of nucleobases were 3-(Nl~uracﬂy1]alanine (Willardiine) from Acacia
detected in Nature, e.g. the first isolated Willardiana Rose (Gmelin, 1959). These com-
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pounds were the source of the idea to use
nucleobases attached to polypeptides or other
polyamides for the recognition of natural nu-
cleic acids (NA). In addition, the natural
nucleopeptides and nucleoamino acids serve as
a potential primordial genetic material (Miller,
1997), and a set of their components was ob-
tained in conditions similar to those probably
prevalent in the primitive Earth’s biosphere
(Nelson & Miller, 1996).

The first synthetic/hybridisation studies on
the analogues were carried out in the late
1960s. Since then, numerous amino acid- or
polyamide-derived structures carrying natu-
ral or modified nucleobases have been sug-
gested, some have been oligomerised or syn-
thesised from submonomeric parts, and some
have been intensively studied.

Peptide (or more generally, polyamide) nu-
cleic acids (PNAs) represent a rather abun-
dant group of NA analogues, in which a
polyamide or peptide backbone replaces the
phosphodiester pentose backbone of DNA or
RNA (Liberek, 1995). The name “PNA” does
not include analogues in which amide bond
serves only as a part of internucleoside linker.
Depending on the manner of the attachment
of the basic nucleobase to polyamide back-
bone, two main groups of polyamide nucleic
acids may be discerned:

Type 1. PNAs containing polyamide with al-
ternating peptide/pseudopeptide bonds as a
backbone, consisting of N{aminoalkyl)amino-
acid units, to which secondary nitrogen
nucleobases are attached with the carboxy-
alkyl linker (Figs. 1, 2, and 3)

Type II. PNAs containing a backbone con-
sisting of amino-acid residues carrying the
nucleobases in their side chains, and which
may contain other elements (Fig. 4).

To date these two groups have been analyzed
most intensively. The paper describes these
two main groups of peptide nucleic acids, as
well as various other amino acid-derived
nucleobase monomers or their oligomers,
which were studied in order to determine
their hybridisation to nucleic acids, or only in-

troduced in view of their potential usefulness
in the oligomerisation and nucleic acids bind-
ing.

TYPE 1 PNAs

The most widely known PNAs, based on
NA{(aminoethyl)glycine backbone (Fig. 2.1), were
designed and synthesised in 1991 by a group of
Dutch chemists: Peter E. Nielsen, Michael
Egholm, Rolf H. Berg and Ole Buchardt (Niel-
sen ef al., 1991). These are NA analogues of nu-
merous applications and seem to have the most
interesting properties (for review, see: Zeka-
nowski, 1995; 1996; Hyrup & Nielsen, 1996;
Corey, 1997; Dueholm & Nielsen, 1997; Knud-
sen & Nielsen, 1997; Nielsen & Haaima, 1997;
Nielsen, 1996a; 1997; 1998; Uhlmann et al.,
1998; Koch et al., 1997; Greiger et al., 1998).
These compounds were primarily designed for
sequence-specific binding of homopyrimidine
sequences in double-stranded homopurine/
homopyrimidine DNA in Hoogsteen manner, in
the main groove of DNA (Nielsen et al, 1991).
However, the generous reality frequently sur-
passes the scope of human imagination, and oli-
gomers apparently have properties one has
never expected. PNA molecules highly effi-
ciently and sequencespecifically bind to the
complementary (according to Watson- Crick or
Hoogsteen rules) strand of DNA, RNA or PNA
oligomers (Egholm et al., 1993). They hybridise
in the antiparallel orientation better than in the
parallel one, with respectively the amino end of
oligomer reflecting 3’ and carboxy reflecting 5’
end of the nucleic acid. The thermal stability of
the PNA-forming duplexes decreases in the fol-
lowing order: PNA-PNA > PNA-DNA >
DNA-DNA. Complexes of homopyrimidine
PNA oligomers with homopurine nucleic acids
show unusually high thermal stability. PNAs of
this type prove to be better ligands of DNA or
RNA than native nucleic acids and show the
ability to displace the pyrimidine strand of
homopurine/homopyrimidine dsDNA and to
form duplexes PNA-DNA or triplexes PNA*-
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DNA-PNA (Demidov et al, 1995: 1997: Wit
tung et al, 1996; Kuhn et al, 1999). In these
structures, the homopyrimidine DNA strand be-
comes extruded as a single stranded loop named
D- or Ploop, respectively (Eriksson & Nielsen,
1996b). In addition, PNA oligomers can also
form PNA®-DNA-DNA triplexes (Wittung et
al., 1997a) and pure PNA triplexes (Wittung et
al., 1997h).

PNA as conjugates with various, so-called
“transfer” molecules effectively penetrates into
cells and could be active under in vivo conditions
(Pardridge et al., 1995; Scarfi et al., 1997; Pooga
et al., 1998; Aldrian-Herrada et al., 1998a). Due
to their hybridisation properties, synthetic flexi-
bility (Dueholm et al., 1994a; Christensen et al.,
1995; Nielsen, 1996b; Dueholm & Nielsen, 1997;
Aldrian-Herrada et al., 1998b), and very high
chemical stability, also in body fluids (Demidov
et al., 1994), PNA oligomers have numerous ap-
plications as tools in molecular biology and mo-
lecular diagnostics, and as — although so far
only experimental — therapeutic agents in
antisense and antigene strategies (Knudsen &
Nielsen, 1997). PNA inspires also the hope in
the possibility of its various interesting applica-
tions in technology, especially as electrochemi-
cal biosensors (Paledek ef al., 1998) and in opti-
cal data storage (Berg et al., 1996).

The structures of various PNA oligomer com-
plexes were studied by means of X-ray crystal-
lography (Betts et al.,, 1995; Rasmussen et al,
1997}, nuclear magnetic resonance (Brown et
al., 1994; Leijon et al., 1994; Eriksson & Nielsen,
1996a), linear and circular dichroism spectros-
copy (e.g. Egholm et al., 1993; Kim ef al., 1993),
and by means of molecular dynamics methods
(e.g. Almarsson et al, 1993; Almarsson &
Bruice, 1993; Chen et al., 1994; Torres & Bruice,
1996; Sen & Nilsson, 1998; Shields ef al., 1998).
The structures show that PNA molecules can
mimic the structure of a nucleic acid partner
very well (Egholm et al., 1993); the PNA-RNA
duplex is clearly similar to A-form (Brown et al.,
1994), and the PNA-DNA one to both B- and
A-form (Leijon et al., 1994; Eriksson & Nielsen,
1996a,b) (Fig. 5). Yet the PNA-PNA duplex
(Rasmussen et al., 1997) (Fig. 6), and the evi-
dently smaller PNAg:DNA triplex (Betts et al.,
1995} (Fig. 7), have helical structures described
as P-form significantly different from other
known nucleic acid structures. P-form has a rel-
atively big diameter (28 A) and consists of large
pitches, composed of 18 bases. The crystal struc-
ture of the retro-inverso PNA analogue (Fig. 2.7)
has also been determined (Krotz et al., 1898).

Monomers of the type I PNA are built up of
four conventional parts: aminoalkyl (Fig. 1a),

Figure 1. Left: structure of
unmodified (R' = R = H)
and chirally modified (R’ or
R' # H) N{aminoethy}gly-
cine-based PNA monomers.

Conventional parts of the type
I PNA monomers: aminoalkyl
{a), amino acid (b), linker be-
tween nuclecbase and back
bone (c), and nucleobase (B).
For details on R studied, see
Table 2.

Right: schemes of inter-
residue and intraresidue hy-
drogen bonds in PNA type |
oligomers.
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amino acid (Fig. 1b), linker between nucleobase
and backbone (mainly carboxyalkyl, the most
frequently carboxymethyl, Fig. 1c), and nucleo-
base. Similar monomers — structures on the
borderline between PNAs' type I and II — are
those derived from L- or D-ornithine residues
(Fig. 2.10) (Lioy & Kessler, 1996; Petersen et al.,
1996; van der Laan et al., 1998) as the backbone
and those derived from fS-aminoalanine mono-
mers interlinked by glycine spacer (Fig. 3.4)
(Fuji et al., 1997}, but their tendency to hybrid-
ise with NA is rather mediocre. Two other inter-
esting analogues of PNA have been studied: the
first with a reversed amide bond (Fig. 3.1)
(Lagriffoull et al., 1994), obtained from two
structurally different, “diamine” and “diacid”
monomers, and the second, with amide bond re-
versed and then with carboxyl and secondary
amine groups replaced (retro-inverso PNA, Fig.
2.7) (Krotz et al., 1995a,b; 1998). The PNA type I

structure modifications studied in order to de-
termine their hybridisation potency with NA
are shown in Fig. 2 (for hybridisation data, see
Tables 1 and 2). Other variants of modified PNA
tvpe I monomer structures have also been re-
ported and seem to be potentially useful in the
synthesis of oligomers; they are shown in Fig. 3.

The extensive studies on monomers’ struc-
ture/hybridisation activity relationships (see
e.g. data included in Tables 1 and 2) show that,
if oligomers are to retain a strong hybridisation
potential, the possibility of forming of both
intraresidue and interresidue hydrogen bonds
in oligomers (see Fig. 1) is necessary and, there-
fore, the presence of properly localised amide
group in the linker between nucleobase and
backbone is essential (Almarsson et al., 1993;
Almarsson & Bruice, 1993; Hyrup et al, 1993;
1994; 1996; Torres & Bruice, 1996). However,
fulfilment of this condition alone is not suffi-
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Figure 2. PNA type I structure modifications studied in order to determine their hybridisation potency
with DNA or RNA.

For hybridisation data, see Table 1, 2, R and R* for details, see original papers. References: 1 (Nielsen et al., 1991;
Dueholm et el., 1994a; and numerous others); 2 (Dueholm et al, 1994b; Kosynkina et al., 1994; Haaima et al, 1996;
Piischl et al., 1998; Sforza et al, 1999; Stammers & Burk, 1999; Falkiewicz et al, 1999a,b); 3 (Hyrup et al, 1993;
1994); 4 (Hyrup et al., 1993; 1994; Krotz et al., 1998); 5 (Hyrup et al, 1994); 6 (Hyrup et al, 1996); 7 (Krotz et al,
1995a; 1998); 8 and 9 (Lagrifoull et al., 1997); 10 (Lioy & Kessler, 1996; Petersen et al, 1996; van der Laan et al,,
1998).
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cient for formation of stabile hybrids, as shown
in the case of the backbone built from alternat-
ing f-aminoalanine and glycine, despite the the-
oretical possibility of latter to form interresidue
and intraresidue hydrogen bonds (Fuji et al.,
1997). Even in the case of the application of a
positively-charged monomer, without amide in
the hinker part — as “ethylenelinker” (Fig. 2.6),
the PNA oligomer's tendency to hybridise is sig-
nificantly decreased as compared to the use of
unmodified monomer (Hyrup et al., 1996) (see
Table 1).

The poor results of duplex formation obtained
when retro-inverso PNA oligomers are used
emphasise that, in addition to the monomer
parts’ length and the possibility of hydrogen
bonds formation, other structural properties of
the oligomers have to be present as well. A sim-
ple inversion of intraresidue amide bond, as
could be found in the retro-inverso analogue, re-
sults in a considerably decreased DNA mimick-
ing properties of the PNA oligomers (Krotz et
al., 1995b; 1998). It is possible that other, proba-
bly more subtle requirements, for example
those related to dipole-dipole interactions or
the pattern of oligomers’ hydration, are in-
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volved (Nielsen & Haaima, 1997). Efforts to
modify the length of monomer parts, both in the
case of the backbone and the linker, caused a re-
duction of the hybridisation potency (Hyrup et
al., 1993; 1994).

Preliminary data suggest that the sterically al-
lowed constriction of the PNA backbone may
improve its tendency to hybridise with NA, but
this strongly depends on the stereochemistry of
the residue used. For example, the PNAs based
partially on L-4-trans-amino proline (Fig. 3.3)
(Jordan et al, 1997a,b) or all S,Scyclohexyl-de-
rived (Fig. 2.8) (Lagriffoull et al., 1997)
aminoethyl part of classical PNA backbones
have a tendency to hybridise with NA similar to
that of the unmodified PNA. In a sharp contrast,
the hybridisation of PNA with fully R, R<yclo-
hexyl-derived (Fig. 2.9) or partially L-4-cis-
aminoproline, D-4-trans-aminoproline back-
bones significantly decreases the binding prop-
erties as compared to the unmodified achiral
PNA. However, inclusion of even a single
4-aminoproline into a PNA sequence, either at
the N-terminus or in the interior, leads to stabili-
sation of the PNA-DNA hybrid, as studied by
circular dichroism spectroscopy (Gangamani et
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Figure 3. Variants of modified PNA type ] monomer structures reported and potentially useful in the syn-

thesis of oligomers.

For details on stereochemistry of 5: RI—R4. see original papers. References: 1 (Lagrifoulle et al, 1994); 2
(Almarsson et al., 1993); 3 (Jordan et al., 1997a; Gangamani et al., 1999); 4 (Fuji etal., 1997): 5 (Groger etal , 1996);

6 (Martinez et al., 1997).
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al., 1999). Thermodynamic calculations of en-  tion a significant reduction of entropy loss is ac-
thalpic and entropic contributions to the hy- companied by a decrease in enthalpic gain,
bridisation energy show that, in the case of therefore it may be presumed that the con-
S, S-cyclohexyl-derived PNAs, upon hybridisa-  straining of backbone flexibility leads to a low
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Figure 4. Selected PNA type II monomer structures introduced and potentially useful in the synthesis of
oligomers.

For details on stereochemistry and R, see original papers, R # H. References: 1 (Shvachkin, 1979; Kingsbury et al,
1984); 2 (Nollet & Pandit, 1969a; Doel et al, 1969; 1974; Buttrey et al., 1975; Shvachkin, 1979; Ceulemans et al.,
1995; Diederichsen, 1996); 3 (Nollet ef al, 19689; Nollet & Pandit, 1969b; Lenzi ef al, 19953,b; Shah et al., 1996a,b;
Diederichsen & Schmitt, 1996; Howarth & Wakelin, 1997); 4 (Weller et al., 1991; Diederichsen & Schmitt, 1998a,b);
5 (De Koning & Pandit, 1971); 6 (Huang et al., 1991); 7 (Savithri et al, 1996); 8 (Huang et al., 1991); @ (Weller et al.,
1991); 10 (Weller et al., 1991); 11 (Tyaglov et al., 1987; Weller et al, 1991); 12 (Doel ¢t al, 1974; Shvachkin, 1979;
Ceulemans et al., 1995); 13 (Howarth & Wakelin, 1997; Yamazaki ef al., 1997); 14 (Yamazaki et al, 1997); 156 (De
Koning & Pandit, 1971); 16 (Garner & Yoo, 1993); 17 (Tsantrizos et al., 1997); 18 (Dallaire & Arya, 1998); 19 and
20 (Azumaya et al, 1995); 21 and 22 (Altmann et al., 1997); 23 (Altmann et al,, 1997, Kuwahara et al, 1999); 24
{Jordan et el, 1997a; Lowe & Vilaivan, 1997a,b); 25 (Lohse et al, 1996); 26 and 27 (Cantin et al, 1997).
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Table 1. Changes in the melting temperature At_/°C per 1 monomer of modified T unit incorporated
into the sequence H-GTAGATCACT{C-terminal group) and hybridised with complementary ssDNA or
ssRNA decamer in antiparallel orientation, as compared to T unmodified N{aminoethyl)glycine based

PNA.
ks Ttk Cterminal At,/°C At,/°C Fig-
group A RRAR References o
-NH(CH,),NHCH,CO- CH,CO-  NH, 0 0 2.1
-NH(CHp)gL-Leu- -CH;CO- NH, -5 -5 Piischl et al,, 1998 | 22
NH(CH,)yL-Leu- CH,CO-  NH, -2 Sforza et al, 1999 2.2
NH(CH,)oL-Val- CH,CO.  NH, -85 -15 Piischl et al., 1998 2.2
-NH(CHg)s-L-FPhe- -CH,CO- NH, -B.5 -7.5 Piischl et al., 1998 2.2
NH(CH,)oL Tyr- CH,CO-  NH, -8 -6.5 Piischl et al., 1998 2.2
NH(CHp); L Trp- CH,CO-  NH, -8 g Piischl ef al, 1998 2.2
-NH(CH,),-L-His- CH,CO-  NH, -8 -6.5 Piischl et al., 1998 2.2
NH(CHo)oL-Thr- CH;CO-  NH, -65  -6.5 Piischl et al., 1998 2.2
-NH(CHgp)y-L-Gln- CH,CO- NHg -7 -5 Piischl et al., 1998 2.2
-NH(CH,), 1-Arg- CH,CO-  NH, -5 -5 Piischl et al., 1998 2.2
NH(CHj)o-L-Lys- -CH,CO- NH, -45  -5.5 Piischl et al., 1998 2.2
-NH(CH,)yL-Lys- -CH,CO- NH, -2 Sforza et al, 1999 2.2
NH(CH,),-DLys- CH,CO- NH, +2 Sforza et al, 1999 22
NH(CH,);NHCH,CO- CH,CO-  LysNH, -8.0 Hyrup et al., 1994 2.3
NH(CH,)sNHCH,CO- CH,CO-  NH, -6.5 Nielsen & Haaima, 1997 2.3
NH(CHg),NH(CH,),CO-  -CH,CO-  NH, -60° -65° Krotz et al.,, 1998 2.4
NH(CHp),NH(CH,),CO-  -CH,CO-  LysNH, -10 Hyrup et al., 1994 2.4
NH(CHg);NH(CH,),CO-  CH,CO- NH, -7.5 Nielsen & Hasima, 1997 2.4
NH(CH,),NHCH,CO- {CHp),CO- LysNH, -21 Hyrup et al., 1994 2.5
NH(CH,),NHCH,CO- {CHy),CO- NH, -20  -16 Nielsen & Haaima, 1997 2.5
NH(CH,),NHCH,CO- CHoCH, LysNH, -24  -18 Hyrup et al., 1996 2.6
NHCH,NH(CH,),CO- CH,CO-  NH, -85° -7.5° Krotz et al, 1998 2.7
NHCH, oa oneo CH,C0.  NH;  +05° 405"  Lagrifoulleetal, 1997 2.8
'ﬁ%ﬁéﬁﬂﬂmﬂ CH,CO-  LysNH, -13° -05° Lagrifoulle et al, 1997 2.8
'Nﬂlﬁ%fg&“‘“"m” CH,CO-  LysNH; 72°  -7.5° Lagrifoulle et al, 1997 2.9
NH(CH,);CH(NH,)CO- CH,CO-  NH, -8 Petersen et al,, 1996  2.10
-NH(CHg)3CH(NH3)CO- CH,CO- NH, -14 Nielsen & Haaima, 1997 2.10

*Measurements performed in 10 mM Na-phosphate buffer, 100 mM NaCl, 0.1 mM EDTA, pH = 7.0: bten‘lad using 15-mer, se
quence: H-TGTACGTCACAACTA-NH,; “tested using 10-mer, sequence: HGTAGATCACT LysNH,

energy conformation different from the confor-
mation preferred for the formation of a stable
PNA-NA complex (Nielsen, 1998).

Four sterecisomers of 4-aminoproline coupled
with nucleic acid bases in the side chain and
their two dimers were obtained and oligo-
merised by Gangamani et al. (1996; 1999) (Fig.
3.3). The circular dichroism spectra of dimers
indicated different base stacking depending on
the stereochemistry of monomers.

An other possible modification of the mono-
mers’ structures is the introduction of chirality
into backbones (Fig. 1 and 2.2). So far two ideas
have been put forward. The first was the
chiralisation of the “amino-acid” part of the
backbone, realised either by using reductive
amination of amino-acid ester by N-protected
glycinal (Dueholm et al., 1994b; Haaima et al.,
1996; Piischl ef al., 1998; Sforza et al., 1999) or
by catalytic hydrogenation of enamido esters
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Table 2. Changes in the melting temperature ﬁtmfﬂ per 1 modified monomer for PNA decamer con-
taining three chirally modified T units, incorporated into the sequence H-GTAGATCACTA{C-terminal
group) and hybridised with complementary ssDNA or ssRNA decamer in antiparallel orientation, as
compared to T unmodified N{aminoethyl)glycine based PNA.

R',R" = H (Fig. 1) CORBEUT  (torminal grovp At/ °C(ONA)'  Aty/C@®NA)®  References

CH, L NH, =I5 Dueholm et al., 1994b
CH, L NH, -13 17 Piischl ef al., 1998
CH, D NH, 0.3 Dueholm et al., 1994b
iso-Bu L NH, -1.8 -2.3 Piizchl et al., 1998
iso-Bu L NH, -1.3 Sforza et al., 1999
sec-Bu L LysNH, -2.6 -3.0 Haaima et al, 1996
CH,0H L LysNH, -1.0 -1.0 Haaima et al., 1996
CH,0H D LysNH, -0.6 -1.0 Haaima et al, 1996
CH,COOH L NH, 33 Haaima et al, 1996
CH,CH,COOH D NH, 2.3 Haaima et al., 1996
CH,CH,CH,CH,NH, L LysNH, -10 -13 Haaima ef al., 1996
CH,CH,CH,CH,NH, L LysNH, 12 2.2 Piischl ef al., 1998
CH,CH,CH,CH,NH, L NH, 0 Sforza et al, 1999
CH,CH,CH,CH,NH, p  ° LysNH, +1.0 0 Hasima et al., 1996
CH,CH,CH,CH,NH, D NH, +1.3 Sforza et al., 1999
d-imidazolyl L LysNH, -2.8 =2.7 Piischl et al., 1998

*Measurements performed in 10 mM Na-phosphate buffer, 100 mM NaCl, 0.1 mM EDTA, pH = 7.0.

(Stammers & Burk, 1999). The second was the
chiralisation of the aminoalkyl backbone part,
accomplished by applying reductive amination
of glycine esters by N-protected amino alde-
hydes (Kosynkina et al., 1994; Falkiewicz et al.,
1999a,b). The optical purity of monomers ob-
tained by reductive amination may be not re-
warding, mainly due to the optical instability of
N-protected amino aldehydes. Recently, a new
method of PNA monomers synthesis has been
proposed (Wisniewski et al., 1997; Falkiewicz et
al., 1998; 1999¢) which makes it possible to ob-
tain both types of chirally modified monomers
in an optically pure state, using the Mitsunobu
reaction (Wiéniewski et al,, 1998). The proper-
ties of chiral PNA monomers incorporated into
PNA oligomers have become modified as com-
pared to those of N{aminoethyl)glycine based
units (see Tables 1 and 2). Oligomers with chiral
backbone retain strong hybridisation proper-
ties, and three-dimensional structures of PNA-
nucleic acid complexes show that various sub-
stituents at glycine a-position might be accom-
modated without a serious damaging effect. The

changes in hybridisation properties are depend-
ent in part on the configuration of chiral unit,
on the dimension and chemical properties of the
substituent (Table 2). The sterically large sub-
stituents are only slightly less well-tolerated
than the smaller ones. In general, the incorpora-
tion of residues of Dconfiguration in amino-acid
part of monomers results in formation of oligo-
mers with better hybridisation properties than
those of L-configuration. For the right-handed
helix, the “L-substituents™ are positioned to in-
teract with the dsDNA major groove, while the
“D-substituents” are directed towards the solu-
tion (Sforza et al., 1999). The hydrophilic and
positively charged substituents are preferred
(Dueholm et al., 1994b; Haaima et al., 1996), and
negatively-charged units have a diminished po-
tency to hybridise with NA (Haaima et al,
1996). Interestingly, the incorporation of chiral
monomers enhances the sequence selectivity of
oligomers during hybridisation, with the maxi-
mum for D-Glu and D-Lys (Haaima et al, 1996).
In addition to the hybridisation properties, mod-
ified oligomers may be significantly more
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Figure 5. Comparison of the PNA-NA duplexes’ structures, determined by NMR.

Left: PNA-DNA duplex (structure determined by Eriksson & Nielsen (19%6a), Protein Data Bank code 1PDTY); right:
PNA-RNA duplex (structure determined using NMR by Brown et al (1994), Protein Data Bank code 176D). PNA
chains are thickened. Figures were generated using RasMol v. 2.6 software,

readily soluble and have a higher tendency to
permeate into cells. For example, the introduc-
tion of only two D-Lys based monomers into a
PNA dodekamer sequence enhances its solubil-
ity five fold (Haaima et al., 1996). Functional
groups of amino-acid side chains might be the
sites for an easy attachment of other ligands to
PNA monomers/oligomers.

Other interesting NA analogues are based on
the peptoide backbone (Fig. 3.2). However, the
oligomers synthesised by Almarsson ef al
(1993) showed no interaction with a comple-
mentary DNA strand.

TYPE I PNAs

The syntheses of various PNA analogues de-
rived from natural and unnatural amino acids

were developed, sometimes repeatedly
(Fig. 4), but only a small part of the com-
pounds synthesised were -studied in hybridisa-
tion experiments.

The first natural amino-acid conjugates carry-
ing the nucleobases in side chains have been
prepared since late 1960s (Nollet et al, 1969;
Nollet & Pandit, 1969a,b), but studies on their
hybridisation with natural NA did not show very
positive results. De Konig and Pandit (1971)
prepared nucleopeptides derived from
[FHNCH((CH3)4B)CO-] or [-HNCH((CH35)B)CO-
NHCHRCO-Jmonomers, where B is a nucleo-
base, and found no significant interaction of
this type uridine oligomer with polyadenylic
acid. Doel et al. (1969; 1974) and Buttrey et al.
(1975) prepared oligomers of I-, D-, and
D,L{3{thymin-1-yl)alanine and found no signif-
icant interaction between them and poly-
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Figure 6. Structure of the PNA-PNA duplex, de-
termined using X-ray crystallography by Rasmus-
sen et al. (1997; Protein Data Bank code 1PUP).
Figure was generated using RasMol v. 2.6 soft-

ware.

adenylic acid, but the same monomers inter-
spaced by valine formed stable complexes
with complementary sequences (Tyaglov et al.,
1987). A series of other modifications were also
proposed (Fig. 4).

Monomers and oligomers derived from y-sub-
stituted-a-aminobutyric acid (Fig. 4.3) were pre-
pared by Lenzi et al. (1995a,b), Umemiya et al.,
(1995; 1996), Shah et al. (1996a,b), Yamazaki et
al. (1997), and Howarth & Wakelin (1997).
When the uridylic acid analogues were
interspaced with glycine (Fig. 4.13), L-, D, or
N-methyl-L-serine (Fig. 4.14), they showed no
hypochromic effect on mixing with poly(A) or
poly(dA) (Umemiya et al., 1995; 1996), but the
adenylic analogues interspaced with glycine
(Fig. 4.13), serine, threonine or tyrosine (Fig.
4.14) showed strong affinity to poly(dT) and
poly(U) (Umemiya et al, 1995; Yamazaki et al.,
1997). The hypochromic effect and CD spectra
of these complexes pointing to formation of
triplexes more stable than those formed be-
tween phosphodiester Ade-Ade dinucleotide
and complementary polynuclectides. When the
y-substituted-a-aminobutyric acid monomers

were interspaced with glycine (Fig. 4.13), the
oligomers obtained showed a very interesting
tendency to specific complexation of Cu(ll) ions
and this binding was realised exclusively by pep-
tide backbone nitrogens, but nucleobases inter-
acted with each other very efficiently stabilising
the metal -peptide bond (Szyrwiel et al., 1998).
These chiral PNAs exhibited selfrecognition
similar to that of NA duplexes (Lenzi et al,
1995h).

Compounds derived from monomers com-
posed of thymine derivatives: 4-substituted
28,4S-proline or 2S,4R-proline, interspaced
with glycine (Fig. 4.24), were developed and in-
corporated into various oligomers, but their hy-
bridisation properties seem to be imperfect
(Jordan et al, 1997a,b).

Tsantrizos et al. (1997) synthesised a potential
aromatic PNA analogue, with thymine mono-
mer based on S-2-hydroxy-<4{(2-aminophenyl)bu-
tanoic acid backbone (Fig. 4.17). The monomers
were oligomerised up to tetramer, which
showed favourable base stacking interactions
when investigated by UV and 1H.NMR.

A series of very interesting studies on c-alanyl,
a-homoalanyl and $-homoalanyl PNA analogues
(Fig. 4.2, 4.3, and 4.4, respectively) were pub-
lished by Diederichsen (1996; 1997a,b; 1998a,b)
and Diederichsen & Schmitt (1996; 1998a,b).
Alanyl and homoalanyl PNAs with alternating
backbone configuration (D- versus L-alanine)
along each strand form linear and fully ex-
tended band complexes with a base pair dis-
tance of about 3.5 A and, interestingly, higher
stability of Ade-Ade pairing compared with
Ade-Thy (Diederichsen, 1896; 1997b). The com-
plexes may be stabilised by addition of
intercalators at the abasic site (Diederichsen,
1997a). 8- Homoalanyl oligomers tend to exist as
double strands and prefer the extended
f-sheetlike backbone conformation, with uni-
formly aligned nucleobases (Diederichsen &
Schmitt, 1998a,b).

A positivelycharged PNA analogue carrying
various nucleobases, e.g. as L-oligo-nucleo-
dipeptamidinium salt (Fig. 4.25), was obtained
by Lohse et al. (1996), but did not show any ten-
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dency to interact by base pairing with comple-
mentary ligands.

Altmann et al. (1997) prepared PNA mono-
mers derived from serine and homoserine cou-
pled by the ether linker with glycine or alanine
derivative (Fig. 4.21, 4.22, and 4.23), which
were able to bind sequencespecifically to RNA
(Garcia-Echeverria et al., 1997).

OTHER BACKBONE MODIFICATIONS

Various other modified monomers or oligo-
mers derived from amino acids or polyamides
were synthesised, but no DNA or RNA bind-
ing studies have been reported for the major-
ity of these compounds, and the interbase and
base-to-backbone bonding topologies of all of
them differ from those of nucleic acids (se-
lected structures are shown on Fig. 8).

Very intensively studied were the interest-
ing analogues of PNA with N-(2-hydroxy-
ethyl)aminomethylphosphonic acid (Fig. 8.7)
or N4{2-aminoethyl)aminomethylphosphonic

Figure 7. Structure of two PNA
chains in the PNA,-DNA triplex,
determined using X-ray crystallog-
raphy by Betts et al. (1995; Protein
Data Bank code 1PNN). Figure was
generated using RasMol v. 2.6 soft-
ware.

acid (Fig. 8.6) backbone (named: PPNA,
PGNA, PAGNA, or PHONA) (van der Laan et
al., 1996; Peyman et al., 1996; 1997; 1998:;
Efimov et al., 1996; 19984, b). They were oligo-
merised as homooligomers (Efimov et al.,
1996; Peyman et al., 1996; van der Laan et al.,
1996), and incorporated into those of PNA or
DNA oligomers (Peyman et al., 1997; 1998;
Efimov et al.,, 1998a, b); the chimeric DNA-
PHONA-PNA oligomer showed binding prop-
erties comparable to those of PNA (Peyman et
al., 1998). Interestingly, the PNA oligomer
with deoxynucleotide attached via N{2-amino-
ethyllaminomethylphosphoglycine monomer
to its carboxy terminus is recognized as a sub-
strate by various DNA polymerases (Lutz et
al., 1999).

The second notable group comprises nucleo-
sides and oligonucleotides derived from all
stereoisomers of 3- (Fig. 8.1) or 4-hydroxy-
N-acetylprolinol (Fig. 8.2) as sugar substitute,
synthesised, respectively, from N-protected
L-serine or D or L-4-hydroxyproline (Ceule-
mans et al., 1997a,b; 1998). The derived oligo-
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Figure B. Selected other monomers derived from amino acids.

References: 1 (Ceulemans et al, 1997h; 1998); 2 (Ceulemans et al, 1997a; 1998); 3 (Verheijen et al, 1999); 4
(Takemoto & Inaki, 1988); 5 (Wenninger & Seliger, 1997a,b); 6 (Efimov et al., 1996; 1998a, b; Peyman et al., 1997;
1998); 7 (Peyman et al., 1996; 1997; Efimov et al, 1996; 1998a, b; van der Laan et al, 1996; Kehler et al., 1998); 8
(Lutz et al., 1998); 9 (Rana et al, 1997); 10 (Wenninger & Seliger, 1997a,b)

nucleotides are able to form stable complexes
with NA and the system has a strong prefer-
ence for isochiral interaction.

Chimerical DNA-PNA-derived amino alco-
hol dimer blocks (Fig. 8.5 and 8.10), developed
by Wenninger and Seliger (1997a,b), also
draw much interest. They might be incorpo-
rated into DNA oligomers with only a slight
decrease in binding capacity, and they are sta-
ble as far as exonucleolytic degradation is con-
cerned.

MODIFIED NUCLEOBASES ATTACHED
TO PNAs

A set of a few other than natural nucleobases
was used for the formation of PNA monomers
and then oligomers. 2,6-Diaminopurine usged in
the place of adenine significantly enhances the
PNA tendency to hybridise due to the possibility

of its pairing with thymine through three hydro-
gen bonds (Haaima et al, 1997). Pseudoiso-
cytosine was used for a more efficient formation
of triplex structures due to its applicability to
bind guanine by Hoogsteen bonds (Nielsen et
al., 1994; Egholm et al., 1995; Kuhn et al, 1998).
In contrast, incorporation of N'l-henzoyl-
cytosine into PNA oligomers inhibits formation
of the triplex structures, without any severe in-
terference with Watson-Crick hydrogen bond-
ing (Christensen et al., 1998). The PNA mono-
mer with nucleobase replaced by 3-0x0-2,3-dihy-
dropyridazine, connected to the PNA backbone
via a B-alanine linker from the 6-position, was
designed specifically for the recognition of
thymine in triple-helix structures (Eldrup et
al., 1997). Also 5-thio-substituted thymine and
Na-{methyl’,lthymine PNA dimers were synthe-
sised for studying photochemical behaviour and
crystal structure of PNA-PNA duplex contain-
ing thiothymine (Clivio et al., 1997; 1998). Inter-
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estingly, with regard to photochemistry, none of
the dimers reflected the photochemical behav-
iour known from dinucleotide studies, and the
results of the study suggested that in solution
these dimers adopt a conformation reminiscent
of A-type DNA (Clivio et al., 1998). A series of in-
teresting studies on NA duplexes intercalation,
photoinduced cleavage and strand invasion by
PNA oligomers with internally linked antra-
quinone was published by Armitage et al
(1997a,b; 1998). Pyreneacetic acid was used in
place of a nucleohase for obtaining PNA mono-
mers for the synthesis of potential intercalators
(Challa & Woski, 1999), and 2-aminopurine for
the synthesis of fluorescent PNA analogues
(Gangamani et al., 1997). Another base intro-
duced in PNA oligomers was 6-thioguanine
{(Hansen et al., 1999) which caused a decrease in
PNA-DNA duplex melting temperature and a
characteristic shift in wavelength and
absorbance as a result of hybridisation.

CONCLUSIONS

So far various modifications of the PNA
monomers and oligomers have been obtained.
Some of them seem to offer hope for future ap-
plications and need further studies. Due to the
versatility of PNA chemistry, the PNA struc-
ture may still be improved, while many other
nuclecbases designed for specific purposes
may be attached to the PNA backbone, as well
as to the chemically modified natural NA and
other NA analogues.

The author is grateful to Joanna Malicka,
MSe, Dr. Leszek Lankiewicz, and Dr. Wieslaw
Wiczk for critical reading of and helpful dis-
cussion on the manuscript and to Sylwia
Rodziewicz-Motowidlo, Msc for valuable help
in preparation of figures 5-17.
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