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Biological significance, structure and posttranslational processing of N-acetyl
f-hexosaminidase iscenzymes are described. Clinical application of N-acetyl-

f-hexosaminidase is also reviewed.

BIOLOGICAL SIGNIFICANCE OF
N-ACETYL-S-HEXOSAMINIDASE

N-Acetyl-hexosaminidase (EC 3.2.1.52) re-
leases N-acetylglucosamine and N-acetyl
galactosamine (Fig. 1.) from the non-reducing
end of oligosaccharide chains of glyco-
proteins, glycolipids and glycosaminoglycans
[1]. Glycosaminoglycans are crucial sub-
strates for N-acetyl8-hexosaminidase [2].
Lack of glycosaminoglycan storage observed
in Tay-Sachs and Sandhoff’s diseases is due to
the presence of hexosaminidase in amounts
that are small but sufficient to prevent accu-

mulation of glycosaminoglycans. To prevent
accumulation of GM2 ganglioside in Tay-Sachs
or gangliosides and oligosaccharides in
Sandhoff's diseases, bigger amounts of en-
zyme are necessary [3]. Additionally, hexo-
saminidase promotes mitogenesis in airway
smooth muscle via the airway smooth muscle
mannose receptor [4]. N-Acetylf-hexosa-
minidase might be involved in modification of
sugar chaing of sperm membranes [5], and it
has been postulated to be required for fertil-
ization in ascidians [6] and mammals [7].
N-Acetyl8-hexosaminidase released from fer-
tilized egg cortical granules blocks poly-
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B hexosaminidase A

Figure 1. Reaction catalyzed by N-acetyl3-hexosaminidase.

spermy by releasing the N-acetylglucosamine
residue from a specific zona pellucida glyco-
protein ZP3 necessary for binding sperm to
egg coat [8].

N-ACETYLS-HEXOSAMINIDASE GENES

Main isoenzymes of N-acetyl{}-hexosamini-
dase are composed of two polypeptide chains
designated « and 8 [1, 9, 10] which are prod-
ucts of gene duplication [11]. In humans, the
gene encoding pre-pro a-subunit is located in
chromosome 15923924 and the gene encod-
ing pre-pro S-subunit is located in chromo-
some 5q13 [1, 10, 12]. Both genes have a simi-
lar length (35-40 kDa) and structure. Each
has 13 introns and 12 of them interrupt cod-
ing regions (about 1.6 kb long) at analogous
positions [10]. The segments essential for ex-
pression of subunit a reside within a 40 bp re-
gion, between 100 bp and 60 bp upstream of
the ATG initiation codon, and for f-subunit re-
side within a 60 bp region between 150 bp and
90 bp upstream of the ATG codon [13]. The
homology between the two pre-pro-subunits is
the highest in the middle section, intermedi-
ary at the C terminus and the lowest at the
Nterminus [12] (Fig. 2). The sequence of
formed pre-pro @- and prepro S-subunits is in
60% mnearly identical [10]. The sequence of

mouse ¢ and B-subunit is in 51% and 72% iden-
tical with that of human a- and S-subunits, re-
gpectively [10]. It seems that the common
ancester gene could be similar to the
Dictyostelium discoideum N-acetyl{}-hexosami-
nidase gene, which encodes only one poly-
peptide and is in over 30% identical with hu-
man « and § N-acetyl3-hexosaminidase genes
[10]. This may suggest that human N-acetyl-
P-hexosaminidase genes have some conserved
sequences of an ancester gene essential for
proper folding and development of the cata-
lytic activity of the resulting polypeptide
chains [10].

POST-TRANSLATIONAL PROCESSING
OF N-ACETYL-S-HEXOSAMINIDASE
ISOENZYMES

The protein moiety of N-acetyl{3-hexosami-
nidase is synthesized in rough endoplasmatic
reticulum as prepropolypeptide ¢ and pre-
propolypeptide § composed of 529 and 556
amino acids, respectively [1] (Fig. 2). It has
been reported, that synthesis of N-acetyl-
p-hexosaminidase isoenzymes increases
2-4-fold as with differentiation of human in-
testinal Caco 2 cells [14]. Pre-propolypeptide
chains of N-acetylf-hexosaminidase during
translocation through aqueous pores of endo-
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Figure 2. Amino-acid sequences of - and f-subunits in human N-acetylf-hexosaminidase A.

The signal sequences and sequences removed during maturation are crossed out. The mature @ and § chains are en-
closed in brackets. The area of a-subunits responsible for the ability to bind specifically negatively charged sub-
strates is underlined. The amino acids involved in creation of active site are in larger capital letters.

plasmic reticulum (ER) membrane from cyto-  globulin binding protein,grp170,grp94,grp72,
plasm to endoplasmatic reticulum, undergo  grp58, calnexin = ER membrane-bond lectin,
modifications including N-glycosylation  and calreticulin = soluble ER lectin) [15], and
(Fig. 3), folding assisted by chaperones (grp78  formation of disulfide bonds [16] stimulated
= glucoseregulated protein = BiP = immuno- by Erolp [17]. It continues posttrans-
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Figure 3. Processing of oligosaccharide chains of N-acetylfi-hexosaminidase.

B, N-acetylglucosamine; O, mannose; 1, galactose; &, glucose; A, fucose; O, N-acetylneuraminic acid; ~»n,
dolichol; RER, rough endoplasmic reticulum; PG, pre-Golgi compartment; CG, cis-Golgi compartment; MG, me-
dial-Golgi compartment; TG, trans-Golgi compartment; TGN, trans-Golgi-network.

lationally by formation of additional disulfide
bonds and sometimes in assembly of oligo-
mers [16]. In normal conditions, catalytically
inactive & (less stable) and f (more stable)
subunits of N-acetylf-hexosaminidase are
synthesized in approximately equal amounts,
but they dimerize at different rates [10].
Homodimers aa (isoenzyme S) are unstable
and the majority of them are retained in ER
and degraded [12]. Homodimerization £ that
creates the most stable isoenzyme B is fa-
vored by rapid cell proliferation [18].
Heterodimerization @f that creates
isoenzyme A (less stable than isoenzyme B) is

preceded by accumulation of properly folded
phosphorylated subunit . It is believed that
high concentration of a-subunit in ER forces
synthesis of heterodimer ¢, by mass action
[19]. The presence of subunit § in isoenzyme
A greatly increases the stability of subunit a
in heterodimer, facilitates the transport of
subunit @ from ER, and changes some kinet-
ics properties of the a-subunit active site [12].
Signal sequences (22 amino acids of subunit &
and 42 amino acids of subunit ) (Fig. 2) are
removed after translocation. Pre-pro-subunits
that do not fold and dimerize properly to near
native conformation, as in the case Val-
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192-Leu mutation in a-pre-pro-subunit, are re-
tained in ER and degraded [12, 20, 21]. Muta-
tion of Pro-504 to Ser in S-subunit decreases
the level of heterodimer transport out of the
ER by approximately 45% [22]. Asp 5208 and
probably Asp 290 are very important in the
initial folding and/or dimer formation of the
pre-prosubunit  [20].

Properly folded ¢ and § pro-subunits are
transported along microtubules, by vesicular
transport by microtubule directed motor-
complex of dynein/dynactin [23] or kinesin
[24], to pre-Golgi (Salvage) compartment [19,
23]. In the pre-Golgi compartment, some
mannose residues of N-linked oligosaccha-
rides of both properly folded subunits are ini-
tially phosphorylated [1, 19, 25]. Substitution
of tryptophan at position 474 by cysteine, in
subunit ¢r, prevents both phosphorylation and
secretion of subunit o [26]. Phosphorylation
creates mannose-G-phosphate recognition
markers which direct glycoprotein to lyso-
somes [1], and protect high-mannose type oli-
gosaccharides from further processing in the
Golgi comparment, which results in their con-
version into sialic acid-containing complex oli-
gosaccharides [19].

From pre-Golgi compartment isoenzymes of
N-acetyl{+hexosaminidase pass through the
cisGolgi - medial-Golgi = trans-Golgi -
trans-Golgi network [19]. During intracellular
transport lysosomal enzymes are subjected to
posttranslational modifications which include
glycosidic (Fig. 3) and proteolytic processing
[1, 19] as well as final phosphorylation [25].
Mannose-f-phosphate receptor transmembra-
ne proteins in the trans-Golgi network are
present. They recognize mannose-6-phospha-
te residue on N-linked oligosaccharides of
lysosomal enzymes and pro-insulin-like grow-
th factor I1, which bind to two distinct binding
sites on the same receptor. Overexpression of
pro-insulin-like growth factor II increases the
secretion of lysosomal enzymes without af-
fecting the rate of their synthesis, possibly by
affecting the re-uptake mechanism [27]. Iso-
enzymes of Nacetyl S-hexosaminidase, are

transported from late endosome to lysosome
[28], where precursor subunits are proteoly-
tically processed to their mature forms [11,
29]. The mannose-6-phosphate receptors shut-
tle back and forth between trans-Golgi net-
work and late endosome in clatrin coated
transport vesicles [28]. Not all of the cargo
that is tagged for delivery to lysosomes gets to
its proper destination [19, 28]. It seems that
some lysosomal enzymes (and among them
isoenzymes of N-acetylf-hexosaminidase) are
transported via a default pathway to the cell
surface. At the cell surface these enzymes may
be recaptured by mannose-6-phosphate recep-
tors which take a detour to the plasma mem-
brane. Lysosomal enzymes escaped to plasma
membrane are returned by detoured man-
nose-6-phosphate receptors to lysosomes
through late endosomes [28]. Catalytically ac-
tive N-acetyl{3-hexosaminidase is formed in
lysosomes [29].

SECRETION OF N-ACETYLS-HEXO-
SAMINIDASE ISOENZYMES

A part of soluble lysosomal enzymes is deliv-
ered from lysosomes to the cell surface [30]
and some of their molecules are not returned
to lysosomes and are secreted from the cell
surface into the extracellular fluid [19, 28]. An
other route of secretion of lysosomal enzymes
may lead from lysosome through late endo-
some and Golgi compartment to cell surface
and extracellular fluid [31]. It has been re-
ported, that microtubules play a major role in
stimulated N-acetyl3-hexosaminidase secre-
tion, and it has been suggested a contributory
role for microfilaments [32]. The release of
N-acetylf-hexosaminidase from mast cells
was induced by the [gE mediated increase in
intracellular Ca2+ [33, 34], regulated by Ca2+*
store-operated Ca2* channels [35], inhibited
by antiallergic [36, 37] and stimulated by
immunomodulatory [38] drugs and antigens
[87]. N-Acetylf3-hexosaminidase release is
regulated by a small Ras-related GTP-binding
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protein Rho p21 [33] (Rho proteins control
the polymerization of actin into filaments and
govern the organization of body filaments
into specific types of structures [28]). C5a, the
late component of complement, stimulates
Ca2* mobilization and releases hexosamini-
dase from dibutyryl cAMP activated cells [39].
Cytokines are involved in secretion of
N-acetyl{f-hexosaminidase in lacrimal gland
acinar cells, Chronic treatment of these cells
with a combination of IL-1z and IL-18 de-
creased carbachol-stimulated N-acetyl{#-hexo-
saminidase secretion by 80% [40]. IL-10
synergizes with IL4 and IL-13 in inhibiting
lysosomal enzyme secretion by human
monocytes. IL-13 reduces mainly the precur-
sor form, IL4 and IL-10 reduce both precur-
sor and mature forms [41]. From 5 to 50% of
the newly synthesized precursors are secreted
from cultured cells. Most cells secrete about
5% of the total enzyme content per day [42]. In
a human hepatoma cell line (HepG2 cells), the
cumulative release of extracellular activity
corresponds to about 3-10% of intracellular
activity. Isoenzyme B constitutes 33% of
intracellular and 20% of extracellular enzyme
activity [43].

ACTIVE SITE OF N-ACETYL-S-HEXO-
SAMINIDASE ISOENZYMES

In tissues and body fluids, isoenzymes
Alaf), B (88), S (aa), P, 1[9, 44] and C have
been detected [45]. Their @ and § subunits
contain own active sites, which differ in sub-
strate specificity and thermal stability how-
ever, dimerization is required for formation
the active site [12]. The active sites of both
and f subunits (as dimers) can hydrolyse
N-acetylhexosamines from neutral substrates,
but only subunit & can hydrolyse negatively
charged substrates, such as f-linked gluco-
samine-6-sulfate in glycosaminoglycans, or
N-acetylgalactosamine in GMm2 ganglioside
(Fig. 1). The a-subunit has a binding site for
the complex formed by GM2 ganglioside with

Gm2 activator protein that recognizes
N-acetylneuraminiec acid on Gmz [46]. Both
the GM2 activator protein and the domain of §
subunit which contains amino acids 225-556,
are necessary for hydrolysis of N-acetyl
galactosamine from GMm2 ganglioside [11, 12]
and Pro 504 Ser substitution affects the abil-
ity of isoenzyme A to hydrolyse natural, but
not artificial, substrates [22]. The carboxy ter-
minal section of each subunit is probably in-
volved in subunit-subunit interaction [12].
There are suggestions that activator protein
may also act to reduce hydrogen binding be-
tween the acetamido NH of the terminal
GalNAc residue and the carboxyl group of
NeuAe, freeing the GalNAc residue for hydro-
lysis [47]. The area of a-subunit responsible
for decreased thermal stability and the ability
to bind specifically to negatively charged sub-
strates is localized in position 132-283 [12]
(Fig. 2). The iscenzyme S has a limited cata-
lytic activity, is unstable [48] and shares with
isoenzyme A the ability to remove N-acetyl-
glucosamine-6-sulfate, depends on unusual
property of & subunit [10]. The existence of
two types of active sites has been described in
isoenzyme A, and of only one type of active
site in isoenzyme B [9]. There is evidence that
a and § subunits have in their catalytic sites
one or more acidic residues, presumably lo-
cated in the region of overall homology which
are invariant within deduced primary se-
quences of many species. Asp-163 from a- and
Asp-196 of the S-subunit meet such conditions
for the catalytic protonated acidic residue.
Less conserved Aspfi240 and probably Asp
p290 residues are important in binding
4-methylumbelliferyl-§-N-acetylglucosamine
[20]. Tse et al. [20] suggest a mechanism of ac-
tion for N-acetyl{f-hexosaminidase similar to
that of lysozyme, where two acidic amino
acids, one protonated and other unproto-
nated, participate in a single or doubledis-
placement reaction. In the case of S-subunit,
the protonated group may reside in Asp-196,
and unprotonated acid may be replaced by an
unidentified active basic group, which re
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moves a proton from the acetamido group of
the bound substrate [20]. Arg-178 in subunita
and Arg-211 in subunit 8 [47] meet such de-
mands. In the S-subunit, Glu-355 was identi-
fied at the substrate binding site, by
photoaffinity labeling [49] and site direct mu-
tagenesis [50], but the relation between this
residue and the active site has to be proven
[12]. Site direct mutagenesis, homology stud-
ies, modeling and studies with suicide sub-
strates suggest that Glua323 and Aspa258
are active site residues and that Glua323 is in-
volved in catalysis [51].

DIFFERENTIATION OF
N-ACETYL--HEXOSAMINIDASE
ISOENZYMES

Isoenzymes A and S are heat labile whereas
isoenzymes B and P are heat stable [9]. This
possibly depends on alanine-543, as substitu-
tion of Alaff543 by Thr is associated with
thermolability of isoenzyme B [52]. Iso
enzyme P which has been detected in liver,
placenta [53] and serum during pregnancy, is
heat stable and contains only subunit 8 [9].
Higher sialic acid content in isoenzyme P is
the only difference between serum isoenzyme
B and P. At present there is no method avail-
able to distinguish isoenzyme P from iso-
enzyme I [9). Isoenzyme C has been detected
in human brain [54, 55), placenta [56], liver,
lung [65] and kidneys [45]. Isoenzyme C from
renal tissue is located in cytoplasm, it has the
pH optimum at 6.5, does not bind to ConA-
Sepharose, migrates faster than isoezyme A
to anode during cellulose acetate electropho-
resis, has lower affinity to sodium-cresol
sulfonphtaleinyl N-acetyl8-D-glucosaminide
(Km = 1.16 mmol/]) than isoenzymes A and B
with Km = 0.18 and 0.22, respectively [45],
and is identical with the major residual
N-acetylf-hexosaminidase  activity in
fibroblasts from Sandhoff’s disease (defi-
ciency of isoenzyme A and B) [54]. Isoenzyme
C isolated from human placenta, which has

similar properties to isoenzyme C isolated
from renal tissue [56], bears no immunologi-
cal relationship to isoenzymes A and B. Iso-
enzyme C activity was detected in white blood
cells from patients with Sandhoff's disease
and Tay-Sachs disease (deficiency of iso
enzyme A) [54]. Isoenzyme C activity is signif-
icantly increased in the neoplastic renal tis-
sues in comparison to normal tissue [45].
Higher proportions of isoenzyme C in relation
to isoenzymes A and B in human embryonic
tissues, and in chick embryo fibroblasts sug-
gest that isoenzyme C is a fetal enzyme [45].
There are suggestions that isoenzyme C is to-
tally different from other isoenzymes and has
a locus on DNA separate from that for iso-
enzyme A and B [567]. No information is avail-
able on biosynthesis and possible subunit
structure of isoenzyme C.

Isoenzymes of N-acetylf-hexosaminidase
are cleared from plasma primarily by non
parenchymal liver cells (endothelial cells of
the sinusoids and Kupfer cells) by a specific
recognition system on the cell surface [58].

CLINICAL IMPORTANCE OF DETER-
MINATION N-ACETYL-S-HEXO-
SAMINIDASE ISOENZYMES

Until recently, determinations of iso-
enzymes N-acetyl{f-hexosaminidase were
mainly used in clinical diagnosis Tay-Sachs
and Sandhoff diseases [1, 59]. Now however,
numerous papers report determination of
these isoenzymes in other pathological states
[59]. In rat liver, the activity of isoenzymes A
and B is under hormonal regulation. Injection
of tyroxine to suckling or adult rats increases
the activity of isoenzyme A in liver, whereas
cortisone injected to suckling rats decreases
the activity of both isoenzymes in liver [60].
Determination of N-acetyl3-hexosaminidase
isoenzymes is used in detection of damage to
liver cells. Among liver cells, hepatocytes and
macrophages are specially rich in MNacetyl-
p-hexosaminidase activity [61]. Isoenzyme B
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constitutes 35-40% of total activity in liver bi-
opsies and serum of the same person [61]. The
increase in liver enzyme activity is related to
an increase in autophagocytosis [61]. There is
no correlation between the activity of iso-
enzymes in liver and serum, which may be ex-
plained by different rates of their synthesis
and release into serum [61]. Determination of
serum isoenzyme B is a sensitive and inexpen-
sive test for aleohol abuse [568, 62, 63] and al-
cohol abstinency during the detoxication pe-
riod [64]. A relationship between the activity
of ispenzymes A and B and activity of other
liver enzymes, as well as their relationship to
the heredity and risk factors for atherosclero-
gis has been reported [65]. Increased activity
of the isoenzyme P in serum is observed in
liver disease [66], chronic alecholism [66] and
pregnancy [66]. A decrease in total activity of
N-acetylf-hexosaminidase in lymphocytes
and monocytes of peripheral blood in exacer-
bated multiple sclerosis was accompanied by
an increase in the content of isoenzyme B in
the plasma membrane fraction [67]. A signifi-
cantly increased activity of isoenzyme A and
insignificantly of isoenzyme B, is observed in
blood serum of smokers, and this increase cor-
relates with risk factors for artherosclerosis
[68]. In kidneys, N-acetyl3-hexosaminidase is
distributed along the whole nephron with the
highest activity in lysosomes of proximal
straight tubules [69]. Isoenzyme A is a part of
soluble intralysosomal compartment and is
secreted in urine by exocytosis. The intra-
lysosomal and membrane bound iscenzyme B
ig released in urine together with disrupted
lysosomal membranes. Thus the urinary activ-
ity of isoenzyme A reflects the secretory activ-
ity of tubular cells (functional isocenzymuria),
and isoenzyme B reflects the breakdown of tu-
bular cells (lesional type isoenzymuria) [70].
Determination of total activity of N-acetyl
P-hexosaminidase in urine is used in early
monitoring of human renal transplantation
[71). Although determination of isoenzyme B
in urine does not provide significant addi-
tional information for the early diagnosis of

rejection after transplantation, it may reflect
a selective tubular disorder [71]. An increase
in isoenzyme B excretion in urine reflects
damage to structure and activity of proximal
renal tubules caused by fever [72], renal con-
trasts [73], hypertension [74], upper urinary
tract infection [75], toxic cytostatics [76], or
metals [70]. In serum of diabetics with vascu-
lar complications the proportion of isoenzyme
B to A is significantly lower than in normal
controls, whereas in urine the proportion of
isoenzyme B is significantly greater, than in
controls [77). Isoenzymes of N-acetylf3-hexo-
saminidase have also been evaluated in neo-
plastic tissues. Resurgence of fetal iscenzym-
es of N-acetylf-hexosaminidase in rat hepa-
toma has been reported [78]. Human colonic
carcinomas and human uterine cervical carci-
noma have higher activity of isoenzyme B,
whereas in normal colonic mucosa and nor-
mal human uterine cervical tissue, the activ-
ity of isoenzyme A is higher [79, 80]. Iso-
enzymes from ftumor extracts of ovarian
adenocarcinoma are more active and labile to
heat, as well as to acidic pH, in comparison to
normal tissue [81]. Isoenzyme B from cervical
carcinoma exhibits some characteristic varia-
tions in pH, and temperature sensitivity, sub-
strate concentration optima and isoelectric
points in comparison to control [80]. Increase
an activity of both isoenzymes is observed in
sera of cancer patients. The increase in the ac-
tivity of isoenzyme B is predominant over that
of isoenzyme A [82]. Prevalence of isoenzyme
A and A-like intermediate forms characterize
leukemic cells of myeloid origin, whereas
greater amounts of isoenzyme B and B-like in-
termediate forms characterize leukemic cells
of lymphoid origin [83].
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