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Is the glutathione conjugate of trans-4-hydroxy-2-nonenal trans-
ported by the multispecific organic anion transporting-ATPase

of human erythrocytes?*®
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Trans-i-hydroxy-2-nonenal (4-HNE), a eytotoxic end product of lipid peroxidation, is
present in normal human blood plasma at concentrations of 0.1-1.0 uM. It can be,
however, further metabolized within a cell, and one of the main products is 4-HNE glu-
tathione conjugate (HNE-SG). In human erythrocyte membrane the system for active
extrusion of glutathione (GSH) conjugates of various endo- and xenobiotics has been
described; it exhibits either a low (K, at submillimolar concentration range) or a high
(K, at low micromolar range) affinity for the transported substrates, such as for ex-
ample S42,4dinitrophenyl)glutathione (Dnp-SG). In the present study it has been
shown that the high affinity transport system for Dnp-SG is competitively inhibited by
HNE-SG with K; of 0.2 uM, while 4-HNE inhibits non-competitively the activity of the
transport system for Dnp-SG with K; of 220 uM. These observations point to the possi-
bility that HNE-SG shares the same transport system with GSH conjugates of other
endo- and xenobiotics in erythrocytes. This may be of importance for overall detoxifi-

cation of the organism under oxidative stress.

Free oxygen radicals react with membrane
lipids to form lipid hydroperoxides. Degrada-
tion of these molecules generates several alde-
hydic compounds, among them 4 HNE [1]. Al-
dehydes are chemically stable, and may dif-
fuse from the site of their origin across rela-
tively long distances, affecting multiple tar-

gets in the organism [2]. In the plasma of hu-
man venous blood the steady-state concentra-
tions of 4 HNE are moderate (0.1-1 4M) but
they can increase tenfold as a result of oxida-
tive stress [1]. In erythrocytes, the main role
in protection of the cell against oxidative
stress is played by GSH [3]. 4-HNE, while
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spontaneously reacting with GSH, diminishes
the GSH pool in the cell [4]. In addition, it also
reacts with -SH groups and histidyl residues
of enzymes, which may result in inhibition of
their enzymatic activities [5]. The main prod-
ucts of 4 HNE metabolism in the cells are 4-
hydroxynonenoic acid, 1,4dihydroxynonene
and HNE-SG [6-7]. HNESG is further de-
graded to mercapturic acid conjugates [8].
The GSH-conjugates of various compounds
are transported from the cell by an energy-
dependent mechanism involving a multispe-
cific organic anion transporter (MOAT) [9]
and a multidrug resistance-associated protein
[10], which exisis also in erythrocytes
[11-12]. The aim of our work was to answer
the question whether HNE-SG is actively
transported in human erythrocytes and, if so,
whether this transport is catalyzed by MOAT.

MATERIALS AND METHODS

Chemicals. Hydroxynonenal diethylacetal
was a generous gift from Professor Herman
Esterbauer and Dr. Marianne Hayn of Univer-
sity of Graz (Austria). [Glycine-2-°Hlgluta-
thione (44.8 Ci/mmol) was obtained from
New England Nuclear (U.S.A.). ATP, creatine
phosphate, creatine kinase, heparin, glu-
tathione Stransferase from equine liver, and
1-chloro-2 4-dinitrobenzene (CDNB) were pur-
chased from Sigma (U.S.A.). Silica gel 60
plates were from Merck (Germany). Ak-
wascynt from Bio-Care (Poland) was used as a
scintillation cocktail. All other chemicals were
of the highest purity commercially available.

Preparation of human erythrocyte
ghosts. Erythrocyte ghosts were prepared
and sealed by the procedure described by
Steck & Kant [13], and stored at 1-2 mg pro-
tein/ml in 10 mM Tris/HC], pH 7.4, 250 mM
sucrose at -80°C.

Synthesis of Dnp-SG and HNE-SG.
[*HIDnpSG was synthesized in 250 ul of 10
mM phosphate buffer, pH 6.9, containing 1.5
mM CDNB, 1 mM [PHIGSH (spec. act. 56

mCi/mmol) and 2 units of glutathione §-
transferase for 3 h at 37°C, according to Awas-
thi et al. [14]. [3H]an-SG was purified by
thin-layer chromatography on silica gel 60
plates developed in acetonitrile/Ho0 (7:2,
v/v). Non-radiolabeled Dnp-SG was synthe-
sized as described above.

The stock solution of 4-HNE was prepared by
treatment of hydroxynonenal diethylacetal
with 1 mM HCl for 1 h at 37°C. The concentra-
tion of 4HNE was determined spectropho-
tometrically at 224 nm using extinction coeffi-
cient of 13750 M~ X em~!. Spontaneous re-
action between 4 HNE and GSH at their equi-
molar concentrations was run in 50 mM phos-
phate buffer, pH 6.5, at 30°C for 1 to 3 h.

Transport of [°"HIDnp-SG. The assay mix-
ture contained in a total volume of 150 ul:
0.08-0.1 mg protein/ml, 10 mM Tris/HCI, pH
7.4, and 250 mM sucrose, 1 mM ATP or 3 mM
NaCl (to determine ATP-independent uptake),
10 mM MgCls, 10 mM creatine phosphate,
and 12 units of creatine kinase, as described
by Saxena & Henderson [15] or as otherwise
indicated in the text. The reaction was started
by the addition of IHH]anSG (spec. act.
21-29.7 mCi/mmol) to desired concentra-
tions. Samples were incubated at 37°C for the
time indicated, and the reaction was stopped
by the addition of 1 ml of icecold 10 mM
Tris/HCl, pH 7.4, 250 mM sucrose, and 100
mM NaCl, and rapid filtration through Milli-
pore HAWP 0.45 um filters. Then, the filters
were washed with four 1-ml portions of the
same ice-cold buffer, and analyzed for associ-
ated radioactivity. The difference in uptake
between samples incubated in the presence
and absence of ATP was taken as a measure of
energy-dependent transport of GSH conju-
gates.

Other procedures. Protein concentration
was determined according to Bradford with
bovine serum albumin as a standard [16]. The
number of -SH groups in erythrocyte ghosts
was measured in Ellmann reaction [17]. Phos-
pholipids were extracted from the membranes
according to Bligh & Dyer [18] and separated
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by one dimensional thin-layer chromatogra-
phy in chloroform/ethanol/water/triethyl-
amine (30:34:8:35, by vol.) [19]. Phospholipid
phosphorus was determined according to
Rouser et al. [20].

RESULTS

The effect of 4-HNE on active transport of
Dnp-SG in human erythrocyte vesicles

The ATP-dependent uptake of {SH]an-SG
into vesicles from human red blood cells was
linear up to 60 min at 37°C in the presence of
20 uM substrate. Alternatively, measure-
ments of Dnp-SG uptake at low substrate con-
centration range (< 2 uM), close to the K,
value determined for MOATS3 ([15], see also
Table 1), were performed for 3 min to ensure
that the uptake did not exceed 10% of the sub-
strate concentration in the assay medium.
Double-reciprocal plots of transport of
[SHIan-SG versus its concentration over a
range from 0.07 to 10 uM exhibited a biphasic
character. Analysis of these data revealed the
presence of two transport components with
Ky of 0.19 4M and 4.1 uM and Vi, of 17 or
36 pmol/min per mg protein, respectively (Ta-
ble 1) [15, 21, 22].

Interaction of 4-HNE with erythrocyte
ghosts leads to concentration-dependent inhi-
bition of uptake of Dnp-SG at 1.2 uM concen-
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Figure 1. The effect of 4-HNE on uptake of
lSH]anEG transport in eryvthrocyte ghosts.
Dnp-SG uptake was measured as described in Materi-
als and Methods, in the presence of 1.2 uM of [E'H'!an
SG and varying concentrations of 4-HNE. Transport in
the absence of 4HNE amounted to 13.5 + 3.2
pmol/min per mg protein. The mean values for three
independent ghost preparations and two to three meas-
urements per preparation are shown.

tration of the conjugate in the assay medium
(Fig. 1). No inhibition was observed up to 50
#M 4-HNE and the K; value amounted to 220
#M 4-HNE. Analysis of inhibition by Dixon
plot (not shown) suggested non-competitive
inhibition of the transport system for GSH
conjugates by the aldehyde under our experi-
mental conditions (i.e. 1.2 uM Dnp-SG).

Table 1. Kinetic parameters of Dnp-SG uptake by human erythrocyte ghosts

MOAT3 MOAT4
V... (pmol/ V... (pmol/ Reference
K_ (uM) . max max
- m @ min per mg protein) K E,uM] min per mg protein)

0.18 and 0.58 22 and 16 n.d. n.d. [15]

2.7 111 897 1567 [21]

39 105 1600 2183 (221

= resent

0.19 and 4.1 17 and 36 n.d. n.d. et o tion

n.d., not determined,
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Interaction of 4HNE with ervthrocyte
ghosts

Binding of 4-HNE to erythrocyte ghosts was
assessed by determination of the concentra-
tion of the aldehyde remaining in the super-
natant after incubation of ghosts with 4HNE
and centrifugation, as described in the legend
to Fig. 2. The incubation of erythrocyte ghosts
with 4-HNE led to saturable and time-
dependent binding of the aldehyde (250
nmol/mg protein per 60 min) to the mem-
brane, reaching the half-maximal value within
10 min of incubation of ghosts with 4 HNE
(Fig. 2). Since 4-HNE interferes with Ellmann
reaction, it was difficult to assess the exact
number of -SH groups reacting with the alde-
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Figure 2, Binding of 4-HNE to ervthrocyte ghosts.

Erythrocyte ghosts (1 mg of protein) were incubated in
the absence and presence of 4-HNE in the medium con-
sisting of 250 mM sucrose, 10 mM Tris/HCl, pH 7.4,
and 10 mM MgCl, for the time indicated. Then the sam-
ples were cooled in ice and ghosts were pelleted by cen-
trifugation at 100000 X g for 30 min. Concentration of
4-HNE in supernatant was determined spectropho
tometrically at 224 nm and the obtained value was sub-
sequently subtracted from the starting concentration
in the assay medium. The difference was taken as a
measure of 4-HNE binding to erythrocyte ghosts, Mean
values of two experiments are shown. They varied by
5-T%. t},5, time of incubation required to reach half:
maximal binding,

hyde. It can be concluded that 4 HNE accumu-
lates at the hydrophobic domain of the mem-
brane lipid bilayer rather than chemically re-
acts with lipids and proteins within the eryth-
rocyte membrane. In fact, only minor changes
in the composition and content of erythrocyte
phospholipids after incubation with 4-HNE
were observed and no effect of the aldehyde
on the activity of erythrocyte Mg® -ATPase,
measured in the presence of 10 mM MgCls, 1
mM ouabain and 0.1 mM EGTA was noticed.
This points to the conclusion that, upon oxida-
tive stress, erythrocyte MOAT is the potential
target for 4-HNE.

Inhibition of MOAT by GSH conjugate
of 4-HNE

To further study the effect of 4-HNE on
erythrocyte MOAT activity we synthesized
GSH conjugate of 4-HNE and examined its ef-
fect on active transport of Dnp-SG to erythro-
cyte membrane vesicles. The activity of the
transport system in the presence of 1 uM Dnp-
SG was inhibited by HNE-SG with K; for HNE-
SG of 0.2 uM (Fig. 3), i.e. by four orders of
magnitude lower than that determined for 4-
HNE. Analysis of these results by Dixon plot
(not shown) pointed to a competitive mecha-
nism of the inhibition. These results suggest
that HNE-SG may be a physiological substrate

for erythrocyte MOATS (Table 1).

DISCUSSION

4-Hydroxynonenal is a very toxic aldehyde.
Fortunately, it is metabolized in the cells and
detoxified, mainly by formation of S-conjugate
with (SH [23], and transported out of the cell.
Transport of GSH-conjugates from erythro-
cyles is energy-dependent and is catalyzed by
MOAT [3] and a multidrug resistance-
associated protein [12]. The interrelationship
hetween these two transport systems has not
been established yet. However, the existence
of two MOAT transport systems referred to as
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MOAT3 and MOAT4 in erythrocytes exhibit-
ing low and high affinity for the transported
substances, has been demonstrated [15, 20,
21]. It has been suggested that the high affin-
ity transport is catalyzed by MOATS3, the activ-
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Figure 3. Inhibition of uptake of Dnp-SG by HNE-
SG.

Uptake of Dnp-SG at 1 uM concentration of the conju-
gate in the assay medium was measured as described
in Materials and Methods, in the presence of various
concentrations of HNE-SG. Control activity without
HNE-SG amounted to 9.6 + 1.7 pmol/min per mg pro-
tein. The mean values for three independent ghost
preparations and two to three measurements per
preparation are shown.

ity of which is regulated by phosphorylation at
tyrosine residues of the transporter [15]. The
data of the present communication confirm
the existence in erythrocyte plasma mem-
brane of an ATP-dependent Dnp-SG transport
system, identical with respect to kinetic pa-
rameters with MOAT3. In the course of the
present study it was found that MOATS is
non-competitively inhibited by 4 HNE only at
concentrations exceeding the physiological
range (Fig. 1).

The inhibitory effect of 4-HNE on MOAT can
be ascribed to the reaction of the aldehyde
with protein -SH groups, as in the case of the
effect of 4HNE on Na'-K'-ATPase [24] and

adenine nucleotide translocase [25]. The
modification of histidine and lysine residues
of proteins cannot be excluded, either [26].
Most probably 4-HNE evokes changes in mem-
brane surface charge (leading to membrane
aggregation), in membrane phospholipid
asymmetry, and in membrane fluidity. It has
been also found that products of phospholipid
peroxidation decrease the mitochondrial
membrane fluidity [27].

4-HNE was shown to spontaneously react
with GSH. The resulting compound competi-
tively inhibited the high affinity transport of
Dnp-8G in erythrocyte ghosts (MOAT3) (Fig.
3, Table 1). Thus it seems possible to conclude
that HNE-SG shares the same high affinity
transport system in erythrocytes which is in-
volved in extrusion of various glutathione &
conjugates of endo- and xenobiotics out of the
cell. Further studies are required to confirm
directly that HNE-SG is transported in eryth-
rocytes by MOATS3, especially under oxidative
stress.
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