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A high coordination lattice discretization of protein conformational space is
described. The model allows discrete representation of polypeptide chains of
globular proteins and small macromolecular assemblies with an accuracy
comparable to the accuracy of erystallographic structures. Knowledge based
force field, that consists of sequence specific short range interactions, coopera-
tive model of hydrogen bond network and tertiary one body, two body and
multibody interactions, is outlined and discussed. A model of stochastic dy-
namies for these protein models is also deseribed. The proposed method enables
moderate resolution tertiary structure prediction of simple and small globular
proteins. Its applicability in structure prediction increases significantly when
evolutionary information is exploited or/and when sparse experimental data
are available. The model responds correcily to sequence mutations and could
be used at early stages of a computer aided protein design and protein redesign.
Computational speed, associated with the discrete structure of the model,
enables studies of the long time dynamics of polypeptides and proteins and
quite detailed theoretical studies of thermodynamics of nontrivial protein

models.

Amino-acid sequence of a globular protein
determines its three dimensional structure
[1, 2] and thereby its function [3-5]. Due to
human genome project [6] (and other studies
of the genetic code) the number of known
protein sequences grows rapidly and now this
number is of a range of a couple of hundred
thousand. At the same time the three dimen-
sional structures are known only for a small
fraction of protein sequences [7, 8]. The rea-

son is quite simple. Gathering of protein
sequence information is relatively simple
and experimental procedures could be to a
large extent automated [5]. On the contrary,
experimental determination of new struc-
tures is very expensive and time consuming
[9]. At present the number of proteins for
which the crystallographic structures are
known is smaller than one thousand. More-
over, a majority of known three-dimensional
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structures could be clustered into groups, or
families, of very high sequence homology
[10]. Assuming that proteins with higher
than 30% sequence similarity have usually
essentially the same structure the number of
different protein folds known at this moment
is only about two to five hundreds. At pre-
sent, a substantial fraction of new protein
structures are based on NMR experiments
[11-13]. NMR techniques can be employed in
many structural studies that are sometimes
difficult for standard erystallography, they
provide valuable information about protein
structure in solution and allow studies of
some dynamic aspects of protein structure
formation [11, 13, 14]. There are, however,
some disadvantages of the NMR based strue-
tural studies with respect to protein crystal-
lography. First, only structures of rather
small proteins or macromolecular assemblies
could be solved using contemporary experi-
mental and theoretical tools. Second, the
NMR based structures are on average of a
poorer quality than the crystallographic
ones. This is due to a different character of
the distance restraints provided by the two
methods. The restraints from the crystal-
lographic experiments are of a global nature.
Namely, approximate positions of all heavy
(other than hydrogen) atoms are determined.
The NMR based restraints are local, experi-
ments provide only approximate distances
between pairs of atoms that are close in space
in the protein structure [11]. Consequently,
the errors during computational molecular
modeling and structure refinement could
propagate [15]. It is also known that contem-
porary tools for molecular modeling can be
used only for a refinement of local aspects of
protein structure [16—-24]. They can not find
the native state just on the basis of a subset
(or approximations) of molecular interac-
tions encoded in semiempirical force fields
employed by the computational models [25].
Thus the quality of the solved structures
relies on the quality and completeness of the
experimental data [15].

Our present understanding of immunologi-
cal mechanisms, rational developments of
new drugs and design of biotechnological
processes is to a large extent limited by in-
sufficient knowledge of protein structure, dy-

namics and thermodynamics. In the context
of the above mentioned gap between the
number of known protein sequences and the
number of known protein three dimensional
structures it is not surprising that the solu-
tion to so called protein folding problem is one
of the most important objectives of contem-
porary theoretical molecular biology. On the
most general level the solution to the protein
folding problem means development of theo-
retical methods for prediction of protein na-
tive structure and folding pathway (or path-
ways) from a given sequence of amino acids.
In spite of numerous attempts only very lim-
ited progress has been achieved to date. Why
the protein folding problem is so difficult?
First, the conformational space of polypep-
tide chains is enormous. Only due to rota-
tions around the main chain bonds (next to
the alpha carbon atoms) there are about five
distinet conformations per single residue.
Thus a small protein built from hundreds of
amino acids can in principle adopt 5100 gif.
ferent conformations. Additional degrees of
conformational freedom are associated with
rotations within the side chains and with
configuration of the surrounding solvent. The
native conformation is more or less unique.
Due to a variety of interactions and because
of intervening topological restrictions associ-
ated with the chain connectivity a search (by
theoretical methods or exercised by proteins
in nature) of such conformational space is a
very complex task [26, 27]. Indeed, protein
folding is a slow process. It takes 10%s to 10%
s to assemble the native conformation [28].
Thus the entire process can not be simulated
by standard molecular dynamics (MD) tools.
Contemporary computing technology allows
MD simulations of a single protein molecule
surrounded by a few layers of water that are
equivalent to about 10 nanoseconds of the
real time [21]. Thus, the simulation time is
too short by about six orders of magnitude.
Another reason why the prediction of protein
structure by means of standard molecular
mechanics tools is today not practical is as-
sociated with extreme complexity of molecu-
lar interactions in proteins. Using standard
semiempirical force fields it is very difficult
to predict crystal structure formed by small
organic molecules. Proteins consist of twenty
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various amino acids, some of them having
themselves much more complex internal
structure than these small organic mole-
cules. Consequently, in order to identify a
unique structure of polypeptide chains, the
requirements for the applied potentials are
much higher [25, 29].

In order to make simulations of the protein
folding tractable it is necessary to reduce
somehow the number of explicitly treated
degrees of freedom and to simplify the func-
tional form of potentials [30-33]. Many re-
duced models of protein structure and vari-
ous simulation algorithms have been pro-
posed in the past [31, 33-37]. The majority
of these models assumed a united atom rep-
resentation for entire amino-acid residues
[33, 38] or two united atoms per each residue
[31, 32, 39]; one for the main chain segment
and one for the side chain. Molecular dynam-
ies [19, 32] or Monte Carlo methods [40, 41]
have been used as tools of conformational
search. Low resolution structures, having
some features of the native state, of small
globular proteins have been found in these
studies [30, 40-42]. Recently, genetic algo-
rithms have been also employed as an energy
minimization procedure, allowing quite accu-
rate prediction of low energy structures of
some small proteins [43]. Further simplifica-
tion of the protein conformational space
could be achieved by assuming a discrete set
of rotational isomeric states. This leads to
lattice models of protein chains [44]. Studies
employing lattice models can be roughly di-
vided into two categories. The first one deals
with very simple lattice models of polymers
[45-47] or heteropolymers [48] that have
some basic features of polypeptide chains.
Such models of protein-like systems can be
studied in great detail. In spite of sometimes
drastic simplifications, the work by Chan &
Dill [47-49], Skolnick et al. [34, 50-57], Dill
et al. [33, 58], Sali et al. [38, 59] and others
[60—-69] provided a valuable general insight
into protein folding thermodynamics, folding
pathways and possible factors determining
uniqueness of the folded state. Lattice mod-
els of the second category attempt to mimic
specific geometric features of real proteins
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and employ knowledge based potentials [44].
These models are conceptually closer to the
continuous reduced models of protein struc-
ture and dynamics. Previous work along this
direction will be briefly outlined in the next
section.

Lattice discretization of protein geometry
has several computational advantages [44].
Local conformational transitions could be
enumerated and successively used in very
fast Monte Carlo algorithms. Also computa-
tions of conformational energy could be con-
siderably speeded up by in front calculations
of various energy contributions for a discrete
set of distances and/or orientations. How-
ever, immediately a question arises: does not
the lattice representation lead to an unphysi-
cal distortion of the protein chain geometry?
In this review we will show that it is too a
large extent possible to have good peptide-
like geometry and yet to exploit all advan-
tages of the lattice approach.

During the last few years we have devel-
oped a series of high coordination lattice
models of protein conformation and dynam-
ics (36, 44, T0-75]). Good accuracy of repre-
sentation of protein geometry, which was in
the range of accuracy of crystallographic
data, has been achieved |73, 76, 77]. Various
variants of the Monte Carlo methodology has
been used as sampling tools [44, 73, 78]
Force-fields for these models are knowledge-
based [71, 79, 80]. Particular potentials are
of a statistical origin and have been derived
from analysis of structural regularities seen
in known protein structures (81, 82]. Dynam-
ics of denatured proteins, pathways of pro-
tein folding process and folding transition
thermodynamics has been investigated. At
present, the model can be used for structure
prediction of very simple folding motifs [72,
74, 75, 83-89]. Predictive strength of the
method could be considerably increased by
implementation of approximate restraints
derived from analysis of evolutionary infor-
mation encoded in protein sequences [90].
Other applications, limitations and possible
future developments of this new tool of theo-
retical molecular biology are also discussed
in this contribution.
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LOW RESOLUTION MODELS OF
PROTEINS AND PROTEIN-LIKE
SYSTEMS

Continuous reduced models of proteins

About twenty years ago a number of good
resolution protein structures was already
large enough to make some generalizations.
Repeating structural motifs such as helices
and f}-sheets were well characterized. Regu-
lar character of dense packing of hydrophobic
protein interior became obvious. These obser-
vations strongly suggested that the rules
governing protein folding should be rather
robust and that prediction of three dimen-
sional structures of folded proteins should be
not so difficult. Because of the large number
of degrees of conformational freedom of
polypeptide chains, numerous attempts to
build simplified models were undertaken.
Selection of only some degrees of freedom to
be treated in an explicit way seemed to be
justified due to the expected robustness of the
rules governing the protein folding process.

Work by Levitt & Warshel [30] is now a
classical example of such approach. In their
model polypeptide chain, representation was
reduced to two united atoms per residue. One
united atom was centered on the Co position
and represented a segment of the polypeptide
main chain, while the second represented the
corresponding side chain (except glycine). A
constant value of the planar angle between
the two consecutive pseudobonds of the alpha
carbon trace was assumed. This approxima-
tion contradicted rather wide and bimodal
distribution of this angle seen in real pro-
teins. In the model the only local degree of
rotational freedom was associated with the
dihedral angles for the main chain defined in
this manner. The torsional potentials for the
corresponding degrees of rotational freedom
were derived from conformational analysis of
several “representative” dipeptides. These
were the only short range interactions, re-
flecting some secondary structure propensi-
ties of polypeptide chains. Long range inter-
actions were limited to interactions between
the model side chains. Simple semiempirical
potential in a form of the Lennard-Jones
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function has been used as an approximation
of these tertiary interactions. The model has
been employed in folding simulations of bo-
vine pancreatic trypsin inhibitor (BPTI)
polypeptide. Brownian dynamies (BD) has
been used as a sampling method. In a major-
ity of simulations, the obtained structures
had some features resembling the native fold
with the distance root mean square, rm.s.,
deviation from the native structure of about
8.5 A. This demonstrated that even such
simplified model has some properties of real
proteins, A related study on BPTI has been
also performed by Kuntz et al. [32] and
Hagler & Honig [39] who demonstrated that
results of similar quality could be obtained
using a sequence code reduced to just two
types of amino acids. Later, Wilson &
Doniach [41] developed a somewhat similar
model. Importance of their work lies in the
application of a knowledge based force field.
The potentials controlling short range (sec-
ondary propensities) and long range (tertiary
interactions) were derived from statistical
analysis of regularities seen in known crys-
tallographic structures of globular proteins.
Sampling procedure was based on a simu-
lated thermal annealing protocol in the
framework of the Metropolis type Monte
Carlo scheme. Overall accuracy of the pre-
dicted structure of crambin was very low.
However, the secondary structure was to a
large extent in agreement with that of the
native protein and elements of protein-like
hydrophobic core were formed in the simula-
tion experiments. Also the native-like pat-
tern of cystine crosslinks was observed.
Accuracy of a reduced representation of
protein could be improved by taking account
of some internal degrees of freedom of protein
side chains [91]. For example, larger side
chains could be represented by two united
atoms [92]. Alternatively, all atom repre-
sentation of the main chain could be em-
ployed with a reduced representation of the
side chains [43]. Using this kind of repre-
sentation and more elaborated statistical po-
tential structures of small proteins, such as

melittin, pancreatic polypeptide inhibitor,

apamin [43], PPT and PTHrP [92] have been
predicted with accuracy from 1.7 A r.m.s.
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(measured for alpha carbon positions) for
small single helix melittin to 4.5 A for larger
peptides.

Reduced continuous models were also used
in studies of various aspects of folding of real
proteins [93, 94] or polypeptides [95] and
idealized folding motifs [96-101].

Exploration of conformational space of pro-
tein models could be done by various meth-
ods. The above mentioned works employed
molecular dynamies [102] or its version, the
Brownian dynamics [30, 96], Monte Carlo
methods [41, 94, 98, 103] and even genetic
algorithms [43, 104].

Simple lattice models of protein-like sys-
tems and proteins

When employing reduced representation,
which is necessary if one wants to investigate
entire protein folding, it seems reasonable to
discretize the conformational space in order
to facilitate a more effective sampling. This
leads to lattice models of proteins and pro-
tein-like systems. The term protein-like sys-
tems means models that do not attempt to
reproduce geometry and native structure of
specific proteins but rather try to elucidate
general rules of protein folding dynamics and
thermodynamics.

Our previous Monte Carlo studies of semi-
flexible diamond lattice homopolymers [45,
46] demonstrated that a specific balance be-
tween short range and long range interac-
tions could be responsible for the character
of collapse transition being different in
polypeptides and in other more flexible (like
most of synthetic polymers) polymers. The
random coil-globule transition of flexible ho-
mopolymers was always continuous [105],
while finite length homopolymers of a limited
flexibility underwent all-or-none (pseudo
first order) transition [45]. In homopolymeric
systems the structure of the globular state
was not unique [45, 46, 106]. Protein-like
uniqueness of the low energy state could be
enforced by some differentiation of the short
range and the long range interactions along
the model chain. This way sequence-depend-
ent secondary structure propensities and
some sequence patterns of hydrophobic and
hydrophilic residues could be introduced.

This enabled modeling of the folding process
of various simple protein motifs, including all
possible topologies of four-helix bundles,
Greek-key motif of B-type proteins and other
[34, 50-52, 54-57, 107). Somewhat more
elaborated geometrical representation and
potentials were needed to model mixed o/p
motifs and to study conditions necessary for
the all-or-none folding transition and unique-
ness of the folded state [108-113]. These
studies of simple protein-like models showed
that, in order to reproduce the main features
of protein folding thermodynamics and the
uniqueness of the globular state, it is neces-
sary to account for some secondary and ter-
tiary preferences for the native conforma-
tions. Locally, they do not need to be fully
consistent with the native state, however on
average such consistency appeared to be nec-
essary. A different point of view has been
explored by Dill and coworkers [33, 58],
Shakhnovichet al. [62-64], Saliet al. [38,59],
and others [26, 65, 112, 114-123]. They in-
vestigated very simple cubic lattice polymers
and heteropolymers, implicitly assuming
that just the long range interactions could be
used as a folding driving force. Indeed, for
some conditions and for some sequences a
unique folded state of 27-mer cubic structure
(or similar simple compact motifs) could be
obtained. Thus, these models seem to repro-
duce the nature of hydrophobic collapse, ne-
glecting all detailed aspects of secondary
structure of globular proteins. Simplicity of
such models allowed full exploration of their
conformational and, to some extent, se-
quence space. The results provided essen-
tially an exact description of an extremely
reduced picture of the globular protein fold-
ing process.

It is possible to study low resolution models
of real proteins using simple lattice repre-
sentation. A classic example is the work done
by Go and coworkers [124-127]. Perhaps the
most interesting are the results of their simu-
lation study of folding process of lysozyme
[128]. Native structure of this 129-residue
protein has been represented by a 116 unit
simple cubic lattice chain mimicking confor-
mation of the polypeptide main chain, and
additional 15 lattice vertices for some larger
side chains. Consequently, there was no one-
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to-one correspondence beiween the model
and the structural units of the real protein.
Nevertheless, the overall geometry and close
packing of globular proteins were reproduced
with a reasonable accuracy. The goal of their
Monte Carlo experiments was to elucidate
the factors responsible for the uniqueness of
the folded structure and for the cooperativity
of the folding process. It has been found that
long range interactions, consistent with the
target native structure, increase cooperativ-
ity of the folding process. Tertiary interac-
tions inconsistent with the target structure
decreased folding cooperativity and, when
the “wrong” interactions were predominant,
the native structure could not be obtained at
all. The short range secondary interactions,
consistent with the target structure, always
decreased folding cooperativity. However,
they increased stability of the native strue-
ture. Such general picture seems to be in a
reasonable agreement with known experi-
mental facts. Simple lattice models of real
proteins were also studied by Covell [40],
Krigbhaum & Lin [129], Dashevskii [130],
Covell & Jernigan [131] and Hinds & Levitt
[132]. These studies were aimed at prediction
of low resolution three dimensional struc-
tures of small globular proteins from their
sequences of amino acids. Accuracy of the
predicted structures was rather low, however
of a similar quality as those predicted by the
continuous reduced models.

Skolnick & Kolinski [133], and Godzik et al.
[134] employed moderate resolution “chess
knight” models of protein structure in folding
simulations of plastocyanin and TIM barrels
(the o subunit of tryptophan synthase and
triose-phosphate isomerase [134]). It has
been shown that using an amino-acid-de-
pendent pairwise interactions and secondary
propensities consistent with the native strue-
ture, a very fast folding into unique native-
like structures of these complex folding mo-
tifs could be achieved by means of the Monte
Carlo dynamics. Some insight into the pro-
tein folding mechanism could be perhaps
gained from these studies. The folding proc-
ess appeared to proceed along a loosely de-
fined pathway, by the on-site mechanism,
where already assembled fragments of the
native structure served as a folding scaffold

for the remainder of the model chain. This
way, the folding funnel could be rapidly nar-
rowed as the dense nucleus of globular struc-
ture emerged. Due to weak target contribu-
tions to the short range interactions these
simulations can not be considered as exam-
ples of structure prediction, but rather as a
plausible theoretical demonstration of a fast
folding mechanism.

This short overview shows that it is possible
to gain a valuable insight into the nature of
the protein folding process by computer stud-
ies of reduced models of proteins and ideal-
ized protein-like systems. It proved also pos-
sible to predict the lowest energy conforma-
tions of small polypeptides and small pro-
teins, albeit with rather low overall accuracy.
Only few, very simple proteins were investi-
gated, suggesting that the applicability of the
proposed methods was not general. Is the
problem associated with reduced repre-
sentation or rather with inadequate poten-
tials? Most likely the answer is that both
factors contributed to low predictive power of
these studies. As it will be shown later, in
order to reproduce protein-like structural
regularities it is necessary to use a quite
complex set of knowledge based potentials
reflecting various interactions that appar-
ently control the unique behavior of globular
proteins.

HIGH COORDINATION LATTICE
MODELS OF PROTEINS

The models described here base on a high
coordination lattice representation of the
polypeptide main chain [44]. A set of vectors
restricted to an underlying simple cubic lat-
tice is used to represent the alpha carbon
trace of protein. The lattice representation of
main chain backbone can be then used as a
convenient reference frame for very fast
building of a reduced representation of pro-
tein side chains and very rapid computation
of various interactions. Three models of in-
creasing resolutions [76] have been investi-
gated. The chess-knight model is of moderate
resolution, however it allows to model vari-
ous aspects of protein secondary and tertiary
structure (44, 70, 108, 109, 133, 134]. The
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alpha carbon trace has been approximated by
a chain of virtual bonds from the set of vec-
tors of the type |2,1,0|. With all possible
permutations of the coordinates and the
signs, the number of basis vectors is equal to
24, i.e., there are 24 possible orientations of
virtual bonds between successive alpha carb-
on atoms, The model protein backbone re-
sembles a three dimensional chess-knight
path. The best representation of protein
structures is obtained when the mesh size of
the underlying cubic lattice is assumed to be
1.7 A. Then the length of Ca—Co vectors is
3.8 A, and the accuracy of Co-trace repre-
sentation is in the range of 1.0-1.8 A, depend-
ing on protein size. A crude representation of
side chains by proper sets of occupied lattice
peints could be easily defined using the ref-
erence frame of the main chain. The chess
knight model enables crude representation of
helices [70], B-sheets [109] and mixed struec-
tural motifs [108].

Geometrical accuracy of the chess knight
model, while much better than accuracy of
the previously mentioned simple lattice mod-
els, is rather moderate. Even more disturb-
ing is its lattice related anisotropy. For small
protein motifs the fidelity of lattice approxi-
mation depends on the orientation with re-
spect to the Cartesian coordinate system.
This may have a dangerous effect on the
Monte Carlo dynamics of such model chains.
The problem of lattice anisotropy has been to
a large extent eliminated in the hybrid 210
lattice model [71]. Here the set of basis vec-
tors consists of 56 entries of the following
form{12,1,0l,...12,1,11,... 11,1,11,...). Allow-
ing for length fluctuation of the model Ca—Cu
pseudobonds the overall accuracy of repre-
sentation has been improved to 1.0 A rm.s.
[76], and the dynamics of the model chains
became more physical. This model allowed
prediction of moderate accuracy three dimen-
sional structures of very simple folding mo-
tifs using sequences of amino acids as unique
protein-specific information [72].

The model which will be discussed in the
remainder of this work employs 90 basic
vectors for Co-trace representation [71]. An
immediate question is why not a more exact
representation? Certainly, it is easy to design
more accurate discretizations of protein con-

formational space. However, at some point
the advantages of lattice approach, i.e. the
simplicity and the speed of computations will
be lost. Moreover, it appears that at this
point the accuracy of representation is not a
bottleneck of the model [44]. Further im-
provements are rather expected from a better
design of the interaction schemes. Figure 1
illustrates example fragments of various lat-
tice chains showing increasing fidelity of the
main chain representation.

Protein representation

Geometry of alpha carbon trace strictly cor-
responds to protein secondary structure.
Starting from the Co-coordinates it is rela-
tively easy to define approximate positions of
other atoms and groups of atoms [36, 135,
136]. That is a main reason why reduced
modeling of protein conformations so fre-
gquently employs the alpha carbon chains. In
the present model the virtual Co~Co bonds
are restricted to a set of discrete orientations.
The set consists of 90 vectors of the type
{13,1,11,... 13,1,01,... 12,2,11,... 12,2,01,...}.
The best mesh size for the underlying cubic
lattice is 1.22 A. Alpha carbon traces of high
resolution crystallographic structure could
be fitted to this lattice with an average accu-
racy of 0.6-0.7 A of the coordinate r.m.s.
deviation after the best superposition [76].
The quality of fit essentially does not depend
on the protein size or chain orientation with
respect to the lattice coordinate system [76].

The Cuo. vertices of the model chain serve as
interaction centers of the main chain units.
The side chains are also represented as single
united atoms. However, in order to account
for internal rotations of the side chains a
multiple rotamer, single sphere, library of
the centers of mass of the side chains has
been generated basing on analysis of protein
crystallographic structures. The number of
mode] rotamers depends on amino acid type
and actual conformation of the main chain
defined by two backbone vectors. The idea is
explained in Fig. 2.

It could be shown that three consecutive Co
vectors define orientation of the central pep-
tide bond plate (frans conformation as-
sumed) with rather good accuracy [36, 136].
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Monte Carlo modeling of protein dynamics
have shown that a random sequence of local
numerical solution to stochastic equation of

(few chain units involved) conformational
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Figure 1. Example conformations of short fragments of lattice chains.

which should be compared to the length of virtual alpha carbon bond.

ted to the 310-hybrid lattice. Increasing resolution is illustrated by decreasing mesh size of the

The first panel shows a polymer of a simple cubic lattice. The second one shows a chain on face centered cubic
lattice (coordination number 12). The third panel shows a chain on the chess knight lattice. The last panel shows

a chain restric

underlying simple cubic lattice

n chain atoms

with respect to the Co atoms could be defined

only once (again the numerical data are de-
tures) and subsequently used during the

simulations in computationally very effective

rived from the statistics of the known struc-
way.

Thus, the positions of the mai
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motion. Consequently, a trajectory of a prop-

erly defined Monte Carlo process simulates

polymer chain dynamics [36, 70, 71,

138-142]. Such dynamics has a well defined

physical meaning only for processes that are

long in comparison with characteristic time

of the local conformational transitions. The

following set of local transitions has been

designed for the present model.

*+ (i) Random change of a side chain rotamer
for a randomly selected residue.

+(ii) Random rearrangement of two main
chain bonds with a proper rearrangement
of three side chains involved (chain ends
have to be treated in a somewhat different
way, the end segments possessing more
conformational freedom)

#+(iii) Random rearrangement of a three-
bond fragment (and four rotamers).

+ (iv) Random rearrangement of a four-bond
fragment (and five rotamers).

+(v) Random motion of a longer chain frag-
ment by a small distance.

The time unit of the model process is de-
fined as the time required for N (on average
due to the random selection of particular
moves) attempts to rotamer moves, N-1 at-
tempts to two-bond jumps, N-2 three-bond
jumps, N-3 four-bond jumps and a single
attempt at the large fragment small-distance
displacement. The last type of conforma-
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Figure 2. Example conformation of a short
fragment of 310-lattice main chain back-

bone.

Two from several possible rotamers are shown
for a selected residue, illustrating rotamer up-
dating, which is one of the elementary conforma-
tional transitions incorporated into the Monte
Carlo dynamies procedure.

tional transitions may slightly distort the
time scale and should not be used in simula-
tion when the dynamic aspects is of a major
interest. Some examples of the conforma-
tional transition of the model chain are sche-
matically shown in Figs. 3-6. Of course, each
attempted conformational update is subject
to geometry tests and the Metropolis crite-
rion [143].

It has been shown that the proposed model
of dynamics leads to Rouse-type dynamics at
denatured state [36], a type of polymer dy-
namics proper for the polymeric systems if
hydrodynamic effects could be neglected
[144]. At low temperatures the model repro-
duces qualitatively the dynamic aspects of
the molten globule-native state transition
[44, T3]). Thus, the model of long time protein
dynamics in various conditions is at least
qualitatively correct.

FORCE FIELD FOR HIGH
COORDINATION LATTICE MODEL

In principle, there are two gqualitatively
different ways of designing on interaction
scheme for reduced models. One possibility
is to perform a projection of a detailed, all-
atom, force field onto interactions of united
atoms in the reduced models. There are, how-
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ever, serious problems with such approach.
Reduced models have a different set of de-
grees of freedom and a different underlying
distribution of the conformational entropy
between these degrees of freedom (which has
to be taken into account). Consequently, such
projection is poorly defined [44]. The alterna-
tive avenue bases on knowledge based poten-
tials [44, 79, 80, 93, 145]. Assuming that the
native structure of a globular protein is a
realization of the lowest conformational en-
ergy state (i.e. assuming validity of the so
called thermodynamic hypothesis [146, 147])
one may compare the interactions in folded
structures with the interactions that would
exist in random conformations. The former
have to be at a minimum of conformational
energy. This way a proper statistical analysis
of the structural regularities seen in known
crystallographic (and NMR) structures [8]
leads to a set of semiempirical potentials
which reflect various interactions controlling
protein stability. Below, a force field result-
ing from such considerations and analysis of
thermodynamics and dynamics of various
reduced models is outlined. Details of the
derivation and numerical data can be found
elsewhere [44, 73, 7T8]. Short range interac-
tions are the interactions controlling confor-
mational correlations between close (along
the chain) peptide units. Abbreviation “long
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Figure 3. Example of a two-bond conforma-
tional transition, and a chain end move.

range” means the tertiary interactions be-
tween the model united atoms that are usu-
ally far away from each other along the chain.

Short range interactions

The first contribution describes rotamer en-
ergy (44, 73]. Various conformations of the
side chains have various energy and there-
fore a different thermodynamic probability.
The corresponding potential can be defined
as follows:

Er= —kET]ﬂquhservedi’f uniform) (1)

Where fibserved is the frequency observed in
the structural database for a given rotamer
of a particular amino acid and fn;f0rm 15 the
average frequency of a uniform distribution
of rotamers. The corresponding energy pa-
rameters are in kg7 units. The distribution
of rotamers is a function of main chain ge-
ometry.

In a similar way potentials that reflect sec-
ondary structure propensities (observed in
protein structures with respect to a random
distribution) could be derived [44, 73, T8]. We
assumed two types of sequence specific short
range interactions. There is a contribution
from main chain conformation and four con-
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tributions from mutual orientations of the
side chains:

Echort = 4En{Ai, Aj,Vi-1,Vi,Vis1) +
+ Egg{Ai,A.;'+k,C03{ﬂi:ai+kD
k=1235 (2)

The numerical values of the potential have
been derived for coarse grained bins that
approximately corresponded to the local ge-
ometry of various secondary structure mo-
tifs. Six classes of main chain geometry de-
fined by three consecutive Coa vectors (v
1.Vi,¥ie1), and five ranges of angle between
the side chain vectors (vectors from Ca to the
center of corresponding side group) a; and
a;,; have been considered. The idea is ex-
plained in Figs. 7-8.

The sequence specific short range interac-
tions given in Egn. 2 are defined with respect
to an average protein conformation. The dis-
tribution of conformations of the model lat-
tice chain without any interaction is, how-
ever, not identical to that averaged over all
proteins. Therefore two kinds of generic
{amino-acid sequence independent) biases
have been introduced. The corresponding po-
tentials enforce a bimodal distribution of dis-
tances between i-th and i + 4th alpha carbons
and strong orientational correlations of the
peptide bond plates which are typical for all
globular proteins [36].

Models of hydrogen bond network

Hydrogen bonds play a very important
structure-regularizing role in globular pro-
teins, Energy difference between the pro-
tein—water hydrogen bonds and the intra-
protein hydrogen bonds is perhaps moderate.
However, conformational energy cost for hav-
ing not hydrogen bonded residues inside pro-
tein globule is large.

Structure regularization by hydrogen bonds
is even more important in the framework of
reduced models. This has not been suffi-
ciently appreciated in previous studies of
protein models and protein-like systems.
Simplification of conformational space al-
ways introduces some additional conforma-
tional freedom that does not exactly mimic
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the conformational space of real polypeptide
chains. Consequently, the entropy of model
systems could be distorted. In the previous
paragraph we have shown that properly de-
signed generic terms can correct for entropy
associated with short range geometrical cor-
relations. Hydrogen bonds play a similar role
for medium range and short range correla-
tions.

Two distinct models of hydrogen bonds have
been designed for the high coordination lat-
tice models of proteins [44]. In spite of quite
different design, the two schemes are almost
equivalent, although the accuracy of the sec-
ond scheme appears to be slightly better.

The first model of hydrogen bonds bases on
Levitt-Greer method [148] of secondary
structure assignment. They have shown that
protein secondary structure can be assigned
with good accuracy and reproducibility just
by using the knowledge of alpha carbon coor-
dinates. We followed this idea [73] building
a geometric model of hydrogen bond. Only
hydrogen bonds within the main chain were
taken into account. Two units i and j of the
model polypeptide chain were considered to
be “hydrogen-bonded” when the following set
of geometrical criteria has been satisfied:

Bmin < rij < Rmax
I(wi.1 = vi) e rij| < amax
l{wvj.1 —vj) o rij| < amax
and li—j| 2 (3

where r;; is the distance between the alpha
carbon atoms i and j, and v; is the j-th
backbone vector connecting the j-th and
J + 1st alpha carbons. The constants Ri,.
R and fmax are equal to 4.6 A, 7.3 A and
13.4 A2 , respectively. This reflects geometri-
cal correlations within helices, within -
sheets and, to a large extent, also the main
chain packing preferences in turns and in
loop regions. Assignment of the model hydro-
gen bond instead of the peptide bonds, to the
alpha carbons changes registration of the
hydrogen bond network. The model bond be-
tween i and i + 3 alpha carbons is equivalent
to the hydrogen bond between i-th and i + 4th
amino acids in an u—helu: Each hydrogen
bond contributes Ef< 0 to the total confor-
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mational energy of the model system. Fur-
ther regularization of model structures that
accounts for known aspects of physics of real
proteins could be achieved by making the
model hydrogen bond network cooperative in
an explicit way. Total energy associated with
cooperative network of hydrogen bonds can
be then written as [73]:

Etbond = ZEEY 8(ij) +
+ XEEMH 56 nalit1,j+1) (4)

where &(i,/) is equal to one when residues i
and j are hydrogen bonded, and zero when
they are not bonded. The values of the energy
parameters, Ef =05 kgT and ESR _ 075
kgpT, were selected by trial and error method
such that the secondary structure in the
denatured states was marginal and the
folded states had a well defined network of
hydrogen bonds. This scheme reproduces
about 90% of the main chain hydrogen bonds
assigned to the lattice models of native struc-
tures when compared to the classical Kabsch-
Sander method [149] executed for the all
atom structures.

Another model [36, 44, 78] of hydrogen
bonds is somewhat more explicit. As men-
tioned before, three consecutive alpha carbon
backbone vectors define orientation of the

1997

Figure 4. Example of a three-bond confor-
mational transition.

central (for this fragment) peptide bond (see
Fig. 9). Thus approximate coordinates of the
carbonyl oxygens and the amide hydrogens
could be calculated and stored as a function
of identity of these three backbone vectors.
Consequently, Coulomb-like interactions
could be computed rapidly.

€H-bond = gH(1 — fH/(rOH +2 »
» exp(-r%0,H)) (5)

where: gy i1s an arbitrary scaling factor,
equal to one. The angular factor, fy, reflects
the average geometry of protein hydrogen
bonds and has been assumed to have the
following form:

fi = (0.77 — cos(roj,Hi, roiH))® +
+(0.77 — cos(roi,Hj,roH))>- (6)

The strength of the model hydrogen bond
accommodates also partial charges, local di-
electric constant, etc. The indices i and j
denote peptide bonds which are numbered
sequentially along the chain. The i-th peptide
bond is the bond between the i-th and i + 1st
alpha carbons. Thus, rg;y; is the vector be-
tween the oxygen in peptide bond i and the
hydrogen in peptide bond j, and rq;y; is the
vector across the j-th peptide bond plate. The
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numerical value 0.77 corresponds to the most
probable geometry of the main chain hydro-
gen bonds seen in globular proteins. These
simplified Coulombic interactions were cut-
off at a distance range of 4.0 A. Like the
previously described model, this model of the
hydrogen bond agrees well with the Kabsch-
Sander DSSP assignments [149]. Almost all
main chain hydrogen bonds are reproduced
by the model definition. Explicit cooperativ-
ity of the hydrogen bond network has been
introduced for this model in a similar fashion
as described in the case of the previous
model.

Both above outlined models of hydrogen
bonds propagate secondary structure of the
model chains that mimics very well the ge-
ometry of secondary structure motifs seen in
real proteins [44],

Long range interactions

Three types of tertiary interactions have
been considered: one body burial interac-
tions, pairwise interactions between united
atoms, and multibody interactions of the
model side chains.

Single domain monomeric globular proteins
have a well defined hydrophobic core and a
polar, hydrophilic surface. These proteins
have native shapes that are almost always

Figure 5. Example of a four-bond conforma-
tional transition.

close to spherical. Packing density is very
similar for all single domain proteins [150].
Thus, assuming an average amino-acid com-
position, the radius Sy of a globular protein
could be estimated [73] basing on number of
residues N.

with: SN = 2.2 N8 (in sngstroms) (7)

From the statistics of known structures of
single domain proteins a one body potential
could be derived which depends only on r(A;),
the distance of the center of mass of the i-th
side group from the center of mass of the
entire chain. The one body contribution to the
total conformational energy can be then ex-
pressed as follows:

E1 = Zeilr(AD)/SN) (8)

This contribution is small in a folded state,
however it assumes large positive values for
expanded random coil states. Consequently,
this potential has negligible influence on a
specific folding pattern, although it facili-
tates rapid chain collapse. Alternatively, the
burial interactions could be modeled on a
more local level. For instance, target num-
bers (also derived from the statistical analy-
sis of protein structures) of nearest neighbor
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gide chains for particular types of residues
can be used for this purpose [85].

Pairwise interactions involve interactions
between side chains, between alpha carbon
units and between side chains and alpha
carbons. They have been assumed in the form
of square-well potentials, with the cut-off
distances that are pairwise specific. This
non-additivity partially accounts for some
side chain to side chain packing details. The
short distance cut-offs represent a finite
strength hard core interactions. All pairwise
energy parameters and the cut-off distances
have been derived from a proper statistics
[44, 79, 80, 151, 152] of a set of non-homolo-
gous, high resolution crystallographic struc-
tures. The scaling of the cut-off distances has
been adjusted in such a way that the side
chain contact maps [153] of the model repre-
sentations of the native proteins were as
similar as possible to the contact maps ob-
tained from the corresponding all atom struc-
tures. The reference state in potential deri-
vation procedure was a randomly folded com-
pact polypeptide chain of the average (for all
proteins) amino-acid composition.

The above set of tertiary interactions, to-
gether with short range interactions and
with the model hydrogen bonds can distin-
guish between native-like folded structures
and other (compact or expanded) misfolded

Figure 6. Example of small, rigid body, move
of a large part of the model chain.

states of small and structurally relatively
simple globular proteins. However, the above
set is not capable of reproducing final struc-
ture fixation to a unique pattern of the side
chain contacts, typical for native proteins.
For this purpose it is necessary to introduce
multibody potentials that mimic packing
preferences seen in protein structures. The
most common side chain contact repeat pat-
tern, typical for -sheets and helix-to helix
packing, could be facilitated by the following
pseudo four-body potential [44, 72, 73, 78].

E4 = Zl(eij+€ivk,j+n) ® Cij ®
e Cisk jsnl with lEl=In| (9)

where: C;; = 1 for side groups being in contact
(otherwise C;; = 0), g;; is the pairwise inter-
action parameter for side groups i and j, and
the summation is over all protein-like repeat
patterns of side chain contacts, ie. |kl=1,
lkl= 3 and |k|= 4. The last two values of
repeat spacing are of a long range nature in
all structural motifs [44, 81l The lkl=1
repeat reflects tertiary interactions in [-
sheets and the short range packing correla-
tion within a single helix. The idea is illus-
trated in Fig. 10. This potential has an ad hoc
structure. Namely, the strength of these four
body interactions has been taken arbitrarily




Vol. 44

as a sum of two pairwise interactions. Unfor-
tunately, the present size of the ecrystal-
lographic database is too small for a statisti-
cal derivation of the four body terms that
would be explicitly dependent on the identity
of a four residue set.

It is also possible to account for more com-
plex patterns of the side chain packing, em-
ploying an artificial intelligence approach.
An experienced human eye can easily distin-
guish between a native protein side chain
contact map and a contact map of more or
less randomly folded polypeptide chain [81].
If so, a computational model of neural net-
work could be trained to distinguish between
the two classes [82]. A back propagation for
suitably trained neural net algorithm is com-
putationally very fast. Consequently, a po-
tential that biases toward protein-like pack-
ing patterns generalized in a neural net could
be designed and used in the Monte Carlo
simulation algorithms [88, 89]. Relatively
large fragments of the side chain contact
maps (7 =% 7) could be treated. Such potential
accounts for very complex multibody interac-
tions typical for real proteins. This is perhaps
an avenue which opens a lot of new possibili-
ties in solving the protein folding problem.
The neural network approach resulted in the
most accurate [154-156] to date method of
secondary structure prediction [157, 158].
Pattern recognition methods for predictions
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Figure 7. [llustration of the geomeiry em-
ployed in definition of sequence specific
short range potential controlling the
main chain conformation.

of tertiary templates [82, 88, 89] could be
equally beneficial.

APPLICATIONS IN STRUCTURE
PREDICTION

The proposed methodology that employs
lattice discretization of protein conforma-
tional space and knowledge based potentials
has several features that allow applications
that are not attainable with standard meth-
ods of molecular modeling. First, the lattice
approach and Monte Carlo dynamics enables
simulations that correspond to the real fold-
ing time of small proteins. Second, the knowl-
edge based force field, at least for subsets of
relatively small and structurally simple
globular proteins, has its global energy mini-
mum at conformations that are close to the
native fold. Finally, the methodology is sim-
ple enough for easy encoding of a fragmen-
tary experimental information. In such a
case it is possible to extend possibilities of
structure prediction to more complex cases.
Below, we outline some straightforward ex-
amples of globular protein structure predic-
tion and some applications where the model
could be used for structural predictions based
on sparse experimental data and on evolu-
tionary information. The described work con-
slitutes a small step towards the solution of
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the protein folding problems and shows how
analysis of simulation experiments can con-
tribute to our understanding of general prin-
ciples of the protein folding process.

De novo structure predictions

The most straightforward application of
structure prediction uses sequence of amino
acids as the only protein-specific informa-
tion. The methodology [44] could be summa-
rized as follows. A set of random coil confor-
mations of the tested protein is generated by
a separate algorithm. Then, starting from
such denatured states the Monte Carlo simu-
lated thermal annealing procedure, using the
model described in this contribution, is per-
formed several times. Then, the obtained low
energy structures are analyzed. If the results
of many simulations are well clustered
around a single or few well defined folds they
are subjected to further analysis which se-
lects the lowest energy, native-like conforma-
tion. Otherwise, when the results of simu-
lated annealing are not reproducible, the
structure prediction is not possible. A fre-
quent problem with structure prediction is
that an algorithm generates a proper fold
together with its topological mirror image.

A typical example are prediction experi-
ments made with, designed by DeGrado and
coworkers [159-163], sequences that have

Figure 8. lllustration of the ge-
ometry employed in definition
of sequence specific short
A4 range potential controlling mu-
tual orientations of the side
chains.

been expected to adopt a four helix bundle
conformation. We analyzed two sequences
|72, 84]. One of them had a leucine based
hydrophobic core. In the second sequence
several mutations in the core of the designed
protein have been introduced in order to
break down the degeneracy of the side chain
packing. Simulation experiments showed
that for the first sequence it was impossible
to distinguish between the right-handed and
the left-handed topology of a four o-helix
bundle. Later, the experiments of Raleigh et
al. [161] confirmed this result. The fold was
energetically very stable, however the pack-
ing of the hydrophobic core was poorly de-
fined and the two above mentioned forms
existed in equilibrium. For the redesigned
sequence the simulation algorithm properly
gselected a unique structure. Moreover, the
analysis of the model folding trajectories
have shown that the first sequence produced
a molten globule-like structure oscillating
between two types of fold while in the second
case a native-like unique structure formed,
with a typical for real proteins transition
from a molten globular to the erystal-like
structure, with a fixed pattern of the side
chain packing.

A similar structure prediction has heen per-
formed for a redesigned (Sander, private
communication) monomeric ROP (ColE1 re-
pressor of primer) sequence [164]. The four
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helix structure of the protein has been pre-
dicted [74]. The predicted structure had
3.6-4.2 A r.m.s. deviation from the equiva-
lent residues of the native (dimeric) ROP
protein [165]. For individual 30 residue heli-
ces the error was within the range of 1.0 A to
2.4 A r.m.s. [74]. The redesigned sequence
has been predicted to have a slightly smaller
supertwist of the helices and a unique native-
like packing of the side chains.

The test prediction have been also per-
formed for known structures of simple natu-
ral globular proteins [74]. A couple of typical
examples are protein A domain [166] and
crambin [167]. Protein A is a three helix
bundle, and its structure has been deter-
mined by NMR spectroscopy. The folding
algorithm [73, 74] predicted correctly the
right handed topology of the bundle and the
Cua-trace deviation from the native structure
was in the range of 2.25 A r.m.s.

Very interesting is the case of crambin
[167]. The straightforward algorithm tended
to predict the native structure, however, with
rather low reproducibility. Very frequently
the folding algorithm has been trapped in
local energy minima when some (not neces-
sarily native) disulfide crosslinks have been
formed. The crosslink interactions were very
strong and when the first one formed, the
folding algorithm had a very hard time to
escape from corresponding local minimum of
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Figure 9. Geometry employved in
definition of peptide bond orien-
tation and in model of hydrogen
bonds.

conformational energy. This became clear
after a brief inspection of folding trajectories.
To remedy this problem we applied a two
stage folding protocol. In the first series of
simulations (which were performed at a rela-
tively high temperature) we extracted the
secondary structure propensities from set of
manifold compact structures. These propen-
sities were then used as a secondary struc-
ture biases in the proper folding experi-
ments. In this way the short range interac-
tions have been augmented and as a result
the native structure formed reproducibly. In
such a way very strong cysteine interactions
have been thermalized, providing kinetic
channels for proper folding. Using this two
stage procedure moderate resolution (3.6 A
r.m.s. deviation from native) structures were
obtained in majority of simulation runs [74].
The proper structure was easy to select bas-
ing on the criterion of the lowest conforma-
tional energy.

The most accurate were predictions of the
native structure of leucine zipper {ragment
of GCN4 transcriptional activator [168] and
its mutants [169, 170]. In these cases the
simulation algorithm [85, 86] produced
structures which after a proper all atom re-
building procedure were indistinguishable
from the experimentally determined high
resolution structures. These test predictions
[85, 86] were interesting for several reasons.
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i+2

i-1 i+1

It has been shown that the lattice model and
its force field could be applied to the problem
of macromolecular assembly [87]. The ob-
tained lattice models provided adequate re-
straints for successive all atom model re-
building using CHARMM [171] force field
(other standard all atom force fields could be
perhaps used as well). The obtained all atom
structures were highly reproducible and es-
sentially the same as the structures obtained
in the refinement process which started from
the crystallographic data. Namely, the coor-
dinate r.m.s. deviation from the crystal strue-
ture of GCN4 leucine zipper for the backbone
atoms was 0.8 A, and for the atoms of the side
chains from the hydrophobic interface be-
tween helices it was 1.31 A, and for all heavy
atoms — 2.29 A. Moreover, the lattice model
responded properly to a subtle sequence mu-
tations and properly predicted the state of
association of various coiled coils.

Structure prediction based on fragmen-
tary experimental data

As mentioned before, for more complex fold-
ing motifs, the de nove approach to the three
dimensional structure prediction failed. For
example, simulated annealing of plastocy-
anin and flavodoxin led to compact struc-
tures of various topology. Native fold was
never obtained in about 20 folding experi-
ments. What is interesting, large fragments
of structure were correct and the observed

i+3

i+4

Figure 10. Hlustration of side
chain packing correlations in
globular proteins for a parallel
f-sheet fragment.

When the side chain of residues { and
J are in contact then almost always
the residues i + 1 and j + 1, residues
i+2andj+3, and residues{ + 4 and
J+4 are also in contact, provided that
the entire fragment is a part of regu-
lar secondary motif. Similar correla-
tions exist for antiparallel -sheets
and c-helices.

secondary structure was mostly in agree-
ment with the secondary structure of the
native state. As it is well known, the folding
process is fastest at a close vicinity of the
folding transition [28]. For purely practical
reasons simulated thermal annealing must
be relatively fast and has to cover a wide
range of temperature. Thus, in a single simu-
lation, the model system spends only a small
fraction of time within the range of the best
folding conditions. Since the exact folding
temperature is very difficult to estimate o
priori, it is possible that the simulation ex-
periments are simply too short. It is, how-
ever, also possible that the present status of
the model force field is too ambiguous and the
conformational energy differences between
the model native state and various misfolds
are too small. Nevertheless, various simula-
tions show that the model force field must be
very close to a proper one. If so, even a small
additional bias toward native folds should be
sufficient for a successful folding of more
complex motifs. The above considerations
suggested designing of folding algorithms
that use some restraints taken from experi-
mental data for a specific sequence on top of
the general purpose force field.

The method of folding globular proteins
with partially known secondary structure
and a small number of long range restraints
could be useful at early stages of model build-
ing from NMR based experimental data. The
restraints have been implemented in a very
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general form [172]. The short range re-
straints assume partial knowledge of protein
secondary structure. They are implemented
as a weak bias toward an extended backbone
conformation (a broad range assumed) for
chain fragments that are known to be part of
a f-structure and a bias towards compact and
right handed conformations for fragments
known to be helical. The remaining frag-
ments of the chain have been controlled by
the short range interactions of the original
force field as described before. Long range
restraints have been superimposed on pairs
of side chains in the form of broad (3-7 A)
and rather shallow square well potentials. At
large distances these restraints had a form
of weak harmonic force. The method has been
tested on several proteins of various size and
topology. Using a moderate number of the
long range restraints (many times smaller
than the number required by the standard
methods of structure building) low to moder-
ate resolution structures were always ob-
tained in a substantial fraction of folding
experiments (usually in most of them). The
remaining structures obtained in the folding
experiments were grossly misfolded or had
the mirror image topology of the native fold.
The wrong folds could be dismissed in all
studied cases basing on the conformational
energy criterion. The lowest energy confor-
mations were always native-like. Addition-
ally, the grossly misfolded structures could
be rapidly dismissed due to viclation of sev-
eral long range restraints. It should be, how-
ever, pointed out that proper folds dominated
also in the cases when a fraction of the long
restraints was incorrect, i.e. inconsistent
with the native structure. Consequently, the
method allows structure predictions from not
only fragmentary but also from partially in-
correct experimental data.

Some representative examples of globular
protein folding calculated using a small
number of long distance restraints have been
recently published [44, 172]. Here we list
these examples.

B1 domain of protein G [173] (native struc-
ture consists of a four-member P-sheet and
has a helix) has been folded many times
using various (randomly selected) sets of long
range restraints. The number of restraints

ranged from 23 to 7. The accuracy of the
folded . structures changed only slightly in
this range. The lowesl energy structures
were within 34 A r.m.s distance from the
native one. Experiments with smaller than
N/8 (for N = 56 residues of B1 domain of the
protein G, N/8 means 7 pairwise restraints
distributed more or less randomly along the
polypeptide chain) failed in majority of simu-
lations.

68 Residues /B fold of 1ctf [174] has been
reproducibly obtained using 10 restraints
(r.m.s range of 3-4.5 A). For 8 restraints the
lowest energy structures were also native,
however the fraction of failed folding experi-
ments became large.

Moderate resolution structures of 99-resi-
dues eight-member [-barrel of plastocyanin
[175] (1pcy) have been obtained with 23-25
restraints. With 17 restrains the obtained
folds were correct, however r.m.s from the
native structure was large — about 6.0 A,

For o/p barrels of thioredoxin [176] (108
residues, 2trx) and flavodoxin [177] (138 resi-
dues, 3fxn) 3.04.5 A r.m.s folds were ob-
tained with 25 and 35 restraints, respec-
tively. Good low energy structure has been
observed for thioredoxin even with 15 re-
straints.

For 146 residues myoglobin [178] (1mba)
5.5 A r.m.s. structures were obtained with
20 long range restraints. With 40 restraints
the coordinate r.m.s dropped to 4 A and the
distance r.m.s deviation to about 3 A.

These experiments show that it is always
possible to determine a low resolution struc-
ture having N/4 long range restraints. In this
respect the lattice based method is much
better than the recently proposed methods
employing continuous models [179, 180].
Typically, the number of restraints required
for dependable structure prediction was the
lowest for helical proteins (range of N/7),
somewhat higher for o/p type structures, and
[f-proteins required the strongest set of re-
straints. This suggests that the lattice model
described here works better for helical pro-
teins. Perhaps, the proposed description of
main chain conformation and of the short
range interactions is better than desecription
of the side chain packing and the correspond-
ing model of the long range interactions.
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However, it is also possible that a loose defi-
nition of the long range restraints is satisfac-
tory for restricting mutual packing of helices,
while for B-structures more precise restric-
tions are required. Possibly, if some re-
strainis were superimposed on alpha carbons
the predictions of behavior of B-proteins
would improve. This aspect of the restrained
structure prediction technique is now being
explored.

Structure prediction based on evolution-
ary information

It is known that many protein sequences
can be grouped into structurally conserved
families. Often, two proteins have very simi-
lar structures in spite of a very low sequence
similarity [153, 181-184]. This opens a pos-
sibility to exploit evolutionary information in
protein structure prediction [155]. From the
multiple sequence alignment of even margin-
ally similar sequences it is possible to find a
small set of strongly conserved residues.
This could be used in various ways. For ex-
ample, implementation of the evolutionary
information allowed substantial improve-
ment of secondary structure prediction. Rost
& Sander [155] estimated that application of
a successful multiple sequence alignment
leads to about 9% improvement in secondary
structure prediction by a computational
model of neural network as compared to a
corresponding prediction carried out for a
single sequence. This way better than 70%
accuracy of secondary structure prediction
has been achieved [154]. In an implicit way
evolutionary information is also exploited in
the so called inverse folding method [153,
182-185], where structure similarity is de-
tected by threading (and a proper scoring) of
protein sequences trough known structural
templates.

Recently, prediction of protein packing pat-
terns has been attempted using the evolu-
tionary information encoded in sequence da-
tabase [186]. Analyzing correlated mutations
[187] observed in multiple sequence align-
ment it is possible to predict a set of the most
probable side chain contacts. These sparse
side chain contact maps could be then filtered
by a threading-based technique. The purpose

of the threading procedure is to remove some
false predictions and to extract a more self-
consistent set of restraints. The entire meth-
odology, that has been developed recently
[90], can be outlined as follows:

+ (i) Prediction of secondary structure. For
this purpose the Rost & Sander PHD
method [155, 156] that employs multiple
sequence alignment and neural network
technique is used. Only high reliability
predictions are taken into consideration.

#(ii) Prediction of chain reversal regions,
i.e. surface turns (or loops) where
polypeptide chain changes its average di-
rection of propagation. A very accurate
algorithm developed recently is used for
this purpose [188]. Predictions of protein
surface turns override secondary struc-
ture predictions, eliminating a substan-
tial fraction of false predictions and im-
proving the overall accuracy of the secon-
dary structure prediction.

*(iii) Using the same multiple sequence
alignment the correlated mutations
analysis [187]is used to predict side chain
contacts. Again, only the strongest predic-
tions are taken into consideration and all
the predictions that invelve previously
predicted turn region residues are ne-
glected. The aim of this filtration proce-
dure is to restrict the predictions only to
the protein core, where the residue con-
servation is expected to be the highest,
and consequently the side chain contact
prediction the most reliable. The steps
(i-iii) result in a reasonable estimation
pattern of contacts between the strongly
predicted regular elements of secondary
structure (helices and f-strands).

*(iv) Enrichment of the predicted contact
map. Conservative application of corre-
lated mutations analysis leads only to
very few predicted side chain contacts.
These provide seeds for enrichment pro-
cedure. Since there are limited number of
packing patterns of secondary structure
elements in globular proteins, the thread-
ing procedure [90, 153] could be used for
a very dependable detection of the most
plausible fragments of side chain contact
maps (packing patterns) that contain al-
ready predicted contacts. The entire pro-
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cedure leads to five-fold increase of the

number of predicted contacts.

4 (v) Monte Carlo folding simulations with
original force field of the lattice model sup-
plemented with predicted short range (sec-
ondary structure) and long range (pre-
dicted side chain contacts) restraints. This
is done by the simulated thermal annealing
procedure described in the previous sec-
tion.

4 (vi) Clustering of structure prediction and
determination of lowest energy state after
long Monte Carlo isothermal refinement
runs. Here, mirror image folds and mis-
folded structures can be eliminated basing
on their conformational energy.

The above described procedure has been
successfully applied to a set of 16 globular
proteins representing all known structural
classes of single domain proteins (Ortiz, A.
R., Hu, W.-P., Kolinski, A., Skolnick, J., un-
published results). In all cases correct low
resolution (coordinate r.m.s deviation from
the native structures within the range of 46
A) structures have been predicted. The nec-
essary condition for applicability of the above
outlined method is the existence of a suffi-
cient pool (ten or more) of homologous se-
quences. With rapidly increasing number of
known protein sequences this requirement
becomes easy to be met for vast majority of
proteins, The method is, however, relatively
expensive. Many long folding simulations are
necessary in order to select the lowest energy
fold with a high reliability. The current work
focuses on the development of more precise
methods of prediction of secondary structure
elements and their contact maps and on de-
signing a faster lattice algorithm for the
structure assembly. This work is expected to
decrease substantially the computational
cost (now dependable structure prediction for
a 100 residue protein requires about 20 days
CPU of fast work-station) and to improve
accuracy of prediction to a 3—4 A r.m.s.

LATTICE SIMULATIONS IN PROTEIN
DESIGN AND REDESIGN

Computer aided protein design and redes-
ign is as old as old are computational meth-

ods in structural biology [162). The best
known methodology is perhaps the homology
modeling [5, 189], where computer graphics
and molecular modeling tools are used for
relatively limited redesign of known protein
structures [ 190]. This technique is commonly
used in rational drug design and other re-
lated areas. On the other end of the spectrum
of the protein design are theoretical studies
of very simple models of protein-like systems
for which the sequence space could be exten-
sively explored [162, 191].

Applications based on the high coordina-
tion lattice models of proteins have several
features, both above mentioned approaches.
On one hand, rather realistic geometry of
these lattice models enables modeling of
some details of protein structure which are
completely missed in very simple reduced
models. On the other hand, dynamics of
model lattice structures faster by several
orders of magnitude in comparison with the
all-atom models allows for many computa-
tional experiments involving large conforma-
tional changes. In other words, a meaningful
game “what-if” could be played with help of
these models. Below we describe a couple of
example studies which illustrate such kinds
of applications.

De novo design of f-barrel proteins

Even small f-globular proteins have rela-
tively complex folds, as compared with the
o/ff type proteins and especially with the
all-alpha proteins [5]. This could be one of the
reasons why the structure prediction with
the reduced models described here is more
difficult (and less accurate) for B-type pro-
teins. Perhaps, in reality, folding pathways
of B-proteins are more complex than folding
pathways of helical motifs [192]. Helical pro-
teins always have some residual helical
structure in the denatured state, which is
partially consistent with secondary structure
of the native state [193]. Consequently, dur-
ing the folding process the three dimensional
structure can propagate along the scaffolds
provided by already assembled helices. Alter-
natively, larger helical fragments can coa-
lesce and the number of folding possibilities
can narrow rapidly. Early folding intermedi-
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ates are easier to observe in various experi-
ments for helical proteins than for B-type
proteins [194-196].

In order to gain some insight into possible
early folding events of B-type protein folding
and also to better understand limitations of
the reduced models we attempted a de novo
design of several i-type folding motifs. We
focus here on the example of a six member
f-barrel having a G-key folding motif com-
mon for many globular proteins. The design
of this sequence has been intentionally exag-
gerated. The p-strands have an ideal
odd/even pattern of hydrophobic and hydro-
philic residues. Only these amino acids that
have strong or moderate propensity for ex-
tended conformations have been taken into
consideration during the designing process.
After several more or less failed attempts we
arrived at the following sequence [75]:

(Sirand No. 1) Gly-Val-Asp-Val-Asp-Val-

(owrn and strand No. 2) Gly-Gly-Gly-Val-Asp-Val-Asp-Val-

{turn and strand Mo. 3)  -Gily-Gly-Phe-Arg-Phe-Arg-Val-

{turn and strand Mo, 4) Gly-Gly-Gly-Val-Arg-Phe-Arg-Phe-

(turn and strand No. 5} -Glv-Gly-Val-Asp- Val-Asp-Val-

(turn and strand No. 6) Gly-Gly-Gly-Val-Asp-Val-Asp-Val

In the designed structure the strands No. 1,
No. 4 and No. 5 were expected to form the
first f-sheet, while strands No. 2, No. 3 and
No. 6 were supposed to assembly the second
sheet of the barrel. In majority of simulated
annealing Monte Carlo simulations the de-
signed sequence folded into the desired struc-
ture. Misfolded structures were rare, non-re-
producible and could be dismissed basing on
the conformational energy criterion. The
properly folded structures were well defined
(44, 75]. The alpha carbon r.m.s deviation
between pairs of independently folded strue-
tures oscillated between 2.5 and 3.0 A. In all
cases the packing of the hydrophobic core of
the folded structures was well defined with
the same network of interactions between
the strongly hydrophobic Phe side groups.
The overlap between the side chain contact
maps for independently folded structures
was in the range of 70%. This level of packing

1997

uniqueness and the range of the distance
r.m.s deviations are typical for the resolution
of the lattice model. Consequently, it may be
assumed that in the range of the model fidel-
ity the designed sequence folded to a unique
native-like structure.

Several interesting conclusions can be de-
rived from the designing process and from
the folding simulations. First, the successful
design has shown that the model force field
can easily drive a well defined folding process
of relatively complex motifs. Consequently,
at least in the cases of exaggerated se-
quences, the potentials constituting the
model force field must be at least qualita-
tively correct. The minimum of the conforma-
tional energy landscape corresponds to a
unique compact structure. During the de-
signing process it became obvious that it is
not sufficient to have a sequence that favors
the native packing. It was also necessary to
design against alternative folding motifs.
This requirement of the design resulted in a
specific pattern of charged surface residues,
which destabilized possible alternative ar-
rangements of f-strands. Actually, more ef-
fort was directed to the design of the model
protein surface than was necessary to design
its hydrophobic core. The turn residues in the
above listed sequence are all glycines. At-
tempts with more B-turn specific sequences
failed. A plausible explanation is that with
more rigid turns it is difficult to achieve good
consistency between the geometry of these
turns and specific packing of the hydrophobic
core. Flexible Gly-type turns accommodate
more easily some deficiencies (or rather in-
consistencies) of the entire design. Interest-
ingly, similar Gly-based turns have proven to
be the most efficient in recent experimental
design of a monomeric version of ROP [190].
Most likely, the reasons for this rather sur-
prising result are similar in these experimen-
tal studies and in our theoretical design.

Redesign of simple helical folds

The native structure of B domain of protein
A from Staphylococcus aureus is a three helix
bundle [166]. The lattice model has been used
in simulation experiments that aimed for a
sequence redesign that would reverse the
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topology of the native fold. Multiple muta-
tions of the hydrophobic core and the turn
regions have been introduced into the protein
sequence and tested in simulation experi-
ments [89]. All introduced mutations were
rather conservative. Numerous mutations of
the hydrophobic core did not induce the de-
sired change of fold topology, however major-
ity of these mutations destabilized the native
fold. A complex sieve procedure enabled se-
lection of some mutations in the turn regions
that led to the inverted topology of the three
helix bundle. The all atom model has been
reconstructed for the predicted new structure
[89]. A careful refinement procedure showed
that the change in handedness of the turns
induced by the mutations enabled energeti-
cally favorable repacking of the protein hy-
drophobic core.

Another computational redesign experi-
ment [88] involved a retroprotein, i.e. a pro-
tein obtained by reading the protein A se-
gquence backwards. Retroprotein has the
same amino-acid composition and the same
pattern of hydrophobic/polar residues along
the chain. The lattice folding experiments
followed by the all atom rebuilding and re-
finement procedure showed that the retro-
protein had the same fold as the native se-
quence, however with slightly different sec-
ondary structure elements (the length of heli-
ces changed by one or two residues) and
consequently with some, albeit minor, differ-
ences in packing of hydrophobic core. Never-
theless, the packing pattern of the hydropho-
bic core was essentially preserved.

The redesign experiments with protein A
fold have shown that the lattice model and
its force field responded to sequence muta-
tions in an apparently reasonable way. The
predicted structures were consistent with
their all atom models, which have been built
using the restraints extracted from the lat-
tice structures, i.e. low energy structures
have been generated during the refinement
procedure. According to energetical and
structural criteria the new folds had all fea-
tures of a native protein. These predictions
await experimental verification.
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STUDIES OF PROTEIN FOLDING
THERMODYNAMICS

Folding transition of globular proteins is
very cooperative and exhibits several fea-
tures of a first-order phase transition. At the
transition temperature the population of
folding intermediates is negligible [28]. Al-
most all protein molecules are completely
folded or their conformation could be de-
seribed as essentially random. Thus the fold-
ing transition is frequently abbreviated as an
all-or-none process [192]. What kind of inter-
actions could be responsible for such striking
behavior of a rather small physical system
consisting of only a few thousand atoms?
Computer simulations could bring valuable
insight into this puzzling problem. As it is
known, the protein folding process is very
slow [192]. It takes milliseconds to a second
to assemble a native-like structure. Full
atom models are capable of covering only a
very fast relaxation of protein structure with
characteristic time range of at most several
nanoseconds. Even the equilibrium Monte
Carlo simulations employing reduced models
described here are not efficient enough to
provide guantitative characteristics of the
folding thermodynamics. In a single long iso-
thermal Monte Carlo run at the folding tem-
perature it is possible to observe but few
folding transitions. At lower temperatures
the sampling process slows down even more,
due to many intervening barriers on the con-
formational energy landscape. Consequen-
tly, relative population of various states is
difficult to estimate.

A couple of years ego, Hao & Scheraga
[109-111] proposed the so called entropy
sampling Monte Carlo method (ESMC) for
investigation of thermodynamics of protein
models. This method has been previously
used by Lee [197] in studies of a simple Ising
model. A general idea of ESMC method is
similar to the multicanonical MC technique
of Berg & Neuhaus [198] which was recently
employed by Hansmann & Okamoto [199] in
studies of folding of several small peptides.
ESMC method generates a nonequilibrium
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ensemble of conformations. Instead of energy
criterion used in Metropolis scheme, ESMC
is controlled by entropy, or rather density of
states. Consequently, the energy barriers
could be easily surmounted by the sampling
process. Moreover, the ESMC method is
quasi deterministic. The results from series
of simulations could be always used to im-
prove estimation of conformational entropy
in the following simulations. In a limit of
sufficiently long series of runs an arbitrary
accuracy level could be in principle achieved.
Single series of simulations lead to a full
thermodynamic description (entropy, energy
and free energy) in a broad range of tempera-
tures. A disadvantage of the ESMC lies in its
relatively high computational cost.

Hao & Scheraga [109, 110] employed the
ESMC method in studies of a chess knight
model of a simple f-barrel protein. Due to a
simple design of the protein model, with a
fixed conformation of the side chains with
respect to the main chain backbone, the na-
tive state was represented by a single, well
defined conformation. Various sequences of
amino acids have been studied assuming a
simple scheme of short range and long range
interactions. They showed that some se-
quences with well defined pattern of hydro-
philic and hydrophobic residues exhibited a
first order folding transition with very high
free energy barrier between the folded and
the random coil states. More random se-
quences undergo continuous transition. It
has been shown that the all-or-none transi-
tion of model protein is of entropic origin. The
changes in the system conformational en-
tropy were the smallest between energy lev-
els corresponding to the vicinity of the tran-
sition state. It has been also shown that the
main contribution to the folding cooperativ-
ity comes from tertiary interactions. Essen-
tially, the short range interactions contrib-
uted only to increased stability of the folded
state. These findings provided a very con-
vincing picture of protein folding thermody-
namies.

There is a substantial body of experimental
evidence, and theoretical arguments that the
final, however the slowest, stage of the pro-

tein folding process is associated with a
structural fixation of the side chain packing
[200-203]. The transition state, so called
molten globule [203], has overall topology of
the native fold and has most of the native
secondary structure, it is, however, rather
mobile and swollen as compared to the native
state. The model studied by Hao and Scher-
aga neglected conformational freedom of the
side chains, and the conformational entropy
of their model main chain was probably un-
derestimated. Consequently, the issue of the
nature of the molten globule state could not
be properly addressed. This inspired our
ESMC studies on higher resolution reduced
model of proteins. As an example we used the
designed Greek-key B-barrel sequence [75]
(described above) and the knowledge based
potentials comprising short range interac-
tions, cooperative model of hydrogen bonds,
and tertiary interactions. We investigated
three models of tertiary interactions [44, 78].
The first had only one-body burial energy and
pairwise interactions. The second model of
the tertiary interactions has been supple-
mented by the pseudo four-body term de-
scribed in previous sections assuming |k |=
3 and | k|= 4 repeat period for packing coop-
erativity. In the third model the cooperative
tertiary interactions accounted additionally
for |k|= 1 repeat of the side chain packing.
The secaling of the relative strength of the
pairwise interactions in these three models
has been adjusted in such way that the bal-
ance between tertiary and secondary interac-
tion was the same in all cases. Consequently,
the estimated folding temperature was al-
most the same for all three models. The
results of the ESMC experiments could be
summarized as follows:

*+(i) In all cases the lowest energy states
have Greek-key native-like conformation.
The main chain conformation and pack-
ing of the side chains were the same at
low energy region for all three models of
interactions.

#* (ii) At the same time the folding transition
was continuous for the first model of ter-
tiary interactions, much sharper for the
second model and clearly all-or-none for
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the third model, with a high free energy
barrier between the folded and unfolded
state.
4 (iii) The transition state (at the free energy
maximum) had all qualitative features of
molten globule state, as outlined above.
As in Hao & Scheraga studies [109-111] we
found that the first-order folding transition
is of entropic origin. It was necessary to
account for tertiary multibody interactions in
order to reproduce the all-or-none folding
transition. Exaggerated design of the protein
{an ideal hydrophobic pattern and strong
B-type secondary propensities of amino-acid
sequence) and a strong cooperativity of the
hydrogen bond network did not result in a
sufficiently cooperative transition in the ab-
sence of the multibody terms. What is then
the mechanism associated with the multi-
body interactions that leads to the coopera-
tive all-or-none transition? As mentioned be-
fore, the characteristics of the folded state
were the same for all models. In the random
coil state the tertiary interactions are weak
regardless of model of interactions. However,
the multibody interactions caused relative
energetic destabilization of partly folded
states, decreasing their thermodynamic
probability and consequently increasing the
free energy gap between the folded and un-
folded states. Recent extensive simulations
of globular proteins within the framework of
all atom potentials suggest that analogous
multibody interactions could be also impor-
tant in detailed molecular models.

CONCLUSION

High coordination lattice models of protein
conformation described here allow to study
protein systems at moderate resolution.
Computational speed of the lattice algo-
rithms enables simulation of the entire fold-
ing process. The force fields of these lattice
models are knowledge based. Potentials of
mean force [204] have been derived from
statistical analysis of known protein struc-
tures. Currently, the model force field is spe-
cific enough to fold very simple globular pro-
teins using sequence of amino acids as the
only protein specific input data. Applicability
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in protein structure prediction can be consid-
erably extended when evolutionary informa-
tion of the model is available or/and when
sparse distance restraints are available from
experiment. In a semigquantitative way the
lattice models reproduce the dynamic and
thermodynamic properties of globular pro-
teins. Consequently, the methodology pre-
sented here can be considered a useful alter-
native or a complementary approach to the
standard molecular modeling tools in struc-
tural studies of proteins, studies of long time
protein dynamics and in computer aided pro-
tein design and redesign.
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