cta
Biuchimica
R}Inni'ca

Minireview

Vol. 44 No. 3/1997
467476

QUARTERLY

The impact of the amino-acid sequence on the specificity
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The review presents specific interactions that oceur in complexes of Cu(Il)
ions with peptides composed only of amino acids with nonco-ordinating side
chains. Three classes of such peptides are discussed. The first type (NSFRY
analogues) is characterised by the presence of a specific combination of bulky
and aromatic residues, leading to a formation of multiple weak interactions
around Cu(Il) that resuli in an extremely high stability of complexes. The
second class is composed of complexes of vasopressins and oxytocins, achieving
superstability through a pre-conformation in the peptide molecule. The third
group are oligopeptides containing one or two proline residues. These peptides
form exotic macrochelate loops with Cu(Il) in a result of the break-point effect
of Pro residues. Particular emphasis in the review was given to stability
constants of complexes, compared to oligoglycine or oligoalanine peptides.

Peptides are very specific and effective li-
gands for a range of metal ions. They contain
a variety of potential donor atoms and the
complexes formed can exist in a variety of
conformations. Among these metal ions,
Cu(II) has been the most widely studied and
seems to enter the most diversified range of
chemical interactions [1].

Recently, most of the attention of bioinor-
ganic chemists working on metallopeptides
has been devoted to systems containing spe-
cific co-ordinating side chains, and, in par-
ticular, Xaa-Yaa-His sequences modelling
the N-terminal binding site of serum albu-
min [2-5].

Peptides with nonco-ordinating side-chains
have only three or four types of donor centers
available for a metal ion. They are: amino or

amide nitrogen and carbonyl or carboxyl oxy-
gens. In general, such peptides behave like
tetraalanine (Fig. 1). A number of variations,
however, can occur when particular residues
are present in the peptide sequence. For
example, when the residue contains an aro-
matic ring (Phe or Tyr) hydrophobic interac-
tions or ring stacking can influence the sta-
bilities of the complexes formed as well as
their structures. The interactions within a
peptide molecule may stabilise a particular
peptide conformation which in turn may have
an essential influence on metal-peptide co-or-
dination equilibria, both in thermodynamic
and structural sense. On the other hand, par-
ticular metal-assisted conformations may be of
physiological importance, e.g. when a peptide
hormone interacts with its receptor.

Abbreviations: ANF, atrial natriuretic factory; AVP, arginine vasopressin; OXT, oxytocin.
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Figure 1. The stepwise complex formation between Cu(Il) and tetraalanine.

The aim of this short review is the presen-
tation of specific interactions in copper(II}-
peptide systems, like unusual binding modes
or very high complex stahility that result
from interactions other than the direct co-or-
dination of side-chain donors. In general,
peptides with at least four amino-acid resi-
dues will be discussed. For a review of co-or-
dination properties of shorter peptides see
[6].

Cu(II}-COMPLEXES WITH PEPTIDES
COMPOSED OF GLYCINE AND
ALANINE

The most important donor centre in such
peptides is the N-terminal nitrogen, which is
usually a primary NHs group. The N-termi-
nal amino nitrogen acts as an anchoring
binding site, preventing metal ion hydrolysis.
The adjacent carbonyl oxygen is the second

Table 1. Values of log *K* for Cu(Il} complexes of simple tetra- and pentapeptides and

Met-enkephalin.

1N

Peptide 2N aN 4N Ref.
Gly-Gly-Gly-Gly -2.89 -8.39 -1528 -24.57 [7]
Ala-Gly-Gly-Gly -2.89 -B.75 -16.73 —24 .99 [9]
Ala-Ala-Ala-Ala —3.36 -8.58 -16.22 —25.48 [10]
Ala-Ala-Ala-Ala-Ala-NHz -3.11 8.70 ~16.44 -24.41 (111
Gly-Gly-Gly-Gly-Gly -2.66 -8.76 -15.76 -23.90 9]
Ala-Gly-Gly-Gly-Gly ~2.58 -8.58 ~15.58 -23.79 9]
Gly-Gly-Gly-Gly-Ala -2.63 8.64 -15.69 -23.94 [9]
Tyr-Gly-Gly-Phe-Met =2.86 -3.01 15.13 -23.62 [18]

"For notation and definitions of constants see Annex.
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donor completing the chelate ring [7]. Asthe Cu-N" bonds, until eventually a ICuH_aL]Z_'
pH is raised, the Cu(Il) ion is able to depro-  species (4N complex) is formed at about pH
tonate successive peptide nitrogens, forming 9. Figure 2a presents a corresponding species
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Figure 2. Species distribution curves for Cu(lIl) complexes with selected peptides (0.001 mol dm™>
peptide and Cu(ll)); a: (—) GGGG, (- - -) GGGGG; b: (—) AAAAA-NHs, (- - -) NSFRY-NHgz; c: (—) AVP, (- -
-) Ala-AVP; d: (—) GPPGG, (- - -) GPGPG; A = CuHL, B = CuL, C = CuH,)L, D = CuH3L, E = CuH 3L, F =
Culg.
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Tahle 2. Values of log *K for Cu(ll) complexes of the analogues of the atrial natriuretic factor (ANF)

pentapeptide

Peptide 1N 2N 3N 4N Ref.
NSFRY-NHz -1.93 -6.91 13.35 2008 [11]
ASFRY-NH2 -3.36 -8.26 -15.55 =21.52 [21]
NAFRY-NHz -2.23 ~T7.40 —14.24 =20.59 [21]
NSARY-NH: -2.07 -6.97 -13.93 —20.56 [21)]
NSFAY-NH2 -2.33 -71.24 -14.31 -20.88 [21]
NSFRA-NH2 -2.84 -1.56 -14.65 -21.75 [21]
NSFRY-OH 1.82 —6.89 -14.06 —20.47 [21]
AAAAA-NH2 -3.11 450 -16.44 2441 [11]

distribution diagram, and Fig. 1 provides the
structures of particular complexes. Formulae
and constants used throughout the text are
explained in the Annex. The formation of
stable 5-membered chelate rings by consecu-
tive nitrogens is the driving force of the co-
ordination process, lowering the pK value of
the first amide nitrogen by as much as 10 log
units [7, 8]. The deprotonations of particular
amide nitrogens are well separated from
each other in the simple members of this
group of peptides, like tetraalanine. This in-
dicates the lack of co-operativity in the bind-
ing process.

Table 1 contains protonation-corrected sta-
bility constants for Gly- and Ala-containing
tetra- and pentapeptides. All-glycine pep-
tides form stronger complexes than their
alanine counterparts. Alanine methyl substi-
tuent is not bulky enough to directly interfere
with the complex formation. Apparently, the
flexibility of Gly residues reduces strain in
chelate rings and thereby stabilises the com-
plex. The extension of the peptide chain with
an additional residue results in an increase

of stability of the final 4N complex at the
expense of the 3N species [7, 9-11]. This
interesting effect has been interpreted as
evidence for the presence of a particular con-
formation of the C-terminal part of the pep-
tide in the 4N complex, stabilized indirectly
by Cu(Il) [12]. Unfortunately, the data on
complexes of still longer Gly or Ala peptides,
that might shed more light on such phenom-
ena, are not available in the literature,

EFFECTS OF AROMATIC AND
BULKY SUBSTITUENTS

Numerous studies on complexation of
Cu(IT) ions by aromatic and aliphatie, hydro-
phobic amino-acids and small peptides con-
taining them indicated an increased complex
stability through: (i) direct interaction be-
tween the Cu(Il) ion and n-electron density
of the ring, (ii) aromatic stacking, or (iii)
hydrophobic interactions [1, 13-15]. The
magnitudes of the effects observed were,
however, moderate, seldom exceeding one log

Table 3. Values of log *K for Cu(ll) complexes of arginine vasopressin (AVP) and its analogues

Log *K 1N 2N

Ala-AVP B87 -804
OXT -2.14 -7.94
AVP 2.48 -8.26
p-Val'-AVP -2.68 -8.08

3N 4N Ref.
-15.42 —24.68 lﬁ-.'i;.l_—
-14.24 -21.34 [23]
-14.36 ~20.51 [22]
-13.75 -22.17 [22]
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Figure 3. Selected structures of Cu(ll) complexes
of proline peptides; a: the CuH.1L. complex of
Gly-Pro-Gly-Gly; b: the CuH.L complex of Gly-
Pro-Pro-Gly-Gly; ¢: the Cull complex of Gly-Pro-
Gly-Pro-Gly.

unit of stability gain. In longer peptides, like
Phe-Phe-Phe and Phe-Phe-Ser-Asp-Lys [16],
Tyr-Tyr-Tyr [17], or Tyr-Gly-Gly-Phe-Met
(Met-enkephalin) [18] no stabilisation by aro-
matic residues was seen at all. The n inter-
action, although clearly seen in Cu(Il) com-

plexes of oligopeptides containing a single
aromatic ring [19], contributes only margin-
ally to their stability [20].

The C-terminal pentapeptide of ANF (atrial
natriuretic factor, a blood pressure-regulat-
ing peptide), Asn-Ser-Phe-Arg-Tyr-NHs,
binds Cu(Il) ions with a very high affinity
{see Table 2 for stability data and Fig. 2b for
speciation). The stability of the 4N complex
of this peptide is only slightly lower from that
of the albumin-like peptides, although the
donor set is identical to pentaalanine and
there is no pre-organisation present in the
free peptide [11]. A subsequent study, em-
ploying systematic substitutions of individ-
ual residues with alanines, indicated the ad-
ditivity of contributions of all five residues,
as well as the N-terminal amide, to the sta-
bility gain [21]. The very efficient stabilisa-
tion of the 4N complex by the C-terminal
residues (Arg and Tyr) is particularly sur-
prising, as these residues do not interact
directly with the Cu(ll) ion, and no such
effect was seen in the apparently similar
Met-enkephalin [18] (cf. Tables 1 and 2).

The results of all these studies suggest that
the complex-stabilising effects of non-bond-
ing residues are very specific with respect to
the sequence and/or neighbourhood of par-
ticular bulky residues. A Tyr-5 side-chain
may have a strong and additive (so appar-
ently not depending on sequence) contribu-
tion to stability in the ANF peptide. The same
Tyr-5 has no effect at all on the corresponding
complex with Met-enkephalin, thus suggest-
ing that, in some more intricate sense, the
sequence was crucial in the ANF peptide,
after all.

PRE-CONFORMATION IN THE
PEPTIDE MOLECULE

Arginine vasopressin (AVP) and oxytocin
(OXT), important neurohypophyseal hor-
mones, are nonapeptides. Their molecules
contain a loop resulting from the disulphide
bridge between cysteines in positions 1 and
6. We have found that this loop provides an
excellent pre-formed co-ordination site for
Cu(Il) ions, with the stability increase for the
4N complex of about 4 orders of magnitude
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Table 4. Values of log *K for Cu(Il) complexes
of selected peptides containing one or two
proline residues

Log *K IN 2N Ref.
FPGG -2.51 -5.29 (30]
GPGF -3.18 =104 [30]
FGPF -2 87 -7.50 [31)]
FGPY -2.74 =746 [F1]
GPPGG -2.92 -9.66 [33]
EPPGG —-2.79 -9.99 [33]
GPGPE -1.96 [33]
GPGPQ —2.56 [33]
GPHEPG -291 =937 [33]
RPKEPQ =282 —5.28 [33]
Substance P -2.93 9.55 [33]

over the complexes with oligoalanines having
the same (amino + 3 amides) donor set [22,
23] (Table 3). This effect stems from a par-
ticular conformation of these hormones,
locked into a ring by the disulfide bridge.
Positions of the first 4 nitrogen atoms are
apparently suited for Cu(Il) co-ordination.
An extension of the peptide at the N-termi-
nus by a single Ala residue completely re-
moves the stabilisation of all complexes [23]
{Fig. 2e), and a substitution of an L-amino
acid in position 4 of AVP with a D-residue
decreases specifically the stability of the 4N
complex [22]. This sensitivity of AVP and
oxytocin to substitutions further reveals the
subtlety of indirect conformational interac-
tions between Cu(Il) and peptides.

PROLINE BREAK-POINT

Proline is the only natural amino acid pos-
sessing a secondary amine, Prolyl residue
introduced into the peptide chain in position
2, 3 or 4 does not have an amide proton that
might be displaced by Cu(ll). As a conse-
quence, the stepwise co-ordination of con-

1997

secutive amide nitrogens is no longer possi-
ble. Moreover, the Pro residue increases the
propengity of the peptide chain to bend. We
have coined a term “break-point” [24] for this
phenomenon and investigated numerous ex-
amples of exotic co-ordination modes of
Cu(Il) in proline-containing peptides. The
novel and important feature of co-ordination
of prolyl peptides is the encouragement of
formation of large macrochelate loops, with
Cu(II) bound to the amino group and a dis-
tant donor. The latter might be either a
main-chain amide or a donor group of a nor-
mally nonco-ordinating side chain, like the
Tyr phenolate, the e-amine of Lys or even the
lateral carboxylate of the C-terminal glu-
tamic acid.

In particular, in Pro-2 tetrapeptides, when
Tyr or Lys are absent, the amide nitrogen of
the fourth residue co-ordinates to Cu(Il).
When Tyr or Lys are present in position four,
then their side-chains are involved in co-or-
dination. If, however, the formation of an
appropriate macrochelate is impossible for
sterical reasons (e.g. Tyr-1 or Tyr-3), then
Cu(Il) dimers with the (amino + phenolate)
binding predominate, utilising a bent peptide
molecule as a bridge between cupric ions.
Pro-3 tetrapeptides behave similarly. Their
complexes are more stable than Pro-2 species
because, in their case, the Cu(II) ion is co-or-
dinated at the N-terminus by the (amino +
amide) donor set, with the macrochelate-
forming group occupying the third co-ordina-
tion site [25-31].

Pro-2-Pro-3 pentapeptides form the most
stable macrochelates in their class (Table 4).
This is due to a very rigid conformation im-
posed by these residues on the peptide, in-
creasing the entropic contribution to complex
stability [32, 33]. The exotic structure of the
Gly-Pro-Pro-Gly-Gly complex of Cu(II) is pre-
sented in Fig. 3 and its speciation in Fig. 2d.

The behaviour of the Pro-2-Xaa-3-Pro-4
moiety in pentapeptides is the most unusual
of all: in Gly-Pro-Gly-Pro-Gly there is no
macrochelate at all. Only weak, amino-bound
mono and bis complexes were found, with no
evidence for e.g. C-terminal carboxylate co-
ordination (Fig. 2d). However, in Gly-Pro-
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Gly-Pro-Glu, the lateral carboxylate binds
Cull1l), as evidenced both by spectroscopy and
potentiometry (increase of complex stability
by 0.6 log units, see Table 4). A Lys residue
introduced in position 3 of such a pentapep-
tide readily co-ordinates, forming yet another
macrochelate [33].

The potential importance of these interac-
tions for the biological function of proline-
containing neurchormones has been pre-
viously postulated [34]. The bent conforma-
tions assumed by many proline peptides
upon Cu(ll) binding through macrochelate
formation resemble P-turns, which are be-
lieved to be essential for receptor binding by
Pro-containing neurchormones and neuro-
modulators, like casomorphins or Substance
P. In this way, Culll) co-ordination at the
receptor may activate these bioligands.

A note on the mechanism of complex stabi-
lisation

The differences in stabilities of metal com-
plexes of peptides with the identical set of
donors reflect the differences of the rate of
nucleophilic attack of protons on the metal-
bound nitrogens [35]. It is believed that the
shielding exerted by bulky amino-acid resi-
dues slows down this proton-assisted hy-
drolysis and thereby stabilises the complex,
and this has been indeed shown for the Ni(II)
complex of Val-Tle-His-Asn [4]. The examples
presented above indicate, however, that the
bulkiness of a side-chain is not sufficient to
stabilise the Cuf(Il) binding. Also, direct &
interactions between aromatic rings and the
metal ion have only limited effects on com-
plex stability in longer peptides (although
they may be erucial conformationally). Com-
plexes of Cu(ll)} with oligopeptides, even in
the absence of side-chains capable of direct
participation in the binding, appear to be
governed by very subtle factors, which are far
from being fully explained. The idea emerg-
ing e.g. from our studies of the ANF peptides
[11, 21] is the concept of “packaging” of par-
ticular side chains in specific sets, to provide
global shielding to Culll), rather than spe-
cific effects, that would reproducibly mani-
fest themselves for particular amino acids in
particular positions.
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ANNEX

1. Protonation reaction of a ligand (1) below
can be quantitatively described by the equi-
librium constant, K, as well as by the stabil-
ity constant, [i:

4~ +H' {—Kl—aI-l'L_

[HL™]

=K _—.
Pr=f = o

In a general case of a molecule binding i
hydrogen ions:

[H;L]

T

2. Similar constants can be defined for met-
al ion co-ordination:

M®* + HoL 2L MHoI**

[MHoL?"]
M3 1[H* 1?[L]

Br=
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In general, for a complex containing i metal Reaction of a metal ion with a ligand can
ions, j hydrogen ions and k ligand molecules: be written as a proton competition reaction:

[M;H Ly

i o M®* + H, Lo [MH;LI@-2+" 4
(M1 H P LI

Bik =
+{n-j)H*

Note that for reactions involving proton
displacement from amide groups by a metal
ion j can assume negative values. This is
because amide protons do not dissociate
freely, and therefore cannot be introduced
into the ligand formula. log *K = log(B(CuH;L)) — log(B(HL)).

Equilibrium constant for such reactions is
denoted *K. Values for *K constants can be
easily derived from stability constants:



