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Synthesis of y-chaconine and y-solanine are catalyzed
in potato by two separate glycosyliransferases:
UDP-glucose:solanidine glucosyltransferase and
UDP-galactose:solanidine galactosyltransferase
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UDP-glucose:solanidine glucosyltransferase and UDP-galactose:solanidine
galactosyltransferase from cytosol of potato sprouts were partially separated
by Sephadex G-100 and Q-Sepharose chromatographies, proving the existence
of different glycosylation systems in biosynthesis of a~chaconine and -solan-

me.

Steroid glycoalkaloids are nitrogen-con-
taining secondary plant metaholites found in
many plants. These compounds have been
reported to be potentially toxic for animals
and human beings [1, 2]. On the other hand,
they are involved in a plant self-defence
against pathogenic organisms and insects
[3-7].

The potato plants contain two steroid gly-
coalkaloid series (Scheme 1) a-chaconine and
a-solanine, which have the same aglyco-
ne—solanidine, but differ in the structure of
sugar chain.

Until now, very little has been known about
the mechanism and regulation of biosynthe-
sis of the glycoalkaloid sugar chain. There
are only few reports on the enzymes catalyz-
ing glucosylation of steroid alkaleids in po-
tato [8-14), eggplant [15] and Selanum lac-
ciniaturn [16]. Most of them refer to the
formation of solanidine glucoside, a sug-
gested precursor of a-chaconine. This gluco-
sylation is catalyzed by a specific, cytosolic
UDPGIe:solanidine  glucosyltransferase,

found in potato leaves, tubers and sprouts.
The ability of erude enzyme preparations
from potato [10-12], eggplant [15] and to-
mato [17] to synthesize solanidine, solaso-
dine and tomatidine galactoside, respec-
tively, in the presence of UDP-galactose has
also been demonstrated. However, until now
UDP-galactose:solanidine galactosyltrans-
ferase activity has not been separated from
UDP-glucose:solanidine glucosyltransferase
activity in potato.

EXPERIMENTAL

Enzyme preparations. Sprouts of 2-3-
week-old potato (Solanum tuberosum L., cv
Irys) plants (100 g of fresh wt.) were homoge-
nized with 200 ml of ice-cold 0.02 M Tris/HCI
buffer, pH 7.3, containing 10 mM 2-mercap-
toethanol (buffer A). The homogenate was
filtered through cheesecloth and centrifuged
at 105000 x g for 1.5 h. The 105000 < g
supernatant (crude cytosol fraction) was
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added dropwise to cold (-20°C) acetone (1:10,
v/v) and the “acetone powder” was obtained
as previously desecribed [11].
Chromatography of glycosylirans-
ferase. The cytosolic enzyme preparation
(“acetone powder” from the 105000 x g super-
natant) was suspended in buffer A (10
mg/ml) and centrifuged at 20000 x g for 10
min. The supernatant was applied onto the
Sephadex G-100 (1 em x 40 cm) column and
eluted with the same buffer at a flow rate of
0.4 ml/min. Fractions of 2.7 ml were collected
and glycosyltransferase activities were as-
sayed in each fraction. Fractions exhibiting
enzymatic activity (12—-20 ml) were combined
and then applied onto a Q-Sepharose ion-ex-
change column (1 cm x 3 cm), previously
equilibrated with buffer A. The unbound ma-
terial was washed out from the eolumn with
22 ml of buffer A at a flow rate of 0.4 ml/min
and active fractions were eluted by running
a gradient up to 0.3 M NaF in buffer A for
100 min at the same flow rate. Fractions of
3.0 ml were collected, dialyzed overnight
against buffer A and the glycosyltransferase
activities were assayed.
Glycosyliransferase assays. The stand-
ard reaction mixture contained in a total
volume of 0.52 ml: 0.5 ml of the fraction
eluted from the Q-Sepharose column; 10
pmol Tris/HC1 (pH 7.3), 5§ nmol 2-mercap-

o

I R=-H
II R=-§-D-Galp
Il R=--D-Glcp
_=(2-1)-x-L-Rhap
IV R=-8-D-Galp
== (3-31)-5-D-Glcp
_>(2-1)-a-L-Rhap
v = g-D-5
R=-f- l"'“l]'“":-ll- (d-1)-a-L-Rhap
Scheme 1. Structures of solanidine (2585,265-80-
lanid-5-enin-3p-ol; I), its 3f-D-galactopyranoside
(y-salanine; II) and 3[-p-glucopyranoside (}-cha-
conine; IIT), a-solanine (IV) and t-chaconine (V).

toethanol, 25 nmol solanidine in 0.01 ml nf

ethanol and UDP-{ "mglmm (2.2 x 10°
d.p.m.,0. 35 nmol) or UDP-[* C]gﬂla{:tnse{E 2

% 10° d.p.m., 0.37 nmol) in 0.01 ml of 50%
ethannl. Once the labelled UDP-glucose or
UDP-galactose was added, the reaction was
run at 30°C for 2 h and then stopped by
adding 1 ml of methanol and heating for 3
min on a beoiling water bath. Subsequently,
samples were extracted as previously de-
scribed [13]. The samples were air-dried and
applied on silica gel plates and developed
with chloroform/methanol/28% NHjz agq.
(65:35:2, by vol.) as a solvent system. The
chromatographic mobilities of radioactive
products were compared with those of: so-
lanidine 3-0-B-D-monoglucopyranoside (Ry
0.43) and solanidine 3-O-B-D-monogalac-
topyranoside (Rp 0.38) as reference com-
pounds. Labelled compounds were localized
by autoradiography and eluted from silica gel
with methanol containing 0.1% NHj aq. Ra-
dioactivity was measured as previously de-
scribed [11].

RESULTS AND DISCUSSION

A partly lipid-depleted cytosolic enzyme
preparation (“acetone powder” from 105000
% g supernatant) from potato sprouts was
found to be able to synthesme solanidine
monogalactoside (1.37 x 10% d. p m.) as well
as its monoglucoside (6.26 x 10%4d. p m Jinthe
presence of solanidine and UDP- L C]galac
tose in the incubation mixture. On the other
hand, when the same enzyme preparation
was incubated with solanidine and UDP-
l“C]glumse as a sugar donor, only formation
of solanidine monoglucoside (20.92 x 10
d.p.m.) was ocbserved.

The synthesis of solanidine monoglucoside
on incubation with UDP-galactose as a sugar
donor may suggest that the enzyme prepara-
tion contained UDP-glucose 4’-epimerase
which transforms UDP-galactose into UDP-
glucose, and this second nucleotide-sugar is
then utilized for solanidine glucosylation.

Much lower incorporation of the radioactiv-
ity into solanidine glycosides when UDP-
galactose was a donor of sugar moiety in
comparison with radioactivity incorporated
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into solanidine glucoside in the presence of
UDP-glucose was also observed with the po-
tato tuber enzyme [10, 12). However, o-so-
lanine and o-chaconine occur in potato
sprouts in comparable amounts [18], so it
could be expected that their precursors (i.e
solanidine galactoside and solanidine glu-
coside) are synthesized with a similar yield.
The evident differences in the apparent effi-
ciency of selanidine glucoside and solanidine
galactoside formation could be explained by
a higher lability of solanidine galactoside, or
by a possible partial inactivation of galacto-
syltransferase during the separation proce-
dure. In fact it has been shown that so-
lanidine galactoside is hydrolyzed at a much
higher rate than solanidine glucoside by hy-
drolases present in cell-free preparations
from potato [19, 20]. However, this can not
account for the observed differences since
during incubation of unlabelled solanidine
glalactnside (54 nmol per sample) with UDP-
['4Clgalactose radioactive solanidine gly-
cosides were formed at a very low rate (0.73
x 10° d.p.m.). This implies the presence of a
single enzyme with different affinity towards
UDP-glucose and UDP-galactose, or the
presence of two separate enzymes,

The loss of solanidine galactosylation activ-
ity during the purification of the UDP-glu-

cose:solanidine glucosyltransferase [14] im-
plies the latter possibility.

In an attempt to separate these two glyco-
syltransferase activities, a two step proce-
dure, involving gel filtration on Sephadex
G-100 and ion-exchange chromatography on
Q-Sepharose, was undertaken.

Figure 1 presents the result of chroma-
tographic fractionation of crude cytosolic en-
zyme on Sephadex G-100 column. In each
fraction the glycosyltransferase activities
were assayed in the presence of solanidine
and labelled UDP-galactose or UDP-glucose.
A single activity peak (with apparent molecu-
lar mass of about 50 kDa) of galactosyl- and
glucosyltransferase activities was found. A
single glycosyltransferase activity peak was
also reported by Bergenstrihle et al. [12] for
the enzyme from potato tubers. However,
these authors reported on the formation of
only solanidine galactoside in the presence of
UDP-galactose. It seems that those discrep-
ancies between the results of Bergenstrihle
et al. [12] and our data may be due to differ-
ent conditions of separation of the reaction
products by TLC chromatography. The Rp
values for solanidine glucoside and its galac-
toside in our experiments were (.43 and 0.38,
respectively, which allowed to separate these
two glycosyltransferases activities while the
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3 Figure 1. Chromatography of
s 4t crude cytosolic enzyme prepara-
3 tion from potatoe sprouts on
a] e Sephadex G-100 column.
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were measured in the presence of
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difference between the corresponding values
reported by Bergenstrihle et al. (0.76 and
0.75, respectively) was too small to distin-
guish between those activities.

Further purification of the fraction collected
from Sephadex G-100 column by ion-ex-
change chromatography on Q-Sepharose re-
sulted in a partial separation of the two

glycosyltransferase activities in the presence
of UDP-galactose as a sugar donor (Fig. 2B).
The first peak is ascribed to the formation of
solanidine glucoside and the second to so-
lanidine galactoside. In the presence of UDP-
glucose as a sugar donor only the single activity
peak, corresponding to the formation of so-
lanidine glucoside, was observed (Fig. 2A).
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Figure 2. Chromatography of

. ~n the enzymatically-active frac-
_-_-..n-=lf'£!?‘?f PR W 1 .\\‘EJ——WI:FE:'J"!—H tions from Sﬂlﬂlﬂdﬂl G-100 on
1 3 5 7 9 11 13 15 17 Q-Sepharose column.
Fraction number Legend as in Fig. 1.
Table 1. Effect of some factors on glycosylation of solanidine by eytosolic enzyme preparation from
potato sprouts.
For details see Methods.
S Nhariapts- Formation of
Effector ethanal solanidine galactoside solanidine glucoside
{10 mM)
(d.p.m. x 1079 (%) (d.p.m, x 1074 i%)
Control - 2.7 100 41.3 100
None - 0.5 21 34.4 83
MgClz (1 mM]) + 2.6 96 409 99
CaClz (1 mM) + 28 104 42.1 102
EDTA (1 mM) + 2.7 100 41.7 101
NaF (0.5 M) + 1.2 44 14.5 35
Tritom X-100 (0.05%) + 15 58 33.1 BO
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In contrast to numerous other glycosyl-
transferases of plant origin [21], solanidine
glycosylating enzymes failed to be stimulated
by divalent metal ions, Mg®* and Ca®*, The
fact that some divalent metal chelators, e.g.
EDTA, were without effect on either enzyme
activity, confirmed the lack of requirement
for metal cofactors. Potato glycosyltrans-
ferases (i.e. galactosyltransferase and gluco-
syltransferase) were inhibited by 0.5 M NaF
and 0.05% Triton X-100 but stimulated by 10
mM 2-mercaptoethanol (Table 1).

The results presented testify to the oceur-
rence of two different glycosyltransferases in
the cytosolic fraction from potato sprouts, i.e.
UDP-glucose:solanidine glucosyltransferase
catalyzing the formation of y-chaconine (so-
lanidine glucoside) and galactosyltrans-
ferase synthesizing y-solanine (solanidine
galactoside) in the presence of solanidine and
UDP-galactose. This means that at least the
first reactions in the synthesis of sugar
chains in a-chaconine and o-solanine can be
independently regulated.
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