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The process of the host-plant recognition by rhizobia is complex and multi-
step. The interaction between legumes and microorganisms results in the
induction of the root nodule. This symbiotic interaction is highly host-specific.
Bacteria within nodules fix atmospheric nitrogen. This process is of immense
ecological and economic significance. The subject of this presentation is the
molecular mechanism by which the bacterium determines its host-specific
characteristics. First flavonoids secreted by the plant roots induce the tran-
scription of bacterial genes involved in nodulation, the so-called nod genes. This
leads to the next step of the signalling system, i.e. the production and secretion
of lipo-oligosaccharide molecules by rhizobia. These signal molecules have
various discernible effects on the roots of the host leguminous plants. The
bacterial nodulation factors were isolated and structurally identified as substi-
tuted and N-acylated chitin oligosaccharides. These prokaryotic signals play a
key role in the symbiosis by controlling the host specificity of the bacteria. They
constitute a new class of signalling molecules able to elicit nodule organogene-
sis in leguminous plants in the absence of bacteria. More recent studies impli-
cate involvement of root cell membrane depolarization and ion selective chan-
nels in the communication processes that initiate nodule formation.

Bacteria belonging to the genera Rhizo-
bium, Bradyrhizobium and Azorhizobium,
collectively called rhizobia, are able to invade
the roots of their leguminous host plants
where they trigger formation of a new organ
called the root nodule. In these root nodules
a differentiated form of rhizobia, the bac-

teroid, is able to fix atmospheric nitrogen and
deliver it efficiently to legumes, among them
to agriculturally significant crops. The
amount of nitrogen biologically fixed sur-
passes the quantity of nitrogen applied in
agriculture in mineral fertilizers. In nodules
the bacteria are surrounded by a plant-de-
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rived membrane. This membrane regulates
the exchange of soluble molecules between
the plant cytoplasm and the bacteria. Nitro-
gen-fixing symbioses between legumes and
rhizobia may be highly specific. This specific-
ity is determined by several steps of chemical
signals between the symbiotic partners [1].
Recent studies implicate also electrical sig-
nalling and ion channels in the communica-
tion processes that initiate nodule formation
[2]. The nodulation process commences when
the symbiotic partners encounter one an-
other in the rhizosphere. Communication is
mediated by exchange of diffusible chemical
signals [3], foremost among which are fla-
vonoids from the plant and Nod factors from
the bacteria [4, 5]. Flavonoids exuded from
the plant roots serve as chemoattractants
and growth enhancers of particular bacterial
strains [6]. In many rhizobial species fla-
vonoids also enable activation of nod genes
by a transcription factor encoded by nod D
[1, 71. The flavonoid requirement is not uni-
versal, so, flavonoids are viewed as only
broad range determinants of host specificity.
The ultimate determination of host specific-
ity resides in bacterial compounds synthe-
sized by the nod gene encoded enzymes se-
creted into the rhizosphere. Once the recog-
nition process between legume and bacteria
has been completed, a series of developmen-
tal changes start with root hair curling and
initiation of cell division in the inner cortical
layer of the root where the nodule will form.
Then an invagination called the infection
thread is produced and through this passage-
way bacteria enter the plant [8].

Rhizobial genes controlling infection,
nodulation and host-range

The Rhizobium genes essential for infection
can be divided into two classes. One class
includes several sets of genes involved in
formation of the bacterial cell surface, such
as the genes determining the synthesis of
exopolysaccharides (exo genes) [9-17] lipo-
polysaccharides (Ips genes) [18-20] and B-
1,2 glucans (ndv genes) [21]. A possible role
of exo and Ips genes in the determination of
host specificity has been suggested, but no
clear genetic evidence has yet been given that

Rhizobium surface components are determi-
nants of the host-range specificity [22-24].
The second class consists of the nodulation
(nod, nol) genes [25, 26]. Some of the nod
genes appear to be interchangeable in their
nodulation function between different spe-
cies and are designated as common nod genes
[27, 28]. On the other hand, some nod genes
are involved in the nodulation of a particular
host and are called host-specific nod genes
(hsn genes) [29]. In most Rhizobium species
the nod genes reside on large symbiotic plas-
mids (pSym) that also carry the nif and fix
nitrogen-fixing genes [30-34]. In genera
Bradyrhizobium and Azorhizobium as well
as Rhizobium loti, the symbiosis related
genes are localized on the chromosome [34,
35].

Nod factors

A major function of the nod genes is to
ensure signal exchange between the two
symbiotic partners. In the first step, fla-
vonoids excreted by the plant induce, in con-
junction with the NodD protein, the tran-
scription of bacterial nod genes [36]. In a
second step the bacterium, by means of struc-
tural nod genes produces lipooligosaccharide
signals (LCOs) called Nod factors [37] that
induce various root responses [38]. The
mechanisms underlying host specificity de-
pend on both the regulatory and the struc-
tural nod genes. Induction of nodulation
genes requires flavonoids excreted by the
host plant root, the transcriptional activators
NodD protein and the NodD binding cis regu-
latory element, the nod box. The structure of
a given NodD protein determines which fla-
vonoids act as nod gene inducers. Therefore,
the flavonoid NodD interactions represent
the first major host-specific step in the estab-
lishment of symbiosis [39]. In several cases
flavonoids inhibit nod gene activation by ef-
fective inducers [40, 41]. The antiinducers
usually have similar structures to those of
inducers, and inhibition can be overcome by
increasing the concentration of the inducers
[42]. The nod gene functions are required for
nodule induction and probably for the main-
tenance of nodule development in the case of
indeterminate nodules formed on temperate
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legumes such as pea, alfalfa or vetch. The
number of nodD gene copies varies from one
to five in different rhizobia. Rhizobium
tropici strains contain 4-5 nodD copies, but
only one allele seems to activate nod gene
expression [43]. However, elaboration of fla-
vonoid induced proteins by Rhizobium fredii
is regulated by both nodD1 and nodD2 genes
[44]. The interaction of NodD proteins with
flavonoids differs not only from species to
species or from strain to strain but also
within a single strain among individual
NodD alleles. The fact that individual NodD
proteins differ in their flavonoid specificity
suggests a direct contact between NodD and
the inducer (45]. NodD belongs to the LysR
family of the bacterial regulatory proteins
[46]. Regulation of the nod genes is under a
dual control involving activators and a re-
pressor which contribute to optimal nodula-
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Figure 1. Structure of Nod factors from rhizobia.

also a precursor for the biosynthesis of
lipid A and peptidoglycan. There is now evi-
dence that the products of the common nod
genes, nodABC, are enzymes that assemble
the GlcNAc core of the molecule [53]. The
common nodABC genes have been identified
in all rhizobial strains. They are structurally
conserved and functionally interchangeable
between Rhizobium, Bradyrhizobium and
Azorhizobium species without the host range
being altered [33]. In all species studied ex-
cept Rhizobium etli, R. loti and Rhizobium
sp. the nodABC genes are part of a single
operon [53-55]. Inactivation of the nodABC
genes abolishes the ability of bacteria to elicit
any symbiotic reaction in the plant [56]. The
product of the nodM gene has been shown to
be a glucosamine synthase. NodC gene has a
significant sequence similarity to chitin syn-
thase, so it has been suggested that it plays

Ry, H or methyl; Rz, long chain fatty acid; Rs, H or carbamoyl or acetyl; Ry, H or acetyl or sulfuryl or additional
sugar (arabinosyl or fucosyl); Rs, H or glycerol group; n, 1, 20r 3

tion [47-49). In Bradyrhizobium japonicum
there is a NodD-independent control of nodu-
lation with involvement of the nod VW genes
[50]. Most Rhizobium nod genes are not ex-
pressed in cultured cells but are induced in
the presence of the host plant (51, 52]. The
nod genes for which a role has been demon-
strated can be divided into four classes on the
basis of the following steps in Nod factor
production: (1) synthesis of a precursor mole-
cule (nodM); (2) synthesis of a common
lipooligosaccharide structure (nodABC); (3)
host specific modifications of the basic strue-
ture (nod E, F, G, H, L, P, @ S, X, Z, and
nolK, nolO); (4) accessory functions like Nod
signal excretion (nod I, .JJ, and nol F, G, H,
and I ) [1]. UDP-GlcNAc is one of the earliest
precursors of Nod factors. This molecule is

a role in polymerization of GleNAc residues
[56, 57]. It has been shown that NodB is an
N-deacetylase that removes the acetyl group
from the terminal non-reducing sugar resi-
due of the LCO. The deacetylated molecule
then serves as an acceptor for a transacyla-
tion reaction catalyzed by NodA which might
preferably incorporate a specific unsaturated
fatty acid characteristic of some Rhizobium
species [55]. It has been proposed that Nod
factor synthesis may take place in a multi-
enzyme compartment. It is also reasonable to
expect that N-acetylation of GleN and activa-
tion to UDP-GleNAc is localized in this com-
plex compartment [3, 58]. The induction of
the root nodule is triggered by the presence
of specific substituted LCOs produced by the
bacteria. The application of such signal mole-
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cules to the roots of a compatible host induces
root hair curling and cortical cell division.
The structures of the compounds produced by
R. meliloti were the first to be determined
[59, 60]. A key function is fulfilled by the
rhizobial LCOs, which in purified form, even
at nanomolar concentration, are sufficient to
induce the formation of root-nodule primor-
dia and often complete nodule-like structures
on host plants [1, 61, 62].

Modifications at the terminal reducing
and non-reducing end of the Nod factor

Conversion of the basic structure into a
host-specific Nod factor takes place by addi-
tion of various substituents [57, 63]. Little is
known about the time when these modifica-
tions take place during Nod factor synthesis.
Modifications at the non-reducing end of the
Nod factor include acetylation, carbamoyla-
tion, N-methylation and N-acylation with a
multiply unsaturated fatty acid. Carbamoyl
groups have been reported on Nod factors
from the broad host-range Rhizobium
NGR234 [64], Bradyrhizobium elkanii [65],
Azorhizobium caulinodans, R. loti and R. etli
[66]. These species also produce LCOs which
have no carbamoyl groups [65]. When they
are present there can be one or two car-
bamoyl groups located on O-3 or 0-4 of the
N-acyl GleN of Nod factors from Rhizobium
NGR234 strain [64] or on O-6 in the case of
A. caulinodans [66]. The genes responsible
for carbamoylation have not yet been identi-
fied. The nodL gene is responsible for O-ace-
tylated product. A 6-O-acetyl group on the
non-reducing terminal N-acyl GleN has been
reported in LCOs from Rhizobium meliloti,
Rhizobium leguminosarum bv. viciae [67,
68), B. japonicum and B. elkanii [65]. This
modification appears to be crucial to host-
range determination only in the case of
R. leguminosarum bv. viciae [69). NodE and
NodF are unique to those Rhizobium species
which contain multiply unsaturated fatty ac-
ids in their LCOs, i.e. R. meliloti and R. legu-
minosarum. In other rhizobia, in which
nodEF have not been identified, the fatty
acyl substituant is usually C18:1 with some
C:16. The N-methyl group has been reported
in LCOs from Rhizobium NGR234 [64], B. el-

kanii [65], A. caulinodans [66] and R. tropici
[70]. NodS is responsible for the addition of
this methyl group [66]. Since LCOs with and
without modified groups can be synthesized
by a single strain, it is difficult to speculate
on the step and cellular location at which
such groups are added during Nod factor
synthesis. The modifications of the NodL,
NodF and NodE products occur probably
prior to their transport across the cell mem-
brane [71, 72]. The localization of NodA (Nod
factor acylation) in the cytosol supports the
concept that fatty acids acylation occurs on
the cytosolic side of the bacterial cell mem-
brane [72]. The Nod factor reducing end can
be modified by sulfation, O-acetylation, 2-O-
methylfucosylation as well as by D-arabino-
sylation [73]. Interestingly, most Rhizobium
species produce several different LCOs. The
variation, which may allow a Rhizobium
strain to nodulate different host plants, must
depend on the specificity and efficiency of the
respective biosynthetic steps [74, 75]. A sul-
fate at O-6 of the reducing end GlcNAc resi-
due has been reported for R. meliloti and
R. tropici [67, 70]. The products of nodPQ
and nodH genes are responsible for sulfation
of the R. meliloti Nod factor. An acetyl group
at 0-6 of the reducing GleNAc residue is
found in LCOs from R. leguminosarum bv.
viciae strain TOM [49]. This strain has an
additional nod gene, nodX, which permits
nodulation of Afghanistan peas. Nod factors
from Rhizobium NGR234, B. japonicum,
B. elkanii and R. fredii contain MeFuc at 0-6
of the reducing GlcNAc residue [64, 65, 76,
77]. Since both R. fredii and B. elkanii also
have LCOs modified by Fuc it is possible that
Fuc is transferred to the Nod factor prior to
methylation at O-2. It is thought that NodZ
may be a Fuc transferase. Perhaps these
meodifications at the reducing end take place
in the periplasm at the time the molecule is
exported out of the bacterium.

The relationship of host-range to Nod fac-
tor modifications

Some of the Nod factor modifications re-
strict while others extend the symbiotic host-
range. Modifications which restrict the host-
range include the sulfation at 0-6 of the
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reducing GleNAc residue and the presence of
a multiply unsaturated fatty N-acyl substi-
tuted C16:2, in the case of R. meliloti and a
C18:4 N-acyl substituent in R. legumi-
nosariem bv. viciae [69]. The D-Ara residue
at 0-6 of the reducing GlcNAc in the LCO
from A. caulinodans is another example
which suggests that such a substitution is
required for specific interaction with Ses-
bania, a unique host to A. caulinodans [66].
B. japonicum nodZ mutants produce Nod
factors that lack MeFuc and are defective in
their ability to nodulate siratro, but still
nodulate soybean. So, MeFuc appears to be
necessary for B. japonicum to include siratro
in its host-range. The N-methyl group on the
terminal N-acyl GleN of LCO from Rhizo-
bium NGR234, R. tropici, R. loti, R. etli,
A. caulinodans and B. elkanii may extend
their host-range since transfer of nodS, the
gene for the methyl transferase, to R. fredii,
whose Nod factors do not normally have the
N-methyl group, results in the extension of
its host-range to include Leucaena [78]. Spe-
cific fatty acid structures determined by
NodE have also been shown to be important
for Nod factor activity towards vetch and
clover. NodE dependent factors towards clo-
ver carry polyunsaturated acyl chains lack-
ing the cis double bond that is present in the
Nod factors of R. leguminosarum bv. viciae.
However, recent results indicate [79] that the
difference in the host-range between the
R. leguminosarum bv. viciae and trifolii re-
sults from the overall hydrophobicity of the
highly unsaturated fatty acyl moieties of
LCOs rather than from a specific structural
feature. Further evidence that the receptor-
ligand interaction is not the only parameter
that determines host-specific Nod factor ac-
tivity is given by the increasing number of
reports showing that non-legumes respond to
LCOs [1]). The latest observation shows that
Nod factors and cytokinins induce similar
cortical cell division and amyloplast deposi-
tion in alfalfa roots [3]. Thus, Nod factor
molecules might act as endogenous plant
growth regulators. Similar compounds could
be involved in yeast and even in vertebrate
development [80]. The host-specific activity
of Nod factors can be explained most easily
by the presence of specific receptors that

recognize molecules with different modifica-
tions, However, the remarkable variation of
the terminal substituents on the Nod factors
of the rhizobia that nodulate Phaseolus sug-
gests that these modifications may also have
another function than to contribute to recep-
tor-ligand affinity [74]. The activity of LCOs
can also be determined by the presence of
plant enzymes involved in the metabolism of
the Nod factor. It has been shown that the
Nod factors of R. meliloti are rapidly inacti-
vated in the rhizosphere of alfalfa by the
action of chitinases and that the rate of deg-
radation depends on a structural modifica-
tion of the Nod factor [81]. Therefore, differ-
ent structural moieties of R. meliloti LCOs
has been investigated in a rapid assay that
avoids degradation of the Nod factor. A few
seconds after the addition of Nod factors the
membrane was depolarized and ion channels
have been formed. These changes were found
to depend on the sulfate modification,
whereas they were not influenced by O-acetyl
group on the non-reducing residue. These
data suggests that a sulfate group is involved
in a receptor-ligand interaction, whereas O-
acetylation may be involved either in recog-
nition by a distinct class of receptors or in
protecting the molecule against degradation
[2, 74]. It has been speculated that the sym-
biotic relationship evolved from one that was
initially pathogenic. In plants pathogenic
bacteria may produce or elicit signals of an
electrical nature [80]. Further studies pro-
vided evidence that electrical signalling is
important in the Rhizobium-legume interac-
tion [81]. Mechanisms of membrane depolari-
zation include cation uptake, anion efflux
and inhibition of the hyperpolarizing H"-AT-
Pase found on the plant plasma membrane.
Previous assays of nodulation capacity by
Rhizobium mutants set the stage for the next
experiments [82]. A deletion mutant of
R. leguminosarum bv. viciae lacking seven
host-specifying nod genes (nodEFLMNTO)
produces a Nod factor that has a C18:1 fatty
acid side chain rather than the C18:4 fatty
acid that is normally synthesized. This mu-
tant is unable to nodulate [83]. Nodulation is
partially restored by introduction of nodEF
genes involved in biosynthesis of the C18:4
fatty acid [69]. Surprisingly, the nodulation
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capacity is also partially restored to the de-
letion mutant by a plasmid carrying nodO.
The nodO gene does not appear to be involved
in the synthesis of the Nod factor. This gene
encodes a secreted Ca*-binding protein with
homology to the bacterial pore-forming
hemolysins [84]. It has been found then that
the purified product of nodO gene inserted
into an artificial bilayer formed a cation-se-
lective ion channel. It is suggested that the
channel formed by NodO permits cation up-
take in vivo, producing or enhancing the
membrane depolarization. If NodO does trig-
ger membrane depolarization, this effect
may increase the efficacy of, or increase the
plant’s sensitivity to an abnormally weak
signal caused by abberant Nod factors.

Strain variability and gene redundancy

Comparing R. leguminosarum bv. trifolii
strains ANUB43 and TA1 it was found that
in the latter strain nodT is absent and a
second copy of nodD is present. NodT is a
positively acting cultivar specificity determi-
nant controlling nodulation of Trifolium sub-
terraneum by R. leguminosarum bv. trifolii
[83]. Gene redundancy is another problem,
particularly with nodD and other nod genes
as well. R. leguminosarum has two glu-
cosamine synthases, required for nodulation
and development of nitrogen-fixing nodules
[85].

Lectins and intracellular alkalinization

Nod factors appear not to be the only factors
involved in determination of host-plant
specificity during the nodulation process. In
addition, the recognition mechanism of the
symbionts has been reported to include leg-
ume lectins. Lectins are sugar-binding
(glyco)proteins usually harbouring at least
two sugar-binding sites per molecule. Upon
the introduction of the pea lectin gene into
clover, the transgenic plant became infected
by R. leguminosarum bv. viciae [86). It has
been shown recently that alfalfa root hair
cells respond to R. meliloti LCOs by rapid
intracellular alkalinization. The response
was most sensitive to the sulfated LCO with
concomitant depolarization of the plasma

membrane potential. Non-sulfated LCO elic-
ited a pH change only at elevated concentra-
tions without membrane depolarization.
These results indicate that sulfated and non-
sulfated LCOs act independently and sug-

gest the existence of two Nod signal percep-
tion systems [87].

Nodulins

The nodule is a new organ of the plant with
a defined structure [88-90]. During its differ-
entiation a set of specific genes called nodulin
genes are activated in the root or in the
developing nodule [91]. In roots or root hairs,
a set of plant genes is specifically activated
by the presence of symbiotic bacteria shortly
after infection [92]. Some of them can also be
induced by a Nod factor such as Enod12,
whereas others are activated at later stages.
Many of the early nodulins characterized so
far seem to be structural cell wall proteins.
Putative nodulins participating in a signal-
ling cascade are most likely of low abundance
and therefore more difficult to identify [1]. It
is worth to note that nodulin 26 is also an ion
channel [6]. Purified nodulin 26 incorpo-
rated into a lipid bilayer formed a channel
through which both cations and anions
could permeate.

CONCLUSION

The current data suggest that the host
specificity of Nod factor activity is deter-
mined at multiple levels. While the existence
of specific plant receptors (yet to be identi-
fied) must be postulated, some of the struc-
tural features of Nod factors may be involved
in increasing the stability of the signal mole-
cules or in the transport processes. Very little
is known about how the Nod signals are
specifically perceived by host-plant cells. Nod
factors act at extremely low concentrations
which suggests the involvement of high-af-
finity receptors and signal amplification via
a transduction cascade. Rapid, on a time
scale of milliseconds, and transient depolari-
zation of alfalfa root hair membranes in re-
sponse to Nod factors has been reported [6].
This response shows a high degree of speci-
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ficity towards cognate Nod signals indicating
its possible involvement in Nod signal
transduction [93, 94]. However, it remains
unknown how plasma membrane depolariza-
tion would trigger the symbiotic programme.
Therefore, should changes in plasma mem-
brane potential play a role in Nod signal
transduction? They are unlikely to be suffi-
cient by themselves, but probably would re-
quire additional events.
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