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Recent reports indicate that minichromosomes and other small genetic enti-
ties may occur in the nuclei of uninfected higher plants. They become especially
abundant under some special growth conditions and, sometimes, resemble
extrachromosomal genes of ciliated protozoa. An example of such a gene-sized
DNA species was isolated from resting wheat embryos. The presence of telo-
meric sequences at its termini and the ability to replicate autonomously in
wheat nuclei made it possible to distinguish this nuclear minichromosome from

chromosomal DNA fragmentation products. The biological significance of plant
minichromosomes remains to be elucidated.

Cell nuclei are known to contain various
small genetic entities in addition to standard
chromosomes. The largest of these belong to
a class of B chromosomes which may be
present in many plant and animal species [1,
2]. Another class of small chromosomes,
called microchromosomes, occurs commonly
in birds and reptiles [3]. All these small
structures are large enough to be discernible
under the light microscope as metaphase
chromosomes but are probably indistinguish-
able from chromosomal DNA in interphase
nuclei.

In this minireview, I would like to concen-
trate on gene-sized DNA species that may be
isolated in the form of extrachromosomal
DNA. Although the occurrence of nuclear
exDNA in higher plants still remains a mat-
ter of controversy, progress in preparative

and analytical methods brings new informa-
tion on this topic rapidly.

AUTHENTIC AND ARTEFACTUAL
exDNA SPECIES

As reviewed by Rush & Misra [4], a number
of reports on the isolation of various exDNA
species appeared before 1985. Unfortu-
nately, the extraction procedures usually led
to an extensive fragmentation of chromoso-
mal DNA. Standard isolation and fractiona-
tion methods therefore yielded putative
exDNA preparations that were composed
mainly, if not exclusively, of chromosomal
DNA degradation products. Various struc-
tural features, e.g., circularity [5, 6] or single
strandedness [7, 8], as well as differences in

Abbreviations: ABA, abscisic acid; ARS, autonomously replicating sequence; exDNA, extrachromoso-
mal DNA; ORF, open reading frame; PCR, polymerase chain reaction; PFGE, pulsed field gel
electrophoresis; RAFP1, repressor/activator protein 1.
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buoyant densities [9, 10] and hybridization
patterns [6, 11] were, therefore, utilized to
distinguish between true exDNA and prepa-
rative artefacts. None of these approaches
has, however, been commonly accepted. In-
stead, attempts to prepare exDNA with the
omission of the stage of total DNA have
become predominant.

As early as in 1976, Hirt [12] developed a
simple method for selective extraction of vi-
ral DNA from virus-infected mammalian
cells. A non-enzymic lysis followed by high
speed centrifugation allowed him to separate
viral (extrachromosomal) DNA from all the
cellular DNA species. No simultaneous frag-
mentation of chromosomal DNA was caused
and no traces of cellular DNA could be de-
tected in the viral DNA preparation. Thus,
the method could be successfully used for the
isolation of cellular exDNA if it occurred in
the analysed cells. Indeed, the method was
soon applied for the isolation of bacterial
plasmids as described in a commonly used
manual [13].

rRNA genes [14]. In our laboratory, the crude
nuclear pellet was used as the exDNA source.
The preparations obtained differed from ran-
domly degraded chromosomal DNA in re-
spect to buoyant density [10] and contained
telomeric sequences [15, 16].

Another way to omit the total DNA stage
from preparative procedures was found by
Schwartz & Cantor [17]. Yeast cells were
embedded in an agarose gel and after lysis
with proteinase K, subjected to the PFGE.
The solidified agarose prevented DNA from
shearing during all the treatments and
PFGE conditions allowed separation of both
chromosome-sized and extrachromosomal
DNA molecules simultaneously. The method,
however, needed some modification to be ap-
plied to plant material. The first attempts
included preparation of protoplasts as a pre-
liminary step [6, 18]. More recently, tissue
slices have been used [19]. Some recent data
on nuclear exDNA of higher plants are sum-
marized in Table 1. The table does not in-
clude plasmids as, to my knowledge, no re-

Table 1. Examples of small genetic entities occurring in plant nueclei

Entity Plant species DNA size (bp) Reference
B chromosome Crepis capillaris 10"-10® (2]
Minute chromosome Scilla siberica <107 [24]
Triticum aestivum 10%-107 [25]
Circular exDNA Oryza sativa 4.5 x 10* [6]
Minichromosome Triticum aestivum 837 [15]
Transposon exDNA Zea mays 14 x 10° [45]
Arabidopsis thaliana 431 [11]
wInduced exDNA Zea mays variable [47]

The first attempt to apply the method of
Hirt to plant material was described by Van't
Hof & Bjerknes [9]. To adjust experimental
conditions to the specificity of plant material,
they used isolated nuclei, instead of intact
tissue or cell suspension, as the immediate
source of crude exDNA. Special attention was
then paid to extensive purification of the
nuclei which, however, resulted in exDNA
preparations that, similarly as chromosomal
DNA, were rich in repetitive sequences and

port on their occurrence in plant nuclei has
appeared so far.

MINUTE CHROMOSOMES

Minute and double minute chromosomes
have been defined as extrachromosomal,
acentric, autonomously replicating elements
[20]. They have been extensively studied in
animal cell cultures where their appearance
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may be related to gene amplification [21],
chromosomal deletions [20] and chromatin
diminution [22].

In higher plants, minute-like structures
were first observed in the orchid by Nagl [23]
in 1983. More recently, Deumling and Cler-
mont [24] presented cytogenetical evidence
for a massive appearance of very small (< 1
um) Feulgen-positive chromatin particles in
cultured cells of another monocot, Scilla
siberica. These minute chromosomes often
arranged in metaphase-like arrays during
mitosis. Quite similar elements were then
found in cell and tissue cultures of wheat
[25]. This time, minutes and double minutes
were observed as granular chromatin parti-
cles containing 0.17 to 5.54 pg of DNA. The
DNA species of these bodies ranged in size
from 2.56 x 10° to 1.05 x 10 base pairs (bp).
A close relationship between formation of the
minute chromosomes and DNA amplification
and cell differentiation in embryogenic calli
was pointed out [25]. It remains to be estab-
lished whether minute chromosomes occur in
plants growing under natural environmental
conditions.

SMALL POLYDISPERSE CIRCULAR
DNA

A review of Gaubatz [26] summarizes re-
cent data on small polydisperse circular DNA
of animal cells, Similar extrachromosomal
circular DNA has been reported to occur in
the cell nuclei of higher plants since many
years. In particular, a series of circular
exDNA species was observed by electron mi-
croscopy in calli induced from immature em-
bryos of wheat [5]. No individual specimen of
this DNA class was, however, described in
detail.

More recently, Cuzzoni et al. [6] used PFGE
to isolate exDNA of rice. They demonstrated
that a circular extrachromosomal molecule of
about 45 kb was produced in cultured rice
cells as a result of amplification of a repeated
sequence. A counterpart of the exDNA se-
quence was present in the chromosomal DNA
of rice plants.

MINICHROMOSOME-LIKE STRUCTURES

In this context, a minichromosome means a
gene-size, double-stranded, linear or circular
DNA molecule containing a native coding
sequence and its own origin of replication; a
linear minichromosome should, in addition,
have telomeric repeats at its termini. A typi-
cal example of such exDNA species was first
identified by Blackburn & Gall [27] in the
macronuclei of Tetrahymena thermophila,
and has since been referred to as minichro-
mosome [28]. Plasmids, on the other hand,
can hardly be considered as minichro-
mosomes since they carry genetic informa-
tion that is alien to the host cells.

Although nuclear minichromosomes occur
in some protozoa [29-31] and, less fre-
quently, in fungi [32-34], there is a shortage
of data on their occurrence in vertebrates and
higher plants. My interest to plant minichro-
mosomes emerged from studies on seed ger-
mination. Some time ago, we found that,
while RNA and protein synthesis starts at
the onset of germination, DNA replication is
activated in germinating wheat embryos
with a considerable delay [35]. Some incorpo-
ration of labelled DNA precursors could,
however, also be observed at the early germi-
nation time. Unexpectedly, the early synthe-
sized DNA product corresponded neither to
nuclear chromosomal nor to organellar DNA
[36]. After a series of inconclusive experi-
ments, the possibility of autonomous replica-
tion of nuclear exDNA in germinating wheat
embryos was pointed out [37]. Circumstan-
tial evidence further suggested that nuclear
exDNA does occur in wheat embryos and is
rich in telomeric type sequences [10]. Hirt
extractions followed by PCR amplification of
sequences flanked by telomeric repeats then
allowed us to isolate and clone a 637 bp
exDNA sequence that was structurally simi-
lar to Tetrahymena minichromosomes [15].
Blot-hybridization experiments further indi-
cated that much larger (2—20 kb) telomere-
rich exDNA species also occur in the nuclei
or resting wheat embryos [16].

As it is schematically shown in Fig. 1, the
cloned exDNA sequence [15] contains 28 bp
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inverted terminal repeats consisting of the
same heptamer units that were earlier iden-
tified by Richards & Ausubel [38] in chromo-
somal telomeres of Arabidopsis thaliana.
The presence of a yeast type ARS core ele-
ment and RAP1 binding-like site, in addition
to two in-phase ORFs and an intriguing 22
bp direct repeat, further makes the cloned
sequence similar to a functional, albeit un-
usually small, genetic entity. The direct re-
peat contains a motif (CATG) thatis common
to prokaryotic iterons [39] and ABA-respon-
sive elements of the wheat genome [40]. Cur-
rent experiments (Szurmak & Buchowicz,
this issue, p. 79) indicate that the putative
plant minichromosome can replicate autono-
mously in isolated wheat nuclei.

T A
<1

100 bp

EXTRACHROMOSOMAL COPIES
OF TRANSPOSABLE ELEMENTS

The use of the Hirt method allowed Flavell
& Ish-Horowicz [43] to isolate and charac-
terize a defined specimen of nuclear exDNA
from cultured Drosophila cells. This was rep-
resented by small (about 5 kb) circular DNA
molecules hybridizing to the transposable
element copia. A restriction map of the circles
was virtually identical with that of a cloned
copia element. Similar extrachromosomal
copies of transposable elements, both circu-
lar and linear, have since been found in a
wide variety of eukaryotic organisms, includ-
ing vertebrates [44]. They are, however,
rather rare in higher plants. There seem to

T.5'- (CCCTAAA), and (TTTAGGG),-3'

A, ATTTATITTT

R. CCCAAACACC

D, CTTCCATSCACTAGCCTATCAA

Figure 1. Structural organization of a wheat minichromosome.

Some sequence elements are given below the scheme: T, telomere; A, ARS core; R, RAP1-binding site; D, direct
repeat with a motif (underlined) commaon to ABA-responsive elements and iterons. The complete sequence can be
found under EMBL/AGenBank accession number X73235 and in a recent report [15].

The origin of the wheat minichromosome is
unknown. It should, however, be emphasized
that essentially the same sequence (97%
identity in a 510 bp overlap) was identified
by Cheung et al. [41] in chromosomal DNA
of wheat. It is known that in plants growing
under natural environmental conditions,
chromosomal DNA is always exposed to le-
sions that may result in its fragmentation
[42]. Those of the fragmentation products
which, fortuitously, will contain telomeric
sequences, a replication origin and regula-
tory elements may be expected to replicate
autonomously and, hence, to exist in plant
nuclei as minichromosomes.

be only two well characterized examples of
extrachromosomal copies of plant transposon
sequences.

The first of these was found by Sundaresan
& Freeling [45] in maize. The copy was cir-
cular, corresponded to an earlier reported
sequence of the maize Mu transposon and
occurred in all maize lines carrying a chro-
mosomal form of the transposon. The second
one also originated from a nonretroviral-like
transposon, namely Tat 1 of A. thaliana [11].
This time, however, the copy was linear and
occurred in a few of the examined populations.

The biological significance of extrachromo-
somal forms of mobile elements is unknown.
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According to the prevailing view [4, 44], they
may represent either intermediates or by-
products of DNA transposition. This inter-
pretation does not, however, include all the
possibilities. Some extrachromosomal copies
of retrotransposons are capable of autono-
mous replication and may be used as cloning
vectors [46]. Thus, they conceivably might
exist independently of transposition events.

RADIATION-INDUCED
CHROMOSOMAL BREAKAGE

- Recently, Brock & Pryor [47] described the
appearance of a nuclear minichromosome in
maize as the consequence of gamma irradia-
tion of pollen. The minichromosome com-
prised part of the short arm of chromosome
10 of maize and was cytogenetically unstable.
Similarly derived minichromosomes were
also observed in other plants, including
wheat [48].

In vertebrates, such minichromosomes may
be generated by both radiation-induced and
spontaneous chromosomal breakages. Spon-
taneously formed linear fragments usually
have telomeric sequences at their ends and
represent a suitable substrate for chromoso-
mal healing [49]. It seems justified to expect
that similar events may also be quite fre-
quent in plants. So far, healed broken chro-
mosomes have been detected in a telotrisomic
line of barley [50].

PERSPECTIVES

It is difficult to understand the reason for
which plant cell nuclei may be endowed with
small genetic entities. According to the pre-
sent state of knowledge, standard chromo-
somes are sufficient to ensure all the func-
tions that may be governed by genetic mate-
rial in resting, growing, and differentiating
cells. Nevertheless, minute chromosomes,
small circular DNA species, linear minichro-
mosome-like structures, and extrachromoso-
mal copies of transposon sequences do ap-
pear in many plant species. Usually, they are
hardly detectable but, under some stress con-
ditions, become abundant enough to be inves-

tigated with standard cytogenetical methods.
It may be expected that extensive use of PCR
techniques will soon make it possible to de-
fine new examples of minichromosome type
structures in the nuclei of higher plants.

Thanks are due to Dr Marek Koter for
preparing Fig. 1.
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